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We have exposed a variety of Cerenkov radiators to relativistic Ne, Ar, and Fe ions at the Lawrence
Berkeley Laboratory’s Bevalac and have examined the charge dependence of the Cerenkov emission.
Classically, and to first order in relativistic quantum theory, the dependence is Z 2, although certain higher-
order corrections suggest a Z * dependence as well. Our experimental results are consistent with a pure Z 2
dependence and limits are placed on Z 3 and Z * higher-order contributions to Cerenkov emission, whose
theoretical bases are briefly discussed. In addition to primary Cerenkov- emission, we discuss light sources
such as Cerenkov emission by secondary electrons, saturated radiator scintillation, and others which are
confronted in most experimental configurations incorporating Cerenkov radiators.

I. INTRODUCTION

The agreement between experiment and the
theoretical expression for Cerenkov radiation
intensity’'2 has been well established for singly
charged particles.®> For relativistic particles of
higher charge Ze the classical Cerenkov formula
predicts that the intensity scales simply as Z%e?
for a given particle velocity. Although widely
accepted, this has never been experimentally
verified for Z > 1 due to the previous unavailabil-
ity of relativistic, highly charged particles of
accurately known energies. Verification or refu-
tation of this scaling would have both experimental
and theoretical significance: First-order calcula-
tions in the quantum electrodynamics of material
media directly produce the classical Cerenkov
formula,*™® but higher-order calculations for
relativistic electrons contribute terms propor-
tional to e* as well,”'® suggesting the existence
of similar Z*¢* corrections for heavy ions. This,
or other deviations from Z? dependence, could
lead to serious difficulties in present cosmic-
ray experiments measuring high Z elemental
abundances which incorporate Cerenkov radiators
as part of a charge identification scheme.®

Motivated by these considerations, we exposed
wave-shifted and non-wave-shifted Cerenkov
radiator samples to relativistic Ne, Ar, and Fe
ions at Lawrence Berkeley Laboratory’s heavy-
ion accelerator, the Bevalac (capable at present
of accelerating ions of up to Z =26 to energies up
to 2 GeV/amu), during runs primarily devoted to
examining scintillation response of various media
to heavy ions. The experimental configuration
and calibration techniques are discussed in the
next section. Analysis of the data, the content
of Sec. IIl, revealed several contributions to the
recorded response curves which must be con-
sidered in many detector configurations in order
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to achieve high primary Cerenkov signal accur-
acy. These include delta-ray (secondary elec-
tron) Cerenkov emission, background air scin-
tillation, Cerenkov radiator scintillation (dis-
cussed in Sec. V), light escape efficiency cor-
rections (geometrical in origin, and dependent
upon particle velocity), as well as others more
peculiar to the particular experimental configura-
tion. The result of the analysis is that no signi-
ficant deviation from Z2 dependence is observed,
placing limits on the magnitude of any higher-
order terms in Z that might be theoretically ex-
pected in the Cerenkov formula. These conclu-
sions are discussed in Sec. VI. Section IV deals
briefly with the theoretical issue of terms of
higher order in Z in the Cerenkov formula.

II. EXPERIMENTAL CONFIGURATION

Four 1.27-cm-thick Cerenkov radiator samples
were tested: a pair of samples of ultraviolet-
transmitting acrylic (UVTA), a common radiator
material, and a pair of samples of Pilot 425,°
which is acrylic doped with a wave shifter (WSA).
The wave shifter absorbs uv light and reradiates
in the visible to allow transmission through non-
quartz photomultiplier tube windows. One sam-
ple of each pair was roughened (R) on all sides by
sandblasting, a common technique intended to
eliminate signal dependence on incident particle
trajectory, while the other was kept smooth (S).
In addition to testing for deviations from a Z?
dependence, this selection allowed a comparison
of relative light outputs (radiator efficiencies)
and radiator scintillation-to-Cerenkov ratios,
since the scintillation component is a background
contaminant that, unlike all other background
light sources, does not scale as Z2 due to ioniza-
tion quenching.’! (See Sec. V.) Testing smooth
(S) versus roughened (R) radiator samples mea-
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sured the effectiveness of roughening in removing
surface geometrical signal distortions. The four
samples were exposed to the Fe beam, but time
limitations during the Ar and Ne exposures al-
lowed only the UVTA, R and WSA, R samples to
be exposed to Ne and only the WSA, R sample to
be exposed to Ar.

The 600-MeV/amu fixed-energy beams of Ne,
Ar, and Fe were incident on a discretely variable,
extremely high precision lead absorber, shown
in Fig. 1, enabling rapid, accurate variation of
the beam energy at the radiator. A solid-state
detector (SSD) discriminated against those ions
that had undergone charge-changing nuclear in-
teractions within the absorber. The ions then
passed through an opaque window, a very thin
air gap, the (nonoptically coupled) Cerenkov
radiator, and then exited through the interior of
a light diffusion box containing 20 in. of air.!?
The opaque window is a 1.27-cm-thick piece of
polyvinyltoluene (PVT), dyed with Sudan Black
to minimize its own Cerenkov and scintillation
emission; it is present to compensate for loss of
delta rays (which contribute appreciably to the
light output) out the radiator interior face by
providing a comparable spectrum of delta rays
at the radiator exterior face. The radiator and
window thicknesses were chosen to match the
range'®1% of the maximum-energy delta rays
produced by 600-MeV/amu ions to ensure proper
delta-ray compensation.

The light emitted by the radiator was radiated
into the interior of a light diffusion box coated
with a highly reflectant layer'®:!¢ of BaSO, (having
nearly wavelength-independent reflection coeffi-
cient) which randomized the light before it reached
the photomultiplier tube (PMT). Computer cal-
culations!” indicate negligible response variation
with shift in particle entry position on the sample
surface. The light was detected by an EMI9817-
QAM quartz-window PMT. This tube was tested
for possible nonlinearity by measuring the
Poisson-distributed output of a light-emitting
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FIG. 1. Experimental configuration. The exterior

face of the radiator is that which faces the black PVT
window.

_J T T I I I

w

b= (a)
gz 20or TUBE DRIFT 7
= I °
% 3 201-|* 0 X 19 N
3 ; ® o . ; ;
3G 2oor e e -

== L] L]

(2] | L | o | | |

0] 10 200 30 40 50 60

INDEX NUMBER

T T T T

PMT LINEARITY TEST
200 |- —

150 |- —
100 — -

50 |- .

PHOTOELECTRONS (at cathode)

o 1 1
o 1t 2 3 4 5 & 7

SIGNAL AMPLITUDE (arbitrary units)

FIG. 2. (a) Intrarun calibration data (for WSA, R:Ne).
The nth measurement in a run is assigned index num-
ber n. The bars piercing the data mark the cluster of
measurements containing a primary Cerenkov compon-
ent. (b) PMT response curve. No saturation effects
occur within the PMT dynode structure, since photo-
cathode electron number scales linearly with final sig-
nal amplitude. Since the photocathode is of the low-
resistance trialkali type, photoelectron number also
scales linearly with photon number of given wavelength.

diode excited by a precision pulser. Full-width
half-maximum measurements as a function of
pulse-height-analyzer channel, after noise sub-
traction, provided an accurate measure of cath-
ode photoelectron number versus final signal
channel. Figure 2(b) demonstrates the linearity
of the response. Temporal tube drift was cor-
rected for by affixing an **'Am-doped Nal(T1)
scintillator'® to the light box as a constant cali-
bration light source. Periodic calibrations were
performed; Fig. 2(a) shows a particularly erratic
calibration curve for one sample run. Sample
light levels were calculated by linear interpola-
tion between calibration measurements; all light
outputs have been converted to units of this source
(roughly equal to 400 cathode photoelectrons).
Temperature variations were controlled so that
the maximum possible Nal response shift over
the three ions runs was <0.4%; thus, data from
the three runs (spaced 48 h apart) could be com-
pared accurately.

Inter-run comparisons using the extensive quan-
tity of scintillation data also taken during these
runs (to be published at a later date) showed a
typical peak measurement accuracy of ~0.5%
due to the statistics accompanying ~10%~10° ions
per analyzer spectrum. )
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III. ANALYSIS OF DATA
A. Spectrum components

Figure 3 shows a typical raw radiator sample
response curve of light output versus beam energy
at the radiator exterior face, along with the data
in various phases of subtraction. The shape of
the spectrum can be understood by examining its
components.

1. Primary Cerenkov radiation

This is the Cerenkov radiation directly produced
by the ion, and is expressible by'® (in photoelec-
trons/cm)

dL, Z2e? “
L B)==%F
dx }‘,[CZ nw)>1/8

X <1——-n?(#)dw, (1)

where F is the PMT collection efficiency of the
detector configuration, Bc is the ion velocity,
q(w) is the PMT quantum efficiency, and n(w) is
the refractive index. The probability of photon
escape from the radiator, g(w, ), is assumed to
be factorable as g;(8)g,;(w); g;(w) depends upon
the optical (absorptive) properties of the medium,
while g,(B) is a B-dependent geometrical correc-
tion factor arising from the dependence of the
radiator-air transmission coefficient on radiation
incidence angle, itself a function of 3. If we
assume for UVTA that g,(w) is flat up to a criti-
cal self-absorption frequency w,, where g,(w>w,)
=0, then we may approximate

1

q(w)(l —W>dw ’

(2)
where « is the “radiator efficiency.” The com-
mercially determined ¢(w) for the PMT used is
shown in Fig. 4, along with n(w), which is deter-
mined by the single oscillator model #*(w)=1
+A/(w? - w?), with the two parameters deter-
mined by the values 7#(589 nm)=1.490, 7(425 nm)
=1.502.2° The low-frequency cutoff in g(w) allows
us to ignore the lower integral limit for E > 325
MeV/amu. Then

dL 1
gj=Zngl(B)<1 - ;@‘5) ;

1 w"L‘*’)dw/fwcq(w)dw,

e Jy ¥ (w)

g(w, Blg(w)

w
a, ®)=2%g,@) [ *
ax n(w)>1/8

where the radiator efficiency x now absorbs a
constant. For the observed UVTA cutoff wave-
length A, =260 nm,?° n,=1.518. As will be seen,
this is exactly the measured value of n,, the ef-
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FIG. 3. Radiator response data, showing a typical
sample data set in various stages of subtraction. The
sample entrance energy is the ion energy at the exter-
ior face of the radiator. The light levels are in units
of the light output by the calibration source. Note the
presence of delta~ray Cerenkov light well below the
primary Cerenkov threshold, seen by comparing the
total signal with post-delta-ray subtraction curves (see
also Fig. 5). The abrupt discontinuity of the total sig-
nal at ~150 MeV/amu is due to the sudden cessation of
air scintillation, as the ion energy is reduced so that it
stops within the radiator. Light outputs below this en-
ergy are due to radiator scintillation plus a small back-
ground from the black PVT window. The final, pure
primary Cerenkov signal (open circles) seems to devi-
ate from its expected form near the threshold energy.
This is due to the ion’s energy going below threshold
within the finite thickness of the radiator.

fective refractive index, for UVTA. The effec-
tive refractive index is clearly a function of the
particular PMT quantum efficiency curve.

For E < 325 MeV/amu, n, will depend upon 8;
thus, we discard primary Cerenkov data points
where the ion energy is less than this over a sig-
nificant fraction of the radiator thickness Ax.

The total primary Cerenkov light output AL
:fOA" dL,/dx dx. We use an approximation of
Cantin et al.?! whereby

_(*dL, . Z%g,(B) [ » 1
AL ._fo _de~——n§ <n0 -1 —EB;)AJC , (4)
where g(B) is a thickness averaged g,(8), and p,
=B;(1-p2)7/2 is the ion “momentum” at the radi-
ator external face, with p, being the ion “momen-
tum” at the interior face. This approximation is
surprisingly accurate in certain regimes; compu-
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FIG. 4. PMT quantum efficiency and radiator refrac-
tive index as function of frequency. The two established
refractive index values determining the z (w) curve are
shown.

ter calculations comparing the integral to the ap-

proximation show agreement to far better than 1%.

The ion energies within the radiator are calcu-
lated with range-energy programs?® that incor-
porate higher-order Z corrections to stopping
power?® dE/dx to ensure higher range-energy
accuracy.?*?

2. Delta-ray (secondary electron) Cerenkov radiation

The energy spectrum of delta rays produced
by the primary ion is given by

dn  27NZ%e¢* (1

an _smiNLTe [, 2 € -1 et 1
dedx — mc?B? e k € )(MeV em’)

m

- _Z_z___Z_z..( 2_E_)
=(0.1535) 2 g 1= 7 =

X(MeVtg™cm?), (5)

where N is the electron density of the medium,

m is the electron mass, ¢ is the delta-ray energy,
en=2my*B%c?, and Z,/A, is the medium-averaged
atomic number to atomic weight ratio. The
Cerenkov emission from each delta ray above
threshold energy ¢, is given by

dL 1

e Y _——

=881 -5 ).

where 7(¢) is the delta-ray range, cB, is the
delta-ray velocity, and g,(B)#£,(B,B,), since the

ion and delta-ray trajectories differ. The total
delta-ray Cerenkov component is

Ax €m dan fr(e) dL
— — —2
ALz(ﬁ)___/o‘ dx[0 de e, dr o (6)

Assuming g,(8, ﬁe)i 1 (i.e., neglecting tempor-

v

DELTA RAY CERENKOV SIGNAL (ARB.UNITS)

1 | | |
0]

0] 100 200 300 400 500 600
SAMPLE ENTRANCE ENERGY (MeV/amu)

FIG. 5. Delta-ray (secondary-electron) Cerenkov
emission contributing to the total signal. The specific
shape of the curve depends upon the thickness of radia-
tor and the presence or absence of adjacent upstream
matter. The projectile ions threshold for delta-ray
Cerenkov output is 74 MeV/amu.

arily for lack of knowledge any possible geo-
metrical signal distortions), these AL, values
were calculated using the scheme of Lezniak?®

to account for delta-ray loss out of the radiator
and supply from the PVT window. The only mod-
ification to this scheme was the use of more
accurate electron range-energy relations: the
continuous slowing down approximation (CSDA)
ranges of Berger and Seltzer'® are used to cal-
culate delta-ray Cerenkov emission, while the
penetration depth relations of Kobetich and Katz*°
are used to calculate delta-ray transport. The
resulting response curve is shown in Fig. 5; note
the presence of delta-ray Cerenkov radiation well
below the cutoff for primary Cerenkov radiation.
Although the assumption g,(B, Be) =1 is necessary
for a first subtraction of the delta-ray component
from the raw sample response curve, we find
that after integration over de, the proper correc-
tion factor is quite insensitive to the ion’s B; this
is due to the large, fairly p-insensitive, angular
distribution of delta-ray Cerenkov light (Fig. 6)
that “smears” geometrical distortions. Thus,
after properly accounting for geometrical effects,
the delta-ray component will simply have a “radi-
ator efficiency” k, =TIk where I'<1 and must be
determined for each radiator type.

3. Background

The background consists of all contributions
to the light output apart from the radiator. They
include scintillation of the air within the light
diffusion box, Cerenkov radiation in the BaSO,
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FIG. 6. Delta-ray Cerenkov light output as a function
of angle relative to ion trajectory. The separate an-
gular distrébutions of delta-ray production and individual
delta-ray Cerenkov emission are combined to produce
this remarkably S-insensitive curve. Noting the position
of the effective total internal reflection (TIR) angle for
smooth surfaces allows an estimate of the radiator effi-
ciency factor I.
coating,?” and very small amounts of scintillation
and Cerenkov radiation from the black dyed PVT.
Background (no sample) response curves were
measured during the Fe (Fig. 7) and Ar runs;
these were directly subtracted from the radiator
sample response curves (after appropriate
energy abscissa shifts) as shown in Fig. 3. For
Ne, however, the background had to be recon-
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FIG. 7. Background light sources (no radiator in
place). The dominant contributor is air scintillation,
which monotonically decreases with sample entrance
energy.
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FIG. 8. Scintillation response data of a commercial
scintillator (Pilot Y). This figure emphasizes the
structure expected in the radiator scintillation com~
ponent of Fig. 3 (after background subtraction). In
this figure, all background light sources are negligible.

structed using the Fe and Ar data to calculate air
scintillation efficiency, BaSO, Cerenkov emission
parameters, and emission efficiency from the
black PVT window; thus, the errors associated
with Ne are slightly larger than for Fe or Ar.

4. Radiator scintillation

The curve in Fig. 3 remaining after background
subtraction is solely radiator light output. The
peak at 150 MeV/amu corresponds to the ion
stopping at the interior edge of the radiator pro-
viding maximum energy deposition and scintilla-
tion (see also Fig. 8). The discontinuity past
this cusp is due to the extreme sensitivity of air
scintillation subtraction to errors in calculated
energy just near the particle’s end of range in the
air column, and is of no consequence. The
“plateau” value near 300 MeV/amu is used as an
estimate of the radiator scintillation component
in the energy range 300-600 MeV/amu, and is
treated as a constant. Comparison with a com-
mercial scintillator spectrum (Fig. 8) shows this
to be an excellent approximation.

B. Radiator parameters
1. Geometrical corrections

The remaining light levels AL follow Eq. (4).
These are plotted with respect to (1/p;p,) (which
decreases for increasing energy E) for the UVTA,
S:Fe and UVTA, R:Fe AL data in Fig. 9, where
the data errors are comparable to the dot sizes.
It is seen that the smooth, non-wave-shifted
Cerenkov radiator has g,(8)=1 (to within an inde-
terminable constant) for E < 500 MeV/amu, while
the roughened, non-wave-shifted radiator has
significant geometrical deviations from linearity
at higher energies, as well as an overall attenua-
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FIG. 9. Primary Cerenkov light outputs vs (1/p;p¢)
for both smooth and roughened UVTA samples exposed
to Fe. These two data sets are used to generate a (1/
pipo)-dependent, Z -independent ratio that will “boost,
or ‘“correct, ” other roughened UVTA data to linear
forms.

tion relative to the smooth sample. The origin
of the deviations from linearity in the AL vs
(1/p;b,) curves is in the variation of light trans-
mission probability across the radiator-air
surface as a function of light incidence angle at
the surface. The Cerenkov light is emitted in a
cone at angle ¢ =cos™(1/#%,8) relative to the ion
trajectory. A smooth surface ensures that the
incidence angle 6 <30° for normally incident ions
of E <500 MeV/amu; over this angular range the
transmission coefficient is nearly constant (Fig.
10). A roughened surface, however, presents a
surface angular distribution to the oncoming
Cerenkov light. Light emitted at an angle 6< 6,,
where 6, is the total internal reflection angle,
may still be totally internally reflected since the
surface incidence angle is the sum of the Ceren-
kov emission angle and the local, finite angle of
the roughened surface. Based on optical micro-
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FIG. 10. Photon escape efficiency vs emission angle
relative to ion trajectory for both smooth and roughen-
ed radiators.

scope measurements of the roughened surface,

' parameters were input to a Monte Carlo photon

escape efficiency algorithm that assumed sinusoi-
dal surface variations. The efficiency curve
generated (Fig. 10) shows a decrease in trans-
mission beginning at lower energies in roughened
surfaces than in smooth ones. This curve, ap-
plied to roughened sample data, produces very
good fits to straight lines, confirming the nature
of the deviations, although it does not correct

for attenuation.

When g, (B)=1 (as it is for smooth samples), a
simple linear regression analysis may be per-
formed on the data conforming to Eq. (4) to ex-
tract values for n, and k. To apply this analysis
to roughened samples, however, their response
curves AL vs (1/p, p,) must be “corrected” by
multiplying each data point by an appropriate
ratio, g,(8)moots/&1(B) roughenea » to Produce a straight
line characteristic of smooth samples. This
procedure is necessary because most of the data
taken were with roughened radiators. These
ratio curves are experimentally determined by
using the Fe data of the UVTA, S, UVTA, R, and
WSA,S, WSA,R samples. The wave-shifted and
non-wave-shifted samples have separate correc-
tion curves g,(8) because wave-shifted light is
isotropically reradiated, resulting in a WSA light
angular distribution different from that of UVTA.

2. Calculation of efficiencies and refractive indices

Linear regression analysis of the UVTA, S:Fe
and WSA, S:Fe data (which require no geometri-
cal corrections) yield effective refractive indices
of 1.518 (in agreement with calculation) and 1.512,
respectively. The reduced n, for the wave-shifted
sample is due to the reduced escape efficiency of
the isotropically reradiated wave-shifted light,
since Cerenkov light output decreases as #, de-
creases [see Eq. (4)]. The measured value of n,
is used to calculate the escape efficiency reduction
factor p, for isotropic radiation within a smooth
radiator. Assuming that all light of wavelength
A <2, =388 nm (the wave shifter’s effective ab-
sorption edge?®) is wave shifted, n,(p,) is calcu-
lated using Eq. (3) with the curves of Fig. 4
weighted by p, in the A <, region, resulting in
p,=0.55 for n,=1.512. This value is consistent
with the expected loss of half the wave-shifted
light to the black PVT window. Examination of
Table I (see Sec. V), however, modifies this pic-
ture for roughened samples. The escape effi-
ciency of isotropic light is ~1.6 times greater
for roughened than for smooth surfaces, as seen
by the relative magnitudes of the radiator scin-
tillation peaks, implying p,=0.88. This states
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TABLE 1. Radiator scintillation levels (remaining after delta-ray Cerenkov and background subtractions). All light
levels are in units of the calibration source. Energy deposited in the radiator for each scintillation level is shown.
Plateau AE (10°MeV) B=1 primary
Peak Peak AE (10°MeV) Plateau (approx.) Cerenkov signal
WSA,R: Fe 0.085+0.005 8.44 0.045+0.010 3.6
WSA,R: Ar 0.058+0.003 4.81 0.024+0.006 1.7
WSA,R: Ne ©0.012+0.004 0.49
WSA,S: Fe 0.052+0.005 8.44 0.013+0.010 3.6 2.33
UVTA,R: Fe 0.025+0.005 8.44 —0.005+0.010 3.6
UVTA,R: Ne 0.002+0.004 0.49
UVTA,S: Fe 0.012+0.005 8.44 —0.010+0.010 3.6 3.28
that reabsorption of light reflected off the black samples response given the non-wave-shifted
PVT window is much more likely for roughened samples response plus the p parameters, deter-
than for smooth surfaces. mined independently from refractive index and
At this point the measured relative Cerenkov radiator scintillation measurements. [Or, equiv-

light outputs of the various radiator types can
actually be calculated with knowledge of the above
parameters, reinforcing confidence in the model
and consistency of the data. Using the expression

AL Oigl(fg)_/;wa q(w)(l "nz_l——z) dw

(w)B
+p£wcq(w)(l -

0

-——1T>dw (7)
1%(w) B

for B=0.75, and g,(B) being the non-wave-shifted
geometrical correction factor, one finds AL(WSA,
R:Fe)/AL(UVTA,S:Fe)=0.71, compared to a
measured ratio 0.68 (agreement to 4%); calcula-
tion of AL(WSA, S:Fe)/AL(UVTA, S:Fe) gives 0.62
compared to a measured ratio 0.70 (agreement to
11%). Thus, one may calculate the wave-shifted
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FIG. 11. Primary Cerenkov light outputs vs (1/p;po)
for both smooth and roughened WSA samples exposed
to Fe. These two data sets are used to generate a
(1/p ;p¢)-dependent, Z-independent ratio that will “cor-
rect” other roughened WSA data to linear form.
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alently, the product kg, (B) of radiator efficiency
times correction factor for WSA samples may be
calculated from the kg, (B) of the UVTA samples,

allowing one to define a universal radiator effi-
ciency ¥ for all samples, with renormalized

gl(—B),s']

3. Limits on deviations from a Z? dependence

Figures 9 and 11-14 show the radiator sample

data after all subtractions and geometrical cor-
rections. Regression analysis of these (linear)
curves determined the refractive indices »} and

radiator efficiencies k* that gave the best straight

line fits, along with the one standard deviation
parameter errors An, and Ak. All data point
errors are comparable to the dot size in the
figures. Results for the independent samples
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FIG. 12. Corrected (poosted) and uncorrected pri-

|
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130

mary Cerenkov light output vs (1/p;p,) for UVTA,R:Ne.
No smooth sample data was taken for Ne on UVTA, nec-
. essitating this boost to linear form using the ratios of

Fig. 9. An excellent fit to a line results.
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FIG. 13. Corrected and uncorrected primary Cerenkov
light output vs (1/p;p,) for WSA,R:Ne. The boost ratios
of Fig. 11 are applied to these data, again providing an
excellent fit to a line.

are listed in Table II. (Recall that not all sam-
ples are independent; for example, WSA, S:Fe

and WSA, R:Fe are not independent, since the
ratios of their data points were used to construct
&1(B)zoughenea wsa, Which was in turn used to
“correct” all the WSA, R Cerenkov curves so they
would form straight lines amenable to linear re-
gression analysis.) The results are also plotted
in Fig. 15. The WSA and UVTA radiator efficien-
cies are plotted separately; combining the two
sets introduces radiator efficiency normalization
errors that vitiate the increased statistical infor-
mation that one set of five points normally has
over partitioned sets of two and three points each.

A x2 analysis applied to the hypothesis of pure
Z? dependence gives x*(UVTA,R)=0.28 for v=1
degree of freedom giving @ =0.60 [where Q(x2, v)
is the probability integral of the x2? distribution],
while y*(WSA, R)=1.67 for v=2, giving Q =0.43.
Thus the data, which are of better than ~1%
accuracy, are completely consistent with a pure
22 Cerenkov radiation output.

To place limits on the magnitude of a higher-
order Z* term, the hypothesis AL/Z%cck
=n(1+kZ™), m=2, was tested using the WSA,R
data of Fig. 15. A maximum value of 2 was deter-
mined by rejecting the hypothesis at the 5% sig-
nificance level, that is, for x*(v=2)=5.99, re-
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FIG. 14. Corrected and uncorrected primary Ceren-
kov light output vs (1/p;p,) for WSA,R:Ar. The boost
ratios of Fig. 11 are applied to the uncorrected data.

sulting in B, =4.00X107%, 1=4.28X107, (In
this treatment % is not a free parameter; hence
v=2,) The curve is displayed in Fig. 15. For
Fe, 2Z2=0.027 (a 2.7% correction to AL relative
to Z=1), while for U, £Z2=0.34. Similarly,
limits may be placed on the magnitude of a Z3
term, for which m=1. At the 5% significance
level, we obtain %,, =1.65x107%, n=4.22Xx1073,

IV. THEORETICAL ASPECTS OF HIGHER-ORDER
CORRECTIONS

Frank and Tamm’s classical calculation of the
Cerenkov formula is based on Maxwell’s equa-
tions, where the electric displacement 5, defined
by V-D=4np, has its Fourier transform D(w)
related to the electric field’s transform E(w) by
D(w)=¢(w)E(w), where e(w) is the frequency-
dependent dielectric constant. The derived field
equation of interest is

V2A(w) - (w?/c)e(w)A(w) = - (4n/c)J(w), (8)

where & is Ehe vector potential in the Lorentz
gauge, and j is the source current corresponding
to a constant velocity particle of charge Ze.
Solution of this equation reveals two regimes,
BPe(w)s=1: for B%(w)>1, radiation energy propa-

TABLE II. Radiator parameters determined by linear regression analysis.

Sample nE+ An, K* Ak (L073) v, ¥ -
UVTA,R: Fe (corrected) 1.5178+0.0008 - (5.99+0.04) 5, 5.18
UVTA,R: Ne (corrected) 1.5187+0.0007 (5.96+0.04) 4, 6.05
WSA,R: Fe (corrected) 1.5123+0.0009 (4.34+0.03) 4, 6.27
WSA,R: Ar (corrected) 1.5111+0.0010 (4.38+0.03) 5, 2.56
WSA,R: Ne (corrected) 1.5117+0.0009 (4.32+0.04) 5, 4.34
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gates to infinity, giving the Cerenkov phenomenon.

Since e(w) at a given frequency is assumed con-
stant, A(w) is constrained to be proportional to
Z, hence the Cerenkov emission, being bilinear
in A, is strictly proportional to Z2.

An obvious point of attack in Eq. (8) is the as-
sumption of a constant dielectric constant. A
very crude treatment suggests that, rather than
D —eE D=¢0E should be used in deriving an
alternate to Eq. (8), € being a nonlinear tensorial
function of E. ¢ may be estimated by consider-
ing the first few terms of the multipole expansion
for the divergence of E,?

V-E=4mp-41V-P+41VV:Q--"", 9)

where p is the free charge density, P is the
dipole density, and Q is the quadrupole density
of the medium. For a nonpolar medium in the
stat1c limit, a single 1 molecule’s contribution to
P and Q is p(¥,,) and q(r ), r being the molecu-
lar center, and p(r Y=3se.%;, a(F,)=1T,e%%,,
where X; =T, - T,, the displacement of the ith
charge element e; from the molecular center
under the action of a microscopic f1e1d Emlcm
(as opposed to the macroscopic field E).%® For
a uniform field, X;=¢; Emlcm (%,), with ¢, depend-
ent upon molecular parameters; however, a
strong field may have significant gradients,
giving

= gigmicm (Fm + i,)

~ giﬁmicro (Fm) + giﬁmicxo (Fm) : VEmicm (/Vm) *

By assuming that the microscopic and macro-
scopic electric fields are related by a constant
(this is equivalent to ignoring gradients in the

dielectric constant, an inconsistent but enormous-
ly simplifying assumption) we may then expect

the macroscopic densities P and Q to have roughly
the forms

P ()~ Ne[¢'E(D) + £2E(F) - VE(F)]
and
Q(P) = tNe *E(DE(F)

to second order in ¢, a small coupling param-
eter. We then find from the definition of D that

Z(i-’) ~[1+ 47Net’ - 2rNe£’2V - E(F)]f
+27Ne¢2VE(F),

y’vh_ere 1is the unit tensor, and the operation
c+E=E-z. Terms proportional to Z (to second
order in ¢’) are thus introduced into €; its effect
is to introduce a perturbative current source
proportional to Z2 in Eq. (8), which in turn intro-
duces a Z? component to the solution for A. Any
bilinear expression in A will therefore have com-
ponents of order Z°® and Z*; if these components
in the electromagnetic field energy expression
remain finite at infinity, they will contribute to the
Cerenkov emission intensity. Since ¢’ ~10716
cm3/esu, however, this simple classical picture
suggests that any contributing higher-order terms
in Z should be unmeasurably small. This is seen
by calculatmg the max1mum magnitude of
E(¢'VE) (where E = E/[E]), which occurs at

the shock wave front of the Cerenkov cone. The
radiation zone electric fields (in circular cylin-
drical coordinates p, z, ¢) are given by (see
Jelley®)

Ze 1/2 (Bz 2 )1/4 1/
Epz—z‘m(ﬂp) _["—sz—z—“w 2COS)(d(.L),

Ze 1/2 1)3/4
Ez: <ﬂp> —B—m-—~wl /2 Ccos) dw ,

and
E,=0,
where
+ s
xzw(t—(—z-gf%ﬁl———m>+ﬂ/4 , cosf=1/Bn.

For simplicity, n(w)=n, is assumed, and the fre-
quency integral is cut off at w=w,, i.e., the
higher-frequency components are assumed to be
absorbed by the medium and therefore do not con-
tribute to the field strength at distances (from the
projectile) large compared to the w > w, absorp-
tion length of the medium. Neglecting factors of
order unity, one obtains

3/2
¢'|E-VE|~ —‘“TWC
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Taking p~c/w,, one gets a Z3 contribution of
~107%° Z,

Although this rough classical picture indicates
the absence of any detectable higher-order con-
tributions to the Cerenkov intensity, one may
question whether there exist quantum mechanical
corrections of any significance. One way of
tackling this problem is to try to extend the rules
of quantum electrodynamics so they are valid in
material media as well as vacuum. Many authors
have attempted this (e.g., Refs.4-6; see Ref. 5
for additional references therein); for example,
Brevik and Lautrup® derive a covariant field
Lagrangian that yields Maxwell’s equations for
a nondispersive dielectric medium. Using the
canonical field quantization procedure, a QED of
material media is developed. The vacuum-
forbidden emission of a photon by a Dirac parti-
cle becomes allowed when their modified photon
propagator and external photon factor are used;
the transition rate directly gives the classical
Cerenkov formula in a first-order calculation.
Application of the theory to higher order may
present difficulties, however, due to the gross
phenomenological basis of the theory. How is
one to interpret the standard vacuum polarization,
projectile self-energy, and vertex corrections?
Is there a renormalization scheme valid to all
higher orders as is the case in vacuum? In.par-
ticular, does the phenomenological parameter ¢
survive these renormalizations? There is, as
well, the pragmatic difficulty in evaluating higher-
order phase space integrals severely complicated
by the introduction of (¢ — 1) #0 elements.

Nevertheless, one can conclude from simple
arguments that the lowest higher-order contribu-
tions to the Cerenkov intensity from quantum
effects are proportional to Z* (i.e., no Z® correc-
tion exists) if the spatial dependence of the dielec-
tric constant is ignored. In that case one may
construct a field operator of the form

A,0)= Y Fralw, (@) ap, £ e
ko
+ a;ag‘(‘a)e-iﬁ-;) ,

where the photon energy and momentum /iw
=ink, and 7k are connected by the dispersion
relation e(w)w? - 02|E|2= 0. £ is the covariant
photon polarization vector, a,,(a},) is the anni-
hilation (creation) operator for the photon state
|ka), the sum is over all photon states, and
f(w,e(w)) is an appropriate normalization factor
dependent upon €(w). With an interaction Hamil-
tonian linear in A, and coupling constant Ze, the
lowest-order diagram (whose amplitude is pro-
portional to Z and gives the classical Cerenkov
formula) connects the initial photon, projectile

MRAL

FIRST ORDER THIRD ORDER

FIG. 16. The first-order diagram giving the classi-
cal Z% Cerenkov formula is shown, along with a few
of the third-order diagrams that coherently contribute
to the transition rate.

state |0, p,) to the final state |kay, p;), where
(p; ~ps—k;)=0. One can deduce that the only
other diagrams that add coherently to this one
are of odd power in Ze, (see Fig. 16) by consid-
ering the amplitude factors

m
(ksay gZeg(am +a';))|0),
m=1, 2, 3,....

Thus the transition rate will consist only of even
powers of Z.

To our knowledge, the only treatment of higher-
order corrections to the Cerenkov intensity has
been performed by Tsytovich.” He derives a sig-
nificant Z* correction term by considering the
effect of virtual photon emission and absorption
by a Dirac particle projectile in the medium.®
This work is quite complex, and according to
Fano®® was met by members of the National Acad-
emy of Sciences Subcommittee on Penetration of
Charged Particles in Matter with “considerable
difficulty in trying to understand the details of
this work and to appreciate its significance.”

We have estimated the fractional Tsytovich cor-
rection to Cerenkov intensity at 8 =0.8 and have
found its magnitude to be about 2% for Z=1. If
it is the case, as one would be led to believe from
Tsytovich’s calculation, that this correction only
depends on the charge of the projectile and not
its mass, then this correction for iron nuclei
would be 676 times larger than for electrons.
Clearly, the numerous observations of cosmic
ray iron nuclei with Cerenkov counters3! preclude
an effect of this magnitude. This discrepancy
may be due to our treatment of a nucleus as a
simple Dirac particle, or perhaps to a misin-
terpretation of Tsytovich’s complex results.

We can only conclude that there does not seem
to be at present a firm theoretical basis for
either rejecting or anticipating higher-order
corrections to the Cerenkov intensity of relativ-
istic highly charged ions. Thus, examination of
experimental data seems to be the only way at
present to place limits on these correction terms.
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V. RADIATOR SCINTILLATION

Radiator scintillation emitted along with
Cerenkov radiation by a Cerenkov radiator is
usually considered a contaminant light source
that must be subtracted during data analysis.
Therefore, a desirable feature of a radiator
is that its scintillation to Cerenkov light
output ratio (usually given at 8 ~1) be as small as
possible. Table I lists the radiator scintillation
outputs from the various radiators tested. The
maximum (“peak”) value corresponds to the ion
stopping near the interior edge of the radiator.
The plateau value is the scintillation output at
~300 MeV/amu entrance energy into the radiator
(just before the onset of primary Cerenkov radia-
tion). These values are strictly radiator scintil-
lation; all other light sources have been sub-
tracted. The large errors associated with these
values are far larger than those associated with
the radiator Cerenkov light levels; this is due to
the subtraction procedure used whereby substan-
tial error cancellation occurs for the Cerenkov
light levels.

One can clearly see from the table that the
presence of a wave shifter dramatically enhances
the radiator scintillation levels (despite the
addition of scintillation quenching agents added to
inhibit wave-shifter scintillation). Also from the
table one sees that the non-wave-shifted samples
(UVTA) have larger Cerenkov signals than those
of the wave-shifted samples (WSA). (The =1
Cerenkov signal values are determined by extrap-
olation of Figs. 6 and 7.) This is due to the use
of quartz-window PMT’s and to the particular
experimental configuration, whereby only one
side of the radiator is visible to the PMT’s.

This diminishes the contribution of the isotropi-
cally reradiated wave-shifted light of the WSA
radiators. For maximal absolute Cerenkov light
output, the choice between a wave-shifted or
non-waveshifted radiator thus depends upon the
PMT spectral response curve and the experimen-
tal configuration. For a minimal scintillation-to-
Cerenkov light output ratio, a non-wave-shifted
radiator is recommended.

From Table I we also see that the scintillation
component exhibits the familiar saturation phe-
nomenon characteristic of condensed phase
(liquid and solid) scintillators in general.’* Thus
the radiator scintillation, unlike the Cerenkov
light output, does not scale as Z%, but provides a
less than linear increase in light output with ener-

gy deposition. This is seen by examining the
larger signals of WSA, R:Fe and WSA, R:Ar.
Thus, as the projectile charge increases, the
scintillation-to-Cerenkov light output ratio
decreases.

VI. CONCLUSIONS

Our measurements of the Cerenkov light outputs
caused by relativistic Ne, Ar, and Fe ions pass-
ing through a variety of radiators show no evi-
dence for the existence of higher-order Z3 or z*
terms in the Cerenkov emission intensity formu-
la. The results are completely consistent (68%
confidence level) with a pure Z> response. The
upper limit placed on the Z3 fractional coefficient,
k=1.65%x1073, although small, is still far larger
than expected from our simple classical picture.
Since purely quantum effects presumably cannot
contribute to a Z% correction, we believe any Z3
component to be so small as to be undetectable.

The upper limit placed on the Z* fractional
coefficient, #=4.00X107%, has no accompanying
firm theoretical limit. The only quantum calcu-
lation of a Z* effect is that of Tsytovich, which,
if we have correctly evaluated its magnitude,
predicts a fractional coefficient 2~0.02. This is
far larger than our limit. It is an interesting
coincidence that our experimental limit of % hap-
pens to be ~a?*(a =€?/%c), which is what one might
naively expect of an interfering higher-order
quantum effect involving two additional interaction
vertices. Of course, the actual value for £ may
be far smaller, but at the present we can do no
more than state our experimental limit, which
perhaps may challenge further theoretical and
experimental work to determine if a significant
or detectable Z* contribution exists at high
charge.
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