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Comp]ex-basis-function calculations of resolvent matrix elements: Molecular photoionization
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Procedures for computing molecular photoabsorption cross sections via finite expansions in sets of L
complex basis functions are discussed, Two recently proposed schemes for analytically continuing a matrix
representation of the Born-Oppenheimer Hamiltonian are investigated. Both of these matrix analytic
continuations are used to compute the parallel component of the photoionization cross section for H, +. It is
found that to obtain numerically stable results it is necessary to use complex-basis functions which are
capable of describing cusps in the molecular wave function at complex values of the coordinates. The
application of this technique to larger molecules is also discussed.

I. INTRODUCTION

The method of complex scaling has proved useful
in a number of applications to the study of atomic
resonance phenomena and continues to attract
considerable attention in the current literature. '
Moreover, several novel applications suggest
that the method may have a wider range of ap-
plicability than the class of dilatation analytic
Hamiltonians for which the theory was originally
developed. ~ In this connection, recent theoretical
and computational studies on extending the method
of complex scaling to molecular problems within
the Born-Qppenheimer framework are particularly
noteworthy since they point to the possibility of
avoiding detailed scattering calculations which,
for molecules, can be intractable. ' '

Two computational techniques have been pro-
posed to date for extending complex scaling tech-
niques to molecular resonance problems. In an
earlier study, McCurdy and Rescigno' proposed
the use of ordinary floating Gaussian basis func-
tions which are made complex by simply scaling
the orbital exponents by a phase factor. It was
argued that such functions, when used to form a
matrix representation of the Born-Qppenheimer
Hamiltonian with a complex-valued scalar product,
would effectively provide an asymptotic scaling
of the electronic coordinates and that such a
scaling would be sufficient to render a resonance
eigenfunction L'; this supposition was supported
by several illustrative calculations. More re-
cently, Moiseyev and Corcoran~ have described
a procedure which superficially appears to be
identical to the transformation z-Axe'~ that can
be applied to the electronic coordinates of a di-
latation analytic Hamiltonian. This simple ana-
logy is complicated, however, by the fact that

the branch-point singularities in the electron-nu-
clear attraction terms of the Born-Qppenheimer
Hamiltonian render it a nonanalytic function of
electronic coordinates. In addition to these nu-
merical studies, the formal work of Simon' es-
tablishes that complex scaling in the Born-Qp-
penheimer picture can be put on firm mathema-
tical ground through the use of what Simon' calls
the method of "exterior complex scaling" in which
the magnitudes of all electronic coordinates are
only scaled outside a sphere which is large enough
to enclose all the nuclei.

The most. recent development in this area is the
observation by McCurdy' that the method of
Moiseyev and Corcoran4 can be formally related
to Simon's exterior. complex scaling. Having es-
tablished this connection, McCurdy also shows
that the Moiseyev-Corcoran' procedure can be
used to calculate the matrix elements of the re-
solvent which are needed to evaluate photoioniza-
tion cross sections for molecules, in analogy with
a similar procedure used in atomic problems. '
In the present paper, we establish a connection
between the McCurdy-Rescigno' and Moiseyev-
Corcoran' procedures. Their relative utility as
computational techniques is assessed by carrying
out a comparative study of the two methods in
connection with an evaluation of the photoioniza-
tion crosg section of H, '. We show that the Res-
cigno-McCurdy procedure provides far more sta-
ble and reliable results for a given choice of ba-
sis functions and we provide an explanation for
the evidently slower rate of convergence of the
Moiseyev -C orcoran4 procedure. The fact that
this increased stability is also observed in bound-
state energies indicates that the McCurdy-Res-
cigno' method will also be found to give more
stable results for resonance eigenvalues. We
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conclude with some remarks about the possible
use of these techniques in applications involving
larger molecules.

II. THEORETICAL DEVELOPMENT

Complex scaling techniques have been applied
to the calculation of atomic photoabsorption cross
sections' by making use of the fact that the cross
section o(e) can be expressed as a matrix ele-
ment of the resolvent between square integrable
functions:

(r(~) '=' '"
rm((. (~y

— . v. ~(,), (()
0

where g, is the wave function for the atom in its
initial state with energy E„pis the dipole opera-
tor, and e is the photon frequency. Under the
transformation x-A, 8 =he'~ for all electronic
coordinates, the continuous spectrum of the
atomic Hamiltonian is rotated off the real axis.
This makes it possible to obtain convergent ap-
proximations to Eq. (1) by inverting a finite ma-
trix representation of the scaled Hamiltonian ob-
tained over a set of normalizable functions, where-
as such a representation could not be used directly
at real energies in the continuum for the unscaled
Hamiltonian. '

Difficulties in extending complex scaling tech-
niques to molecular problems in the Born-Oppen-
heimer approximation arise because the nuclear
attraction terms

scaling computationally. The two numerical pro-
cedures which have been proposed are based on
different analytic continuations of the matrix
elements of the Born-Qppenheimer Hamiltonian
in a basis of Cartesian Gaussian functions. Moi-
seyev and Corcoran4 proposed a procedure which
superficially appears to be the same as the usual
complex scaling method used for atoms. ' Con-
sider the transformation x-8r, 8 = Re", where
A. and g are real. If we then define the matrix
H ~(8) with respect to the Gaussian basis func-
tions x as (specializing the notation to a one-elec-
tron molecule for simplicity)

&.,(&) = f& ~x (~)&(&.)x, ( )~,

it can be shown that these matrix elements, which
can all be evaluated in closed form, are entire
functions of 8."Moiseyev and Corcoran simply
evaluated Eq. (4) for q =i/ and found that the com-
puted eigenvalues behaved as expected under the
usual complex scaling transformation.

McCurdy' has pointed out that this procedure
is not the same as forming matrix elements. of
the scaled Born-Oppenheimer Hamiltonian H(8)
for complex values of 8, but can be interpreted as
a matrix representation of the exterior scaled
Hamiltonian with respect to complex basis func-
tions. The reader is referred to Ref. 6 for de-
tails of the argument; only a brief recapitulation
is given here. Specifically, we have the identity

Zi
V,„,-~

) r
do not simply scale under the transformation

Bx, each term having a circle of square-root
branch points" with r,. satisfying

xlr(I =IR, I,
r& 'R& =cosP.

Simon' has shown that one solution to this problem
is to scale the magnitudes of all electronic co-
ordinates outside a sphere of radius R, large
enough to enclose all the nuclei. Simon trans-
forms the electronic coordinates according to
r-R(r) where

y, 0&%' ~RO
R (r)

R, +xe "(r R,), R, &-r

and has shown that the spectrum of the Hamil-
tonian under this transformation is the same as
that obtained for atoms under the more familiar
complex scaling transformation.

There have been as yet no attempts to implement
the original form of Simon's exterior complex

(6) fddc (~)(e(~,))
'

(5)"X.(c(r)r) H (8)X,(c(r)r),
where Hs (8) is the exterior scaled Hamiltonian
and x (c(r)r) is the (complex) basis function eval-
uated along the contour defined by

1 /X
e-'~

r, 0- r~~R,
c(r) =

1/xe "R,+(r-R,), R, r-
Note that the quotient R(r)/c(r) =he'~ is indepen-
dent of R,. Also, the weighting function [dc(r)/dr]
[c(r)/r]' appearing in Eq. (5) does not cha.nge this
interpretation, and we can obtain the secular eq-
uation solved by Moiseyev and Corcoran' with the
matrix H, ~(8) by solving the Schrodinger equation
for Simon's' exterior scaled Hamiltonian using a
Galerkin approximation. See Ref. 6 for details
of this deriva, tion.

The same arguments that lead to the derivation
of Eq. (5) can be used to derive an approximation
to the resolvent matrix element [Eq. (1)] that gives
the photoionization cross section. ' We can re-
write Eq. (1) as
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o(&u) =(4m&v/c) ImI(&u),

d(»)= J—d'rd'rf (2)G(»', r, F)f(r'),

where

f(r) = if (r) 4o(r)

and G(e, r, r') is the resolvent operator G(v, r, r')
= (E2 +(d) —H +2&)

The integration paths in Eq. (7) are first distorted
onto the contour R(r) and the scaled resolvent is
then approximated by forming the matrix inverse
[E,+to Hs (8)—] ' over the set of complex func-
tions (y„(c(x)r)) The. resulting expression for
I((d)) is'

I((u) = 8' F(E, +(u H) 2' f—, (8)

where the inverse (E()+v H)3'is —simply formed
from the analytically continued matrix elements
H, 3(8) of Eq. (4) and the elements of f are ap-
proximated by

tonian asymptotically.
It is instructive to compare the behavior of the

analytically continued matrix elements in the
Moiseyev-Corcoran' and McCurdy-Rescigno' pro-
cedures, particularly the matrix elements of the
nuclear attraction potential. We will consider a
matrix element of one term of the nuclear poten-
tial between two S-type Gaussians fl =I =n =0 in
Eq. (10)] both centered at position A (Ref. 8):

3f4 gP 3f4 II=- d y e -0'& -&) e -8 (r-A)
7tg 71 Ir —gl

32 lf2 (~P) 3f4

m Q+p
E ((n+P) (R- A)')

I»

where E,(z) is the entire function of z,

F,(z) = —2'(11/z)' ' erf(z) .
The Moiseyev-Corcoran procedure4 replaces
(r —R)' with (r8 —R)' in Eq. (11) and obtains a
formula for I by factoring 8 ' out of the integrand.
Evaluating the result at complex 8 gives

f, =d 'Pd~f dr ~d(r) d(r )dX„(r). (9)
"32 lf2 (~P)3f4

IMC
(u +P)

(I), „((3., r, A) =N, „„(x-A.„)'(y —A,)"(z -4,)"
,g 2(l A)xe (10)

It was argued' that using such a basis is equiva-
lent to using rotated coordinates in the Hamil-

The expansion coefficients (f3 in Eq. (9) make up
the eigenvector corresponding to g, and are de-
termined by diagonalizing H 3(8) over basis func-
tions of the initial-state symmetry. The matrix
inverse (E, +(4) H) 2' is t—hen constructed over
a set of functions of opposite parity. It is im-
portant to note that the final set of working equa-
tions [Eqs. (4), (8), and (9)].only involve the com-
plex matrix elements H 3(8) and transition mo-
ment elements between the basis functions g (r).
The contour integrations along the paths R(r) and

c(r) are a formal device used to motivate the
final set of equations and are not needed in prac-
tice. '

The numerical scheme proposed-by McCurdy
and Rescigno' exploits the fact that it is the
asymptotic form of the eigenfunctions of the Ha-
miltonian which determine the modification of the
spectrum under complex scaling. The procedure
is to use basis functions which effectively scale
r by 8 asymptotically while avoiding the nonana-
lyticity problem at the nuclear centers. This is
accomplished by forming a matrix representation
of the unscaled Born-Qppenheimer Hamiltonian
in a basis set of complex Cartesian Gaussians of
the form

Rex j (12)

In the McCurdy-Rescigno procedure, we simply
multiply u and p in Eq. (11) by 8 ', giving

e - io 32 I lf2 (o(P) 3f4
IMR

if (1)( +p)

(o'+P)~ "'-
It is now clear from comparing Eqs. (12) and (13)
that the McCurdy-Rescigno procedure can be re-
lated to the Moiseyev-Corcoran procedure; if the
basis functions are simply shifted from center
A to A8 ' in the latter, it reduces to the McCurdy-
Rescigno prescription. In fact, the entire argu-
ment of Ref. 6 showing how the Moiseyev and Cor-
coran4 procedure is related to Simon's exterior
scaling, ' is applicable to the case when A is chan-
ged to A8 ', and therefore the McCurdy-Rescigno
procedure for analytically continuing the matrix
elements of the Hamiltonian is equivalent to ex-
terior scaling in the sense of our Eq. (5).

Note that as the orbital exponents n and I3 be-
come small, I and I limit to the same nu-
merical value since lim, ,J',(z) —1. Since the
matrix elements become independent of the orbi-
tal center in this limit (diffuse basis functions), it
does not matter whether one associates a factor
of e 2i4/X2 with the orbital exponents or a factor
of e 'o/A. with the electronic coordinates r Fur-.
thermore, since the asymptotic behavior of the
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eigenfunctions is determined by the most diffuse
functions, it is clear that both procedures should
yield the same spectrum in the limit of a complete
expansion. However, since the behavior of the
matrix elements for large values of n and P is
quantitatively very different in the two procedures,
one may expect to find significant differences
between the two methods in numerical applica-
tions.

Thus it is also instructive to compare the li-
miting behavior of I and I~ for large values
of n and P. From the asymptotic behavior of
E,(z),

(14)

we see that the matrix elements will grow ex-
ponentially large if the real part of the argument
of F, is negative. Examination of Eq. (13) shows
that I~ remains well behaved, independent of )
and A, provided

I pl &45 . For certain choices
of X and A, however, the real part of the argu-
ment of E, in Eq. (12) can become negative for
any value of P not a multiple of 2m. For example,
if the basis functions are centered at the nucleus
(A =R), then the real part of the argument of E,
in the expression for I"c is

(n +P)R '(cos2$/X' —cosP/X +1),
which is negative when

cosQ —sing & X & cosQ + sing

Thus when Q is not zero or an integer multiple
of 2m, there is a range of 1 for which I in-
creases exponentially with increasing n or P, as
Moiseyev and Corcoran4 point out in their foot-
note 12. This aspect of the Moiseyev-Corcoran
procedure means that numerical instabilities can
be encountered unless the basis set parameters
are carefully chosen.

We saw, in the discussion following Eg. (13)
above, that the McCurdy-Rescigno' method dif-
fers from the Moiseyev-Corcoran' procedure in
that the basis functions are moved to centers
scaled according to 6)

' A. This is an essential
difference because the cusps in the complex wave
functions are moved to complex centers in these
calculations. We can see how the complex cusps
arise in two ways. First, if we regard Egs. (12)
and (13) as having been derived from the integral
in Eg. (11) following the substitution (r —R) '
-(Or —R) ', it is apparent that the integrand is
singular at 8 ' R, and one might expect that the
wave functions would correspondingly obey cusp
conditions at 8 'R. However, since we perform
the analytic continuation of Hamiltonian matrix
elements using analytic formulas for the integrals,
it can be somewhat misleading to argue too li-

terally from the forms of the integrands. After
all, we argued in Sec. II that the above scaling
transformation leads to a circle of branch points
in the nuclear attraction terms of the Hamiltonian.
A better way to deduce the location of the cusps
in these calculations is to use McCurdy's' result
that if we find the coefficients d~ by solving the
secular equation involving the analytically con-
tinued matrix If &(8) of the Moiseyev-Corcoran
approach, we form an approximation to the eigen-
functions, go, of Simon's' exterior scaled Hamil-
tonian of the form

(16)

where X~(r) is a, real Gaussian basis function of
the form given in Ecl. (10). If, for example, the
state in question is a bound state, the exact eigen-
function of the exterior scaled Hamiltonian can be
found from the exact bound-state eigenfunction
g~'"'~(r) of the unscaled Hamiltonian by simply
evaluating it at r =R(r)r, where R(r) is the ex-
terior scaling contour given in Eq. (3). Thus we
have

rl
"""(R (v)f j =g dz y, (c (r)r),

and by a simple change of variable in this equa-
tion [recall Oc(r) =R(x)] we obtain

(Or) &jXg(r) ~

=1

for the wave function we are expanding in real
Gaussian basis functions, Xs(r), where g"'"' (8r) is
a bound-state eigenfunction of the real Born-Op-
penheimer Hamiltonian evaluated at the complex
coordinate Or. Now clearly if g~'"'~(r) has a cusp
at r =R, g~'"'~(Or) has a cusp at r =8 'R. Re-
calling that the McCurdy-Rescigno' procedure can
be derived from the Moiseyev-Corcoran4 pre-
scription by translating the basis functions to
complex centers 6I 'A. , we see immediately that
the McCurdy-Rescigno method allows the complex
cusps in the molecular wave functions to be ap-
proximated by Gaussians of large exponents on
the cusp centers, while the Moiseyev-Corcoran
method effectively centers basis functions else-
where. For this reason we expect the McCurdy-
Rescigno procedure to have better convergence
properties, and the calculations presented in the
following section bear out this expectation. We
will defer further discussion comparing the two
techniques until Sec. IV.
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III. NUMERICAL EXAMPLES

In this section we present the results of pho-
toionization calculations using the approximation
to I(v) in Eq. (8), with the matrix (E, +&a H)e-
obtained using both the McCurdy-Rescigno' and
Moiseyev-Corcoran' procedures for analytically
continuing the matrix elements H ~(8). We have
chosen to compute the component of the photoion-
ization cross section of H, ' for polarization paral-
lel to the molecule (the 1so -k&y„transition). This
particular example presents a rather challenging
test for basis-set calculations. The cross section
is very small and sensitive to higher angular mo-
mentum components of the basis set, and it there-
fore offers a good measure of the utility of the methods
we have employed. Also, because it is a one-
electron system, H,

' affords a simple example
of the problems arising specifically from the form
of the molecular nuclear attraction potential and
not from the many-electron aspects of the mole-
cular problem which are irrelevant to the discus-
sion here.

To facilitate our comparisons, we have used
large basis sets both to calculate the 1so ground-
state eigenfunction and to represent the matrix
(E, +&a -H), for the o„continuum. In this way, we
are able to use the same basis sets for both me-
thods while avoiding the criticism that the basis
set was optimum for one method but not for the
other. For the ground state, we used a Gaussian
basis consisting of the Huzinaga' 10s/6P, Gaussian
basis for hydrogen on each proton with exponents
scaled by 3.0; four d,2 functions on each hydrogen
with exponents decreasing from 15.0 in a geome-
tric series of ratio 3.0; twelve s functions at the
center of the molecule with exponents decreasing
from 14.4 in a geometric series of ratio 3.0; and
six d,2 functions at the center molecule with ex-
ponents decreasing from 10.0 with a ratio of 3.0.
Of the 41 uncontracted functions of (T, symmetry
that can be formed from these functions, 39 or-
thogonal g basis functions were constructed to
avoid linear dependence problems. For the ex-
cited-state symmetry(o„), we used a basis con-
sisting of Huzinaga's' 10s hydrogenic basis on
each proton with exponents scaled by 3.0; nine P,
functions on each proton, eight of which had ex-
ponents decreasing from 3.6 in a geometric series
of ratio 1.7 and one with exponent 10.0; and five
d,2 functions on each proton with exponents de-
creasing from 15.0 in a geometric series of ratio
3.0. From this basis 24 uncontracted functions
of O„symmetry can be formed and 24 orthogonal
functions were constructed from these.

We hasten to remark that adequate results (+5%)
can be obtained with far smaller basis sets with
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FIG. 1. Superposition of results for the parallel com-
ponent of the photoionization cross section of H2 com-
puted using the method of Ref. 3 to analytically continue
the Hamiltonian matrix elements. The superimposed
curves are for p varying over the most stable region
(15 to 25') in 2.5' increments.

the more stable of the methods we tried and that
these extravagantly large sets of functions were
used only to facilitate the comparison of alterna-
tive computational procedures using the same
basis sets.

After choosing the basis-set exponents in these
calculations, one may optimize the scaling para-
meter 0 in a given basis set because the results
are formally independent of 8 when converged.
The usual procedure' in atomic calculations is to
fix the magnitude of 6 at unity and vary the argu-
ment to find the region of greatest stability. We
did that using the McCurdy-Rescigno prescription
for computing H ~(8), making no attempt to op-
timize the magnitude of 8. Figure 1 shows a su-
perposition of five plots of the photoionization
cross sections obtained by setting 8 =exp(ivP/
180.0) and varying P in 2.5' increments over a
10 interval centered approximately at the most
stable point in P. The results are stable within
a few percent and agree essentially exactly with
the exact values of Bates and Opik. "

We repeated this calculation with the procedure
of Moiseyev and Corcoran. ' However, no re-
cognizable region of stability could be found with

~8~ =1, and we therefore varied ~8~ to find a more
optimum value. It is not surprising that this was
necessary considering the behavior of nuclear
attraction integrals with large exponents which
Moiseyev and Corcoran4 point out and which we
discussed earlier. We find the most favorable
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