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We present a formalism based on density-functional theory capable of describing polarization-type many-

body effects influencing the photoresponse of small electronic systems. The self-consistent field approach we

describe incorporates correlations into a local, effective single-particle potential which takes account of the

time-dependent fields induced by an external radiation field. In this paper we present calculations of the

static polarizabilities, total photoabsorption cross sections, and selected partial photoabsorption cross

sections of the rare gases which yield results in good agreement with experiment. A study of the energy and

spatial dependence of the local field leads to a clear physical picture of the dielectric properties of these

systems.

I. INTRODUCTION

In this paper, we demonstrate the applicability
of the density-functional formalism to the accu-
rate description of certain many-body effects
which influence the photoabsorption spectra of the
rare gases. We describe a self-consistent field
procedure' which takes account of polarization
phenomena' in these small electronic systems.
Our calculations, based on simple, nonbasis set,
numerical techniques, yield results for the
atomic polarizability and photoabsorption cross
section in good agreement with experiment. We
focus particular attention on the effective, self-
consistent, local field to which the electrons
respond independently. All the electron corre-
lation effects we consider are incorporated into
this local field, taken to be the sum of the ex-
ternal field and those fields induced by perturba-
tions of the electron charge density. ' We gain
insight into the nature of the dielectric response
in these finite systems by a study of this position
and frequency dependent field. The present work
is confined to atoms and is meant to be explora-
tory in nature. Nonetheless, we feel that our
approach should be well suited to the study of
similar phenomena in more complex systems as
well.

The phenomena under study fall generally into
the category of electron correlation effects. The
importance of these effects in many-electron
systems has long been stressed. 4 ' For example,
correlations are known to make a sizable con-
tribution to the total energy and magnetic suscep-
tibility of the infinite electron liquid. Indeed,
an entirely new mode (the plasmon) appears
solely through collective effects. Quite gener-
ally, one finds a redistribution of a system's

spectral weight from that obtained when interac-
tions between the electrons are neglected.

In systems with relatively few electrons, such
as atoms and molecules, one continues to find
important many-body effects. Again, correla-
tions may affect ground-state properties con-
siderably', however, it is the excitation spectra
which often most clearly reveal the influence of
electron interactions. Double photoionization"
and shake-up" are examples of processes with
two electron-hole pairs in the final state which
occur only through strong correlations. More
subtle effects, such as oscillator strength redis-
tribution, only become apparent with the failure
of independent-particle calculations to describe
the observed cross sections. " This failure has
been the focus of much of the recent work in the
field and is the issue we address here as well.

Considerable progress has been made in the
past ten years toward incorporating polarization-
type many-body effects into the calculation of
atomic properties. The early work of Altick
and Glassgold" has been extended and refined
by several groups to the point where the random
phase approximation with exchange (RPAE) pro-
vided a very successful description of atomic
photoabsorption in most cases."" Similarly,
good results have emerged from the extensive
work by Kelly and co-workers with the many-
body perturbation theory (MBPT)." A useful
review of these methods placing them in the con-
text of the early configuration-interaction (CI)
approach is presented by Chang and Fano."
Finally, we mention the impressive results
found with the so called R-matrix methods. " All
the above calculations have produced photoabsorp-
tion cross sections for a variety of atoms in good
accord with experiment. However, a crucial fea-
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ture of all these techniques seems to be the cost
paid in computational effort as the system com-
plexity increases; the practical extension of these
methods to even small molecules appears ex-
tremely difficult at present.

The formalism described in this paper includes
correlation effects at the-same level as much of
the work mentioned in the previous paragraph.
The essential advantage of our approach is the
computational simplicity provided by the density-
functional formalism (or more specifically the
local approximation to it). In particular, certain
infinite summations over the atomic spectrum
may be performed exactly with a Green's function
appropriate to the local, ground-state, effective
potential. Furthermore, the time-dependent
screening fields induced by the external field
also are completely local, facilitating a concept-
ual, as well as computational, simplification not
achieved with a Hartree-Fock-based calculation.
We have chosen to test our procedure with the
rare-gas atoms for three reasons: (1) there
exists a wealth of experimental data, (2) a great
many calculations already exist with which to
compare our results, and (3) some simplicity in
the formalism is achieved for closed-shell sys-
tems. The results indicate that the methods of
local density-functional theory are quite appro-
priate for an accurate description of the photo-
absorption process, at least in these systems.

The outline of the paper is as follows. In Sec.
II w'e present the linear response theory of the
atomic polarizability and photoabsorption cross
section. Our application of density-functional
techniques and the self-consistent field (SCF)
method are then outlined. Some details of the
calculation such as the construction of the atomic
Green's function and the computation of partial
cross sections are discussed in Sec. ID. We
present our results for the atomic polarizability
and total cross section of the rare-gas atoms
and the 3s partial cross section of argon in Sec.
IV and interpret them in terms of the local field.
We conclude with a brief summary.

II. GENERAL FORMALISM

A. Atomic polarizability and photoabsorption cross section

In this section we discuss the photoresponse of
an isolated atom to an external electromagnetic
field in terms of the frequency-dependent polar-
izability u(&o). In the case where the wavelength
of the radiation is large compared with atomic
dimensions, the interaction Hamiltonian may be
written as X' =J n(r, t)Q'~(r, a&)e '"'dr. In gener-
al, the external field will induce time-dependent
perturbations in the electronic density. We de-

note the deviations from the unperturbed density
distribution by 5n(r, t). Since only the linear
response is of interest, we may treat each Four-
ier component of this disturbance individually.
The Fourier components are defined by

5n(r, t) = —5n(r, t)e '"'d(d.
2m-

The induced density and the external potential
are related through a position- and frequency-
dependent complex susceptibility,

5m(r, ~) =f y(r, r'; ~)( (F,"~')dr'. (2)

~ (0 In(r) lm) (m I n(r') I 0)
a~-(Z -E,)+~V

(0 In(r ')
I m) (m I n(r) 10)

E(d+ (E —E,) + i5 (4)

where the E are the exact energy levels and 6 a
positive infinitesimal. Complete knowledge of
the wave functions and energies determines the
induced density through Eqs. (2) and (4).

In the present case it is sufficient to set

P'*'(r, (o) = —,'eh, z,
where 5, is the magnitude of the external electric
field and e is a positive quantity. The actual
perturbation is K' = ez5, cos&t. The frequency-
dependent polarizability n(&o) is the ratio of the
induced dipole moment to the external field
strength:

2e 7
().(m) = ——

( zion(r, ur)dr,

o((g) =-e' J) zy(r, r', (o)z'dr dr'.

An explicit expression for o. ((d) is found by sub-
stituting Eq. (4) into Eq. (7) and using

))(r) = Q 5(r —r,.),

where N is the number of electrons in the atom.
The result is

Conventional first-order time-dependent per-
turbation. theory" shows that X(r, r', (d) may be
written as the time Fourier transform of a re-
tarded density-density correlation function,

iky(r, r'; f —t') =8(t —t')(0~ [A(r, t), n(r', f')]~0) . (3)

In this expression, ~0) is the exact many-particle
ground state, n(r, t) the Heisenberg particle den-
sity operator, and 3(t —t') the unit step function.
Inserting a complete set of many-particle states
~m) and Fourier transforming, we obtain the
spectral representation
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I (m I 2 I 0}I'
ha —(E„—E,) +i 5

1(ml 2 IO} I'
8(o + (E —Eo) + i6 (8)

where 2 =Q;z, The imaginary part of this ex-
pression is proportional to the Golden Rule for-
mula for the photoabsorption cross section,

(x((o) = 4]]((d/c) Imn((d),

and the static polarizability is found by setting
+=0 in Eq. (8},

(9)

,~ I(ml BIO}I'
E —E (10)

It will be useful subsequently if we review two
properties of the zero-frequency polarizability.
First, as may be readily verified, the photo-
absorption cross section satisfies a sum rule, "

g (d
~

2w

() (d C

Second, o(0) is a ground-state property of an

atom in the presence of a static electric field.
Indeed, it is well known ' that the static polariza-
bility follows directly from a second-order time-
dependent perturbation-theory calculation of the
total ground-state energy of an atom subject to
the perturbation X' with w =0:

(i2)

We stress that no such relationship exists for
n((d) for nonzero frequency.

C. The local-density approximation

The density-functional formalism" treats the
particle density n(r) as the basic quantity in a
theory of the ground-state properties of many-
partiele systems. In particular, the ground-
state density in an atom is determined by simul-
taneous solution of the following equations:

[-(h '/2m) V'+ V,«(r)]y,.(r) = e,.y, (r), (i4)

V,«(r) = V„(r)+e', drn(r')
)r —r')

VE„,[n]
5n(r) '

n(r)=Q ~(p,.(r")~'.

particle model of this type. "" These studies
show that the basic trends of the photoabsorption
spectra for a variety of atoms are well repro-
duced; however, there exist considerable dis-
crepancies between the computed magnitudes and
the measured absolute cross sections. Hartree-
Fock calculations'4 yield somewhat improved
results although systematic deviations from the
data remain. It is now clear that good agreement
with experiment may often only be achieved by the
inclusion of dielectric effects in cross-section
calculations. 2' Our approach to this problem is
largely based on the methods of the local-density-
functional formalism; we therefore begin with a
brief review of its essential features.

B. Independent-particle approximation

A first approximation to the photoresponse
problem treats the atomic electrons as respond-
ing independently to the external field, Eq. (5).
The many-particle wave function is constructed
as a single Slater determinant of single-particle
orbital eigenfunctions of an effective single-
partiele potential. In such a scheme, the photo-
absorption cross section, Eq. (9) reduces to

o(((])=4m'c(R(dg f,(1 —f&)~(y~ ~i) ~'

E„,[n] is the (generally unknown) exchange-corre-
lation energy functional and V„(r)is the nuclear
potential. The exchange-correlation potential
is obtained by functional differentiation as indi-
cated. If the exact functional were known, this
prodedure would yield the exact ground-state
density. In practice, one tries to construct suit-
able approximations for E„,[n].

A commonly used approximation is the local-
density approximation (LDA)." The total
exchange-correlation energy is presumed to be

X Q(8((3 —
E~ + E ) (r Z„(r]=f r(r]r„(r(r]]dr, (i7)

where the g,- are the single-particle energy eigen-
values, z is the fine-structure constant, and the

f, are Fermi occupa.tion factors. Note from this
formula that the absorption occurs at photon
energies equal to differences of single-particle
energies with strength determined by matrix
elements of the external field. Rather extensive
calculations of atomic photoabsorption cross
sections have been performed in an independent-

V,.(r) = ~ [n(rQ„(n(r))]. (18}

The LDA equations [(14)—(16)] are then no more
difficult to solve than the Hartree equations.

where e„,is the exchange-correlation energy per
particle for a homogeneous system with density
n(r). This is a tremendous simplification since
it leads to a local exchange-correlation potential,
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Extensive work ' has shown that the ground-state
properties of many systems are well described
by the LDA.

It should be stressed that the quantities y,.(r)
and e,. which enter the LDA equations are merely
auxiliary quantities in the calculation of the par-
ticle density. They have not been shown to have
an independent physical meaning. Nonetheless,
we treat them as representing wave functions and

energy levels which characterize the ground state.
Furthermore, we use the continuum orbitals gen-
erated by V,«(r) as final states in the photoab-
sorption process. " Our aim is to determine
whether such a procedure can lead to a sensible
description of a phenomenon which crucially
involves excited states of the system. In prac-
tice, we employ a pararnetrized expression for
V„,(r) taken from Ref. 7 (in Ry),

V„(r)=— ' —0.0666ln 1+1.222 11.4
(19)

where srm(rs) =n(r) '. The results of this sec-
tion provide the material fcir an independent
particle calculation.

D. The self-consistent-field procedure

If the electrons of the atom were truly non-
interacting, the induced density in the presence
of the external field would be

lln(r, ~) fy,(fr', ~) ''( (,~)Fd|'. (20)

„V*;(r)V;(r)e*, (r')V;(r')
Ro —(s~ —s;) + z5

using wave functions and energies obtained from
the LDA calculation. The particle density repre-
sented by Eq. (20} reflects the response to the
external field alone. However, as the electrons
redistribute themselves through the atom, they
interact with one another through the Coulomb
interaction. That is, an individual electron ex-
periences a field produced by its neighbors in
addition to the external field. " This effect is
represented in an average way by an induced
Coulomb potential energy

(21)

The subscript indicates that we form the independ-
ent-particle version of Eq. (4),

X,(r, r'; (o) = Q (A fg)-

obtained by linearizing the I DA functional [Eq.
(19)I around the ground-state density. "
define

Q'""(r, u)) = 5Vc(r, (o) + 5V„,(r, (o)

K r, r' 5n r', u dr', (24)

and require the electrons to respond independ-
ently to a new, local driving field. That is,

an(r, w)= f y (|,|;v)[(''*'(| ', v)+ ("(| ', w)]dr'

X, r, r', co
~F r', (o dr'. (25)

16mo)
(7(Q)) = —

@s
Im P * (r, (())y (r, r; ~)

&@o

x &~F(r', (o)dr dr'. (26)

Expanding the imaginary part as ImA = (A -A*)/
2i and using the SCF integral equation,

'(r, ~)= y'"'(r, w)

+ Kr, r Xor, r

Note that all induced quantities and hence
(r, co} are frequency-dependent complex quan-

tities proportional to the magnitude of the exter-
nal electric field 8,. The density will in general
oscillate out of phase with the external field.
Equations (22), (23), and (25) are solved simul-
taneously and the polarizability and total photo-
absorption cross section are calculated using
Eqs. (6) and (9), respectively.

In this theory, the kernel function K(r, r') is
static, and all the time dependence of the induced
fields is carried through the density 5zz(r, &o).ss

In a more refined theory, K(r, r') would carry
additional time dependence. It should be clear
that our local-field correction only models those
correlation effects which produce a polarization
of the system. " The processes which lead to
two-electron excitation, as mentioned in the
Introduction, are beyond the scope of the present
calculation.

To see the meaning of the local field more
clearly, consider the follow|ng expression ob-
tained from Eqs. (5), (6), (9), and (12):

5Vc(r, v)=e' ', dr',5)z(r', (o)
) r- r'l

and an induced exchange-correlation potential
energy

(22)

x pscF(r-" u))dr'dr

obtained from Eqs. (24) and (25), we readily
obtain

(27)

(23) x ysc F(r', (o)dr dr'. (28)
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Finally, writing out X,(r, r', &o) explicitly, we
find

G(,-,-..E) ~ V.(r}e.*(r')
E —e +i5 (31)

cr(&o) = 4m'nh(u Q f;(1 f~-)
~

(g
~

P'„(r)Y,'(F )
~

i )
~

' and satisfies the symmetry relation,

G(r, r'; E)=G*(r', r; E) . (32)

where

X 6 (hCO —E +.E,.), (29)

III. DETAILS OF THE CALCULATION

A. X()(r,r';u) and the atomic Green's function

The calculation of the self-consistent field
polarizability requires a solution of the integral
equation (25) and hence evaluation of the inde-
pendent-particle susceptibility X,(r, r', &o) given
by Eq. (21). Note that this expression involves
an explicit sum over the complete spectrum of
the LDA effective single-particle potential V,«(r).
That is, we require not only the occupied orbitals
found simultaneously with V,«(r), but all unoccu-
pied bound states and continuum orbitals as well.
Previous investigators have typically approxi-
mated this infinite summation by various discre-
tization schemes. " %e shall circumvent this
problem by use of the Green's function associated
with the LDA Schrodinger-type equation. This
Green's function satisfies the differential equa-
tion,

ySCF( ) g ySCF(&)yO( )

The dependence of P~ F(r, z) on the spherical
harmonic Y,(x} reflects the symmetry of the ex-
ternal field and implies that the usual dipole
selection rules remain valid. Equation (29}
should be compared with Eq. (13); the two are
identical save for the replacement of the external
field by the local field.

It is useful to compare the structure of our cal-
culation to that of the RPAE." They are in fact
identical, with the Hartree-Fock single-particle
orbitals, energies and electron-electron matrix
elements replaced by LDA orbitals, energies,
and linearized potentials, respectively. The
important difference, however, is not one of
structure but of computational simplicity. The
local nature of the atomic potential permits an
exact evaluation of the independent-particle
susceptibility, Eq. (21), at least within the con-
text of the model. We discuss this aspect more
fully in the following section.

The sign of the imaginary part in Eq. (31) is de-
termined by the boundary conditions applied to
the solution of Eq. (30). We use the Green's
functions to rewrite" the expression for the
susceptibility, Eq. (21), as

X,(r, r', (o)

V;(r)V',*(r')
&;+ 8(d —6 ~+ s~

+ Z V;( )W,*( '}g ' ' . (33)
i occ ~

&' @ —&&+ &&

Xo(r r ' &)

y,. (r}y,.(r')G(r, r'; e,. + h&u)

i OCC

+ Q (p, (r)y,*(r')G+(r, r'; e., —rs(u). (34)
i OCC

Hence, we reduce the need for explicit wave func-
tions to those already obtained by solution of
Eqs. (14}-(16).

All that remains is an explicit construction of
the Green's function. " Since the atomic system
is rotationally invariant,

G(r, r'; Z) =g E'~(r)G~(v, F'; E)V~(r'), (35)

where L, is a compact notation for the angular-
momentum quantum numbers l and m. Equation

(30) may then be written,

c
E+——r ——1 3, 3 l(l+1) —V (~) G (r, ~', E)

5 (F —F')
(36)

Let j,(r~E) be the solution to the homogeneous
version of Eq. (36) which satisfies the proper
boundary condition at x=0, i.e. , is regular at
the origin. Similarly, let h, (r~E) be the homo-

geneous solution which satisfies the boundary
conditions as x- . The sign of the imaginary
infinitesimal in Eq. (33) means that h, (r~E) must
behave asymptotically as an outgoing wave.
Finally, the Green's function is constructed as

[E+&' —V,«(r)]G(r, r';E) =6(r- r'), (30) j,(F, IZ)h, (r, IE) (37)
where E is a parameter. Vie measure energies
and lengths in rydberg and Bohr radii, respec-
tively; G(r, r'; E}possesses an eigenfunction
expansion,

where x& (F'&) refers to the smaller (larger) in

magnitude of z and x'. The Wronskian W[j, h]
is defined as



A. XANG%ILL AND PAUL SOVKN

B. Partial cross sections

QscF(r) is used directly in Eq. (29) to compute
partial cross sections. For absorption by a state
with quantum numbers (nl) we write the initial
state as

q,.(r) =" ' I;(r), (39)

and the final state with wavevector K and energy
6 as

(40)

u„,(r) is a bound eigenfunction of the LDA equa-
tion

,+ . +I'. (r),14=~4
tf'g l(l + 1) (41)

and P„(r)a continuum solution, regular at the
origin. The complex coefficients A, are found by
requiring gz(r) to behave asymptotically as an
incident plane wave plus an incoming spherical
wave. ' With these conventions, the partial
cross section becomes

o„,((o) = 2(2l + 1)o(h(o)Wea2~

x P I& I'1&Ilool I'0

2
&& P„(r)P'„cF(r)u„.,(r)dr, (42)

where (l1001l'0} is a Clebsch-Gordan coefficient.
Notice that the real and imaginary parts of the
local field contribute to the cross section without
interference; that is,

W[ j, h] =r '[j(r)h'(r) —j'(r)h(r)]„., (38)

and is independent of a. In practice, the auxiliary
functions j,(r1E) and h, (r1E) are found by numeri-
cal integration of the homogeneous equation us-
ing the Numerov method. " The independent-
particle susceptibility is then simply evaluated
using Eq. (34).

We solve the integral equation (25) by iteration
using a relaxation method" and the Aitken pro-
cedure" to accelerate convergence. Note that if
the result of the first iteration 6n, (r, &u) is in-
serted into Eq. (6) we obtain the independent par-
ticle approximation to o(e}. Generally, upon
convergence, we calculate the SCF approxima-
tion to a(~) from Eq. (6) and the total photoab-
sorption using Eq. (9). We also directly obtain
the local potential function P~ F(r).

We apply our formalism to the calculation of the
static polarizability, total, and partial cross
sections of the rare-gas atoms in the next sec-
tion.

IV. RESULTS AND DISCUSSION

A. Static polarizability

As we have mentioned, there is no formal
justification for the use of the density functional
methods to describe anything other than ground-
state properties. Indeed, a proper discussion of
the action of the time-dependent Hamiltonian 3C'

of Sec. II requires a generalization of the original
formalism. Unfortunately, very little progress
has been made in this direction. 4' However,
within the present discussion, there exists a
case where the standard density-functional for-
malism should be exact in principle. Recall that
the static polarizability is a ground-state prop-
erty of an atom in the presence of a uniform
electric field. If the exact functional E„,[n] were
known, our procedure would be exact.

Our computation of n(0} provides a test of the
local density approximation. In Table I we pre-
sent our results for the static polarizability of
the rare gas atoms: neon, argon, krypton, and
xenon. Equation (12}shows that the accuracy of
this calculation is mirrored by the accuracy of a
total energy calculation. In fact, the I DA pro-
vides a very good representation of the total
ground-state energy of many-electron systems. 44

The essential point is that the exchange-corre-
lation energy is given by the interaction energy of
one electron with the spherical part of the ex-
change-correlation hole charge. Therefore, the
total energy is insensitive to the nonspherical
part of the true hole and the LDA, which pre-
dicts a completely spherical hole of the correct
volume, provides an accurate description.

The results in Table I show that the SCF static
polarizability is always smaller than the inde-
pendent-particle value; the atom appears less
polarizable when electron correlations are

TABLE I. Static polarizabilities of the rare-gas
atoms. O. p is the result of an independent-particle cal-
culation. n "is the self-consistent field value. Ex-
perimental values from Ref. 43.

Static polarizability (A3)

Ap
SCF +EXPT

2 2

P„y~'u„,dr = P„ReyscFu„,dr

2

+ PI) IQl Q )&' . 43

Neon
Argon
Krypton
Xenon

0.50
2.60
4.11
6.89

0.43
1.74
2.60
4.12

0.40+ 0.01
1.64+ 0.01
2.48+ 0.01
4.04 + 0.02
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FIG. 1. Top panel: Normalized Xe 5p radial wave
function. Bottom panel: External (dashed line) and lo-
cal {solid line) electric field along the z axis for xenon
at zero frequency. Field is measured in units of ~ $0.
Positive values correspond to an electric field vector in
the +z direction.

2.0

1.0

0.5—
-0.8

(b)

switched on. We consider the xenon case in
detail. In Fig. 1, the top panel shows the radial
part of the outermost 5P orbital. In the decom-
position of n(0) implied by Eq. (34), this shell
yields 80% of the total polarizability of xenon.
The bottom panel shows the external electric
field as a dashed line and the effective local elec-
tric field along the z axis as a solid line; i.e.,E"' (z)=-(d/dr)P'~ (r)z with &@=0. We em-
phasize that this is not the field that would be
experienced by a test charge, due to the presence
of the exchange-correlation potential in P ~v(r).
At short distances, the magnitude of the local
field is nearly zero. However, the external field
is effectively antiscreened at large distances
from the nucleus. This dielectric screening by
the atomic electrons ultimately leads to a small-
er induced moment.

We can understand this phenomenon in more
detail as follows. In response to the external
field, the electrons move to produce a net charge
surplus on one side of the atom and a deficit on
the other. The resulting induced field is repre-
sented by the equipotential plot in the top panel
of Fig. 2. Very qualitatively, this field is simil-
ar to that which would be produced by two point
charges on the +z axis, of equal magnitude and
opposite sign, each at a distance from the origin
coinciding with the final maximum of the Xe 5P
orbital. The effective induced electric field has
components which interfere either constructively
or destructively with the external field depending
upon the position in the atom. When the induced
field is superposed with the external field we
obtain the equipotential pattern shown in the
bottom panel of Fig. 2. The screening effects
become evident upon comparison with the external
field equipotentials shown as dashed lines.

FIG. 2. Kquipotential plots for xenon at zero fre-
quency. The potentials have axial symmetry around the
z axis and change sign upon reflection in the plane, z
= 0. Potential values are in units of 250. Top panel:
induced potential only. Bottom panel: induced potential
plus external potential (solid lines), external potential
only (dashed lines).

It is worth noting the effect of a slightly differ-
ent V„,(r) on this calculation. If the LDA poten-
tial is agumented by a Latter-type Coulomb tail, "
the agreement with experiment is worsened by
almost 50/p in all the cases we have studied.
This new potential is continuous, but suffers a
sharp break when the LDA potential reaches the
value 2/r. We pre-sume that this change is
sufficient to alter the volume of the exchange-
correlation hole considerably. In any case, the
results in the LDA are encouraging enough to
proceed to nonzero frequency.

a. (oi)

(Mb)
NEON

12—
1Q-8~

X
X

6-

X X
X X

X

22 24 26 28 30 32 34 36 38

o~(ev)
FIG. 3. Total photoabsorption cross section of neon

versus photon energy in the vicinity of the 2p threshold;
SC F calculation (solid line), independent-particle calcula-
tion (dashed line), data (crosses) from Ref. 46.
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B. Total photoabsorption cross section

The total photoabsorption cross sections for
the four rare gases under discussion appear in
Figs. 3-6. The solid lines refer to the SCF cal-
culation and the crosses indicate the data. The
independent particle cross sections are shown as
dashed curves. In each case, the photon energy
range displayed extends about 1 Ry above the
first ionization threshold of the outermost P shell.
In addition, Fig. 7 shows the total photoabsorption
cross section for xenon on a different energy
scale near the 4d-shell threshold. The agree-
ment with experiment is quite satisfactory and is
comparable to that of other workers. ' We wish
to point out three aspects of these calculated
cross sections.

First, our calculations do not show the charac-
teristic autoionization resonances seen in high-
precision measurements. " In principle, our

g (~) &5
$(x

(Mb) 4o -„
35 x KRYPTON

x
30x

25-
20 +x

15—

5
I I I I I I I I I l
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10—

FIG. 5. Total photoabsorption cross section of kryp-
ton versus photon energy in the vicinity of the 4p
threshold; SCF calculation (solid line), . independent-
particle calculation (dashed line), data (crosses) from
Bef. 46.
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FIG. 4. Total photoabsorption cross section of
argon versus photon energy in the vicinity of the 3p
threshold; SCF calculation (solid line), independent-par-
ticle calculation (dashed line), data (crosses) from
Ref. 46.

50

40
Mx

20-

method is capable of describing this channel-
mixing phenomenon. In practice, the resonances
do not appear because the potential V,«(r) does
not support the high-lying bound (rydberg) states
essential to the process. The failure here is
due to the LDA which yields an effective potential
which goes asymptotically to zero like the density,
i.e. , exponentially, rather than like —2/r. As in
the static case, a Latter correction worsens the
results. Other workers' systematic attempts to
rectify this flaw in the LDA have led to an orbital
dependent potential" or are sufficiently complex"
to greatly diminish the computational simplicity
of our method. The analog of the V" ' potential"
is unacceptable here since occupied and unoccu-
pied orbitals must be determined from the same
potential.

Second, the onset of continuous absorption for
each atomic shell is given, in the theory, by the
corresponding single-particle energy eigenvalue.

a (u))
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30—

X XENON

20—
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px E x'y

g h
X~'
I,„'/

I I I I I

6 7 8 9 10

e~ (Ry)

FIG. 7. Total photoabsorption cross section of xenon
versus photon energy in the vicinity of the 4d threshold.
Note change in energy scale from Fig. 6; SCF calcula-
tion (solid line), independent-particle calculation (dash-
ed line), SC F calculation with 6 V„~=0 (dashed-dot line),
data (crosses) from Bef. 48.
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13 15 17 19 21 23 25
e~(eV}

FIG. 6. Total photoabsorption cross section of xenon
versus photon energy in the vicinity of the 5p threshoM;
SC F calculation (solid line), independent-partic]. e cal-
culation (dashed line), data (crosses) from Bef. 47.
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This is seen clearly in Eq. (29}. Therefore, the
calculated cross-section curves typically begin
several volts lower in photon energy than the
observed thresholds. For the situations shown
in Figs. 3-6 this means that part of the continu-
ous oscillator strength in the calculation lies in
the discrete part of the true spectrum. Nonethe-
less, in the region of true physical absorption,
the results are quite reasonable. We stress that
our curves have not been shifted on the energy
axis. This is particularly interesting in light of
the sum rule, Eq.(11), and the good results for
the static polarizability. The implication is that
the contribution to the sum rule made by bound-
to-bound transitions in the real atom is provided
by the "unphysical" part of the continuous absorp-
tion distribution in our calculation.

Lastly, we consider the importance of the in-
duced exchange-correlation potential, Eq. (23).
In Fig. (7), the dashed-dot curve is the result of
an SCF calculation with 5V„(r)=0. The differ-
ence between this curve and the full calculation is
at most about 10%. Nonetheless, the inclusion
of this effect clearly brings the calculation into
better accord with experiment. We conclude that
the electron correlation effects built into the LDA
ground state are sufficient to account for most
of the polarization phenomena when only an in-
duced Coulomb potential (RPA-type) calculation
is performed. .

We now interpret our results for the total
photoabsorption cross section in terms of the
local field. Consider first the case of xenon as
shown in Fig. V. At these energies the absorption
is dominated by transitions from the 4d shell.
Indeed, the striking resonance in the independent
particle cross section near threshold is due to
coupling to an f-wave virtual bound state. The
characteristic redistribution of spectral weight
toward higher photon energy may be understood
with reference to Eqs. (42) and (43). The matrix
elements there depend upon the real and imaginary
parts of P~F(r) which are shown in Fig. 8. The
corresponding radial part of the external potential
is shown as a dashed line at each energy. At
5.5 Hy, the external potential is strongly screened
in the region of maximum wave function overlap,
with a subsequent reduction in the cross section
relative to its independent-particle value. By
7.5 Ry, the contribution from Rep~p(r) nearly
equals that of the external field. The induced
field oscillates 90 out of phase with the driving
field so that Img~p(r} dominates the matrix
elements and enhances o(&o). Finally, at 9.5 Ry,
Img„F(r) is small again and the antiscreening
of the external potential now provides the en-
hancement mechanism. In a preliminary report
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Im ySCr XENON

0 I I

-2-
I I

-2

0

I I I I I I

9.5 Ry

I I I I I I I

.5 Ry

0

0 0.8 1.6 2A 5.2

r (ae)
0 0.8
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I I I I I I

5.5 Ry
I I I I I I I

16 24 52
r (ae)

FIG. 8. (a) Real part of radial local potential,
Ref„(r)for xenon (solid lines), radial part of ex-
ternal potential (dashed lines). (b) Imaginary part of
radial local potential, Img„(r)for xenon. All poten-
tials measured in units of z So.

Xenon Od
~~ ~y ~y ~o~

0. ~ oto~ 0 oleic ~

e' I I

~ ~

gO

55 Ry

75 Ry

9.5 Ry

00
r (a, )

FIG. 9. Top panel: Normalized Xe 4d radial wave
- function. Subsequent panels: External (dashed liries)

and local (solid lines) electric field along the z axis
for xenon. FieM is measured in units of ~50. Positive
values correspond to an electric field vector in the
+z direction.

of this work' we have shown how the energy
dependence of the phase of the induced field may
be understood by analogy with the driven harmon-
ic oscillator.

The magnitude and spatial variation of the di-
electric screening effects in this case may be
seen in Fig. 9. The top panel shows rg«(r) which
is primarily responsible for the absorption in this
energy range. The subsequent panels show the
real part of the effective local electric field
among the z axis, E"'(z)= (d/dr) Re/~-F(r)z, as
the photon energy passes through the self-con-
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(b)

lm qb (5~=7.5Ry)

XENON

sistently determined resonance position at about
7.5 By. The importance of the shell structure is
illustrated by the point where the SCI" field
switches from screening to anti-screening behav-
ior —in each case, it corresponds to the maximum
in the 4d radial wave function. Note also that the
effective electric field actually changes sign in
some regions of the atom at 5.5 and 7.5 Ry.
Finally, we show in Fig. 10 the equipotentials
of only the part of the SCF field (real or imag-
inary} which dominates the cross section at each
energy. The dipolar field induced by the 4d shell
is obvious in img~~r(r) at 7.5 Ry. Below reso-
nance, at 5.5 Ry, this induced field is oscillating
in phase with the external field. The situation
is similar to the static case, except that here the
induced field is strong enough near the nucleus
to completely cancel the external field and to

actually change the direction of the electric field
vector. Above resonance, the induced dipole
turns 180 and antiscreens at short distances.
We feel that each, of the depicted representations
of the local field is helpful toward gaining insight
into the nature of the dielectric response.

The situation is quite similar in the other cases
we have studied where the independent particle
approximation fails to describe the cross-section
data. Figure 11 shows the local potential Qscr(x)
associated with argon spanning the energy range
of Fig. 4. Again, the curves reflect the charac-
teristic screening which shifts the spectral weight
away from the scattering resonance in the Sp- ed
channel seen in the independent particle calcula-
tion. The portion of the induced potential asso-
ciated with the distortion of the BP shell which
oscillates 90 out of phase with the external po-
tential attains its maximum value at about 25 eV,
the position of the peak in the calculated cross
section. The significant anti-screening of the
potential at higher energy has an important in-
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7050 80FIG. 11. (a) Real part of radial local potential,
Ref (r) for argon {solid lines), radial part of exter-
nal potential {dashed lines). {b) Imaginary part of radi-
al local potential, Imft)„(r)for argon. All potentials
measured in units of 2/0.

FIG. 12. 3s partial photoabsorption cross section of
argon; SC F calculation (solid line), independent par-
ticle calculation (dashed line), data from Ref. 55.

FIG. 10. Equipotential plots of real t{a) and (c)] and imaginary [(b) onlyf parts of local field for xenon. Display con-
ventions as in Fig. 2. Adjacent equipotentials differ in potential by 0.4(~ So).
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fluence on the emission from the 3s subshell of
this atom.

C. Partial cross sections

The partial photoabsorption cross section of the
3s shell of argon is shown in Fig. 12. The inde-
pendent-particle calculation appears as a dashed
line. We find good agreement with experiment
for the position of the so-called Cooper minimum.
The source of this minimum is a zero in the ma-
trix element, (eP ~Ref~ F

~

3s). Furthermore,
from the matrix element decomposition of Eq.
(43) we find that the enormous enhancement of
a„(co)over the independent-particle value from
the 3s threshold to the Cooper minimum is due
almost entir'ely to Img~~p(x), Fig. 11(b). That
is, the field induced by the distortion of the 3P
shell drives the emission from the 3s shell in
this energy range. Amusia and co-workers"
refer to this effect as intershell coupling. Beyond
the minimum, ImP~F(x) falls to zero very rapid-
ly, and o„(&o)is dominated by the real part of
the field. The interpretation here is not quite so
clear as in the xenon 4d case because canceling
contributions to (eP

~

Reg~ F
~

3s) actually suppress
the cross section despite the antiscreening of the
external potential. We mention in conclusion
that we obtain very si.milar results for the 5s
partial cross section of xenon.

V. CONCLUSION

The work reported in this paper has demon-
strated the successful application of the density

functional formalism, in the local-density ap-
proximation, to the calculation of the static polar-
iz ability, total photoabsorption cross section, and
selected partial photoabsorption cross sections of
the rare gas atoms. We have shown that polariza-
tion-type many-body effects may be conveniently
incorporated into an effective local potential which

replaces the dipole operator inthe Golden Rule
formulation of the cross section. In addition,
the energy and position dependence of this com-
plex local field have been used to gain insight into
the screening properties of the atomic shells of
these atoms. Finally, we have shown how a rela-
tively simple numerical procedure can yield such
results. The success of this demonstration has
given us confidence that accurate cross sections
for more complex systems may soon be obtained.

Note added in proof After. the completion of this
work, we learned of a calculation of the static po-
larizabi. lity of the rare-gas atoms by M. J. Scott
and E. Zaremba using techniques similar to our

. own. [Phys. Rev. A21, 12 (1990).j
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