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Exchange perturbation theory for electron scattering. Elastic scattering from hydrogen atoms

Carol A. Venanzi*~ and Bernard Kirtman
Department of Chemistry, University of California, Santa Barbara, California 93106

Daniel M. Chipman
Radiation Laboratory, University of Notre Dame, South Bend, Indiana 46556

(Received 17 September 1979)

%'e present a new perturbation treatment of electron scattering. It is based on determining a primitive

wave function which is nonsymmetric with respect to electron exchange. The theory is developed specifically

for elastic scattering from atomic hydrogen but appears generalizable to many-electron atoms and to
inelastic processes as well. From the first-order wave function, which can be made square-integrable, one

obtains the phase shifts through third order. Calculations with a crude spherical-well initial approximation

are carried out for illustrative purposes.

I. INTRODUCTION

A number of different approaches to the electron-
scattering problem are currently available. They
include algebraic variation, close-coupling, chan-
nel radius, square-integrable basis functions, per-
turbation theory, etc. Algebraic variation methods
were thoroughly reviewed by Truhlar et al. ' in
1974. In this review close-coupling is considered
as a separate technique since the coupled channel
integro-differential equations are usually solved
by numerical integration rather than basis set
expansion. A detailed description of the numerical
methods employed has been given by Burke and
Seaton. '

There is one further algebraic variation method
that has become prominent more recently. ' It is
a procedure based on Schwinger's4 variational
principle. Vfhen put in algebraic form this proce-
dure requires a relatively small expansion basis
although a price must be paid in terms of more
difficult integral evaluation. The same trade-off
of advantages is associated with channel radius
methods as compared to conventional algebraic
variation. Of the former, the most popular is the
B-matrix' technique which has been reviewed by
Burke and Hobb. '

Because of the simplification in computing in-
tegrals, a variety of procedures which utilize only
square-integrable basis functions (over all space)
have been developed. Among these are the Fred-
holm determinant method of Reinhardt and co-
workers, ' a truncated potential technique due to
Heller and Yamani, ' Stieltjes-Tchebycheff mo-
ment theory, and the method of complex rotated
coordinates. '

Perturbation theory methods are the oldest and,
along with close-coupling, the most commonly
used. This category contains, among others, the

distorted-wave Born approximation, " the polar-
ized-orbital" technique, and perturbation expansion
of the Green's function. " In recent years more
attention has been devoted towards the development;
of variational approaches, particularly those re-
lated to bound-state procedures. However, it is
now just being recognized that for bound-state
calculations, perturbation theory can be an attrac-
tive alternative. Some of its potential advantages"
include size consistency, efficiencies resulting
from diagrammatic techniques, application of
coupled-cluster approximations, simple interpre-
tation in terms of electron pairs and, in conjunc-
tion with the valence-bond model, " reduced com-
putation times. Our goal, then, is to reformulate
the electron scattering problem in a way that uti-
lizes these features.

The particular treatment developed here is based
on a form of exchange perturbation theory " The
latter is, perhaps, best known as a method for
calculating long- and intermediate-range inter-
molecular interaction energies. However, it is
not limited to such applications. A general treat-
ment, valid at all internuclear separations was
presented" some time ago. More recently a val-
ence-bond perturbation theory" which utilizes the
same general formalism has been developed.

Valence-bond perturbation theory is so named
because the zeroth-order wave function is given
by the (self-consistent) valence-bond orbital mod-
el." In this model each of the orbitals is an
eigenfunction of a different one-electron Hamil-
tonian. The exchange perturbation technique is
introduced as a way of dealing with such an initial
approximation. Since a like circumstance occurs
in scattering, one is led to the same line of attack.

Qf course, the scattering wave functions are not
square-integrable and, as a result, the theory must
be modified. However, there is an exact corres-
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pondence between th,' two problems provided the
phase shift in (elastic) scattering is regarded as
the analog of the bound-state energy. In either
event the exact wave function may be obtained from
from a nonsymmetric primitive function P by
applying a suitable electron exchange symmetry
projector. The primitive function is not unique
but can be made so by requiring its deviation from
the initial approximation to be minimal. "

Although the functional Z= (4
~

(8 —E)4') will van-
ish if 4 is exact, it will not do so for an arbitrary
approximation such as the perturbed wave func-
tion. However, one can always vary the phase
shift to satisfy the above requirement. In the lin-
ear approximation the change in the phase shift is
simply proportional to J. Thus, by adding succes-
sively higher-order perturbation corrections to 4
one obtains successively higher-order corrections
to the phase shift. A comparison of our expres-
sions with those of potential scattering shows that
the wave function through order n gives the per-
turbed phase shifts through order 2n+ 1.

The first-order phase shift, in particular, van-
ishes if the initial approximation is chosen so that
Z= 0. Such is the case when the Hulthd'n varia, —

tional method" is used to determine the zeroth-
order parameters. This choice has the virtue of
making the first-order perturbed wave function
square integrable.

Our theoretical treatment is described in Sec.
II. Then, in Sec. III we illustrate the procedure
in detail by carrying out a calculation with atomic
hydrogen as the target and a crude spherical-well
initial approximation for the scattering potential.

II. THEORY

is the sum of the energies of the incident electron
(~k') and the ground-state hydrogen atom (E„==,').

For two electrons the spin dependence in 4 will
factor, leaving a pure spatial wave function that is
either symmetric (singlet) or antisymmetric
(triplet) with respect to electron exchange.
Henceforth, we use 4 to represent just the spatial
part of the wave function. In the asymptotic limit
as f'1 or f 2 approache s inf inity, + separates into
the product of a free-electron wave function E
times a 1s orbital for the second electron. Thus,

lim 4'(r„r, ) =E(r, )u„(r,)
1

lim4'(r„r, ) = +E(r,)g„(r,), (4b)
2

where (+) refers to the singlet state and (-) to the
triplet. If z is the direction of the incident elec-
tron, then

E(r) = e'"+f(8)r 'e '~

with f(8) being equal to the scattering amplitude.
Due to the cylindrical symmetry f depends only
on the polar angle 8.

The scattering amplitude is related to the dif-
ferential cross section o by

(6)

In the expression for E(r) both e~~' and f(8) may be
expanded as a sum over the Legendre polynomials

P, (cos8). By combining terms in the usual fashion
one finds that

E(r) = (kr) ' (2l+ 1)i'e'"~
-"0

x sin(kr ,' le+ l—, )—P7,(cos8), (&)

In this Section we develop an exchange perturba-
tion theory for elastic scattering of electrons by
atomic hydrogen. Although some aspects of the
treatment are peculiar to this particular problem,
there are no obvious difficulties that would prevent
the extension to many-electron atoms and to in-
elastic scattering as well.

We begin with the partial-wave expansion of the
exact wave function and then develop the perturba-
tion method for each partial wave. The Hamil-
tonian for the two-electron system H+ e is (in a.u. )

&=--,' V'-& V'-~ '-r '+r '.
1 2 1 2 12'

In order to determine the scattering amplitude,
one must solve the Schrodinger equation

f(8)= k ' g(2l+ 1)e'"~ sinqP, (cos8) .
1=0

(8)

e(r„r ) = 2 (2l+ 1)i'e~ & 4, (r~, r~) .
=0

(9)

Equation (9) constitutes a definition of the lth par-
tial wave P, (r„r,) with P, an eigenfunction of l. .
The asymptotic behavior of g, is determined by
Egs. (4), (7), and (9), which give

Since 8 commutes with I ' the complete wave
function 4 can also be written as the partial-wave

' expansion

(H -E)4=0
in which

lim g, (r„r,) =(2kr, ) 'sin(kr, -~la+ rl, )
y1~00

x P, (cos8,)g„(r,) (10a)

18
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lim P, (r„r,)=+(2kr, ) 'sin(kr, -~lv+ q, )
y2~ 40

x P, (cos8, )g„(r,) . (10b)

yields the solution of symmetry v (v=S or T). The
exact partial wave of that symmetry may be writ-
ten as

As an approximation to P, one may utilize, for
example, the static (one-state) exchange function

y, =-,'[G, (1)u„(2)+M„(1)G,(2)],

with 6, constrained so as to obey the boundary
conditions (10). By multiplying g, on the left by
~„(2)(H-E) and integrating over the coordinates
of electron 2, an integro-differential equation for
6, is obtained. This equation may then be solved
iteratively using either numerical or basis set
expansion techniques. Obviously, other choices
for 6, could also be used as the initial approxima-
tion.

In order to achieve more than semiquantitative
accuracy, however, one must go beyond the static-
exchange approximation. For reasons mentioned
in the Introduction, we wish to proceed by means
of perturbation theory. In doing so, one important
aspect that must be taken into account from the
beginning is the fact that G, and the 1s orbital will,
normally, be eigenfunctions of two different one-
electron Hamiltonians. C onsequently, the zeroth-
order Hamiltonian for the symmetrized wave
function cannot be written as a sum of one-electron
terms, nor is it expressible in any obvious local
form. By using exchange perturbation theory
this difficulty is easily circumvented.

In exchange perturbation theory" the exact
symmetrized eigenfunction "g, is generated from a
nonsymmetric primitive function P, by applying a
suitable exchange projection operator "A; i.e. ,

"q cc "A (12)

For two identical particles (electrons) there are
two such projection operators —a singlet and a
triplet given by, respectively,

~A= ~(1+P,2);rA=3(1 —P„).
These operators are Hermitian and have the
properties

"A"A = 6 „(p, , v = S,A)

(14b)

If the zeroth-order P, (= Q,') is taken to be
G, (1)u„(2), then the corresponding approximation
to "g, will be the static-exchange function of Eq.
(11). Note that Eqs. (9) and (10) refer to the sym-
metrized wave functions; the left-hand superscript
is understood in these equations but will be dis-
played explicitly from now on.

Consider the primitive function P&(v) which

This leaves just the coefficient a, (v) to be deter-
mined. Again, in order to make Q, and @, as sim-
ilar as possible, we insist that the perturbed
primitive function have the same asymptotic nor-
malization as Q', . In Sec. III the asvmptotic bound-
ary conditions for p', are given as

lim yog= sin(kr, —2lv+ q', )~ 44

&& (kr, ) 'P, (cos8, )g„(r,) (18a)

lim P', =0.

Hence, the limiting form of p, in the direct chan-
nel (r, -~) is taken to be

(18b)

lim p, = sin(kr, ,'la+ q,)——
W 001

&& (kr, ) 'P, (cos8, )u„(r,) . (19)

It is important to realize here that g, (the phase
shift in the direct channel) is not necessarily
equal to the symmetrized phase shift "g, except in
zeroth order They w.ould be the same if p, were
to vanish asymptotically in the exchange channel
(r, -~). In general, however, the onl. y require-
ment is

lim p, a P» lim @,= sin(kx, —2lv+ "q,)

x (kr, )-'Pg(cos8, )u„(~,), (20)

where (+) and (-) refer to the singlet and triplet,
respectively. Substitution of the above expres-

(15)

where a, (v) is a proportionality constant. Since '

Q, (v) is otherwise unrestricted,

(16)

where X, (v) is a completely arbitrary function. The
coefficient a, (v) is also arbitrary; it determines the
relative normalization of Q, and "g, .

Some external criterion is necessary in order to
specify a, (v) and (1 -"A)x,(v). Chipman has sug-
gested a "maximum localization" condition" ac-
cording to which the spatial deviation between P,
and Q, is minimized. This choice should lead to
a rapidly convergent perturbation series because
it makes the zeroth-order primitive function as
close as possible to the exact one. For the (1 —"A)
projection the deviation can be made to vanish by
requiring"
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sion into Eq. (15) followed by a comparison with
Eq. (10a) yields

a, () )=I.
The sole means whereby a, (v) enters into our

treatment is through the boundary conditions.
Operating on both sides of Eq. (16}with H E—
eliminates this coefficient, and one obtains

(H- E)(t), (v) = (1 —"A)(H- E)(t),'(v) .
Since the formal theory is identical for both S and
T states the symmetry designation v will, hence-
forth, often be suppressed for notational conven-
ience. To get the perturbation equations we ex-
pand (t), as

4'i= (t'i+ 4i+ 0'r+ ' "
and write

H=H'+ y,

(23)

(24)

where H' is the zeroth-order Hamiltonian that has
(t)0, as its eigenfunction and V is the (first-order)
perturbation. Equating terms of like order

(H' E}y',=—0,
(H'-E)y'+ "AVy'= 0

(H' E)~2+ Vy', =0,
(H' E)y~g+ V(t)2) = 0,

(25a)

(25b)

(25c)

(.25d)

'(&4r l~-l@I& &@l l&l-kl &* )

etc.
The consistency requirement obtained by operat-

ing on the left of each equation with &P',
l

deter-
mines the phase shifts in the direct channel. Since
the kinetic energy operator is non-Hermitian with
respect to unbound functions, the terms
(Q', IH —E)QI& do not vanish. They can be eval-
uated in the usual manner, which involves a partial
integration over the radial coordinates to get

s, (r) =s', (r)+ q',c o(r)

+ [q',c',(r) ——.'(q', )'s', (r)]
+ {[q',—~(n', )3]C',(r) q—', n', S',(r))

+ 0 ~ ~ (28)

where C, —= cos(kr ——,'l)7+re, ) and the superscript '
indicates that p, is replaced by g', . 'The boundary
conditions on the perturbed wave functions thus
become

lim (t)', = q', C', (r, )(kr, ) 'P, (cos e,}u„(2),

lim (t)', = [q',C;(r,) —g (q', )'So)(r, )]~OO
1

x (kr, ) 'P, (cos6,)M„(2),

Iim y', = &[n',
' (q', )']C', (r}—n', q',S;(r,)j

x (kr, ) 'P, (cos&,) u„(2),

(29a)

(29b)

(29c)

etc. Taking into account Eqs. (26) and (29), the
consistency requirement leads to

)7', = -(2v)-'k(2I+ 1)(y',
l

"AVy', &,

rl*, = -(2v) 'k(2l+ 1)((t)',
l
Vy', &,

)7', = —(2))) 'k(2l+ 1)((t)',
l
V(I)',&+ ~()7t)',

(30a)

(30b)

(30c)

etc.
Although the phase shifts in the direct channel

are given by Eqs. (30), the asymptotic behavior in
the exchange channel is arbitrary" at this point.
Such arbitrariness is a characteristic of exchange
perturbation theory. We resolve it here in the
following manner. The functional

"8,—= ("()),
l
(H —E)")1),& (31)

will be zero, in general, only if "g', is exact.
(In this expression and elsewhere, an overhead
tilde is used to denote a function or functional
which depends upon variable parameters. ) In the
case of an approximate wave function one can al-
ways make "J, vanish by varying the phase shift.
For the exact wave function a variation in the
phase shift by 6(")7,) causes the functional to change
an amount

(26)

in which d7', is the total volume element for elec-
tron 2 and dQ, the angular volume element for
electron 1. We now write, the total direct-channel
phase shift of Eq. (19) a.s

5("Jg) = v[k(2l+ 1)] '6(")7 )+ ~ ~ ~ (32)

with the missing terms being at least quadratic
in 6(")7,). This result follows directly" from Eq.
(31) and the boundary conditions (10a) and (10b).
Thus, in the linear approximation, the phase-
shift correction we seek is

)7 =)(1 +)l +YP+rP+ ~ (27) 5("q,) = -(v) 'k(2I+ l)V„ (33)

Then the corresponding expansion of
sin(kr, —g lw+ q, ) = S, (r) is-, assuming the proportionality constant of Eq. (32)

is valid for the approximate wave function as
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well. The above expression is employed also in
the Percival~~ variation method to determine the
phase shift.

Setting "4', = "Ago, in Eq. (33) yields

"q, —"qo=-(m) 'k(2l+ 1)Q), I
"AV(f),). (34)

We regard the phase-shift correction "q, —"q', as
first order and, hence [cf. Eq. (30a)],

"q'= 2g' (35)

This definition of order is supported by consider-
ing the analogous treatment of potential scatter-
ing ("A-1) in which case" q, —q', reduces to the
first-order phase shift when ("P,-)p, is taken to
be yo, .

Evidently, from Eq. (35), both channels (ex-
change and direct) contribute equally to "rP, Thu. s,
the boundary condition on p', in the exchange chan-
nel is

ly, this procedure can be extended in a straight-
forward manner to higher orders although we hope
it will be unnecessary to do so except in rare in-
stances.

go= Go(1)u»(2),

where

(42)

III. ILLUSTRATIVE CALCULATION OF LOW-ENERGY

S-WAVE SCATTERING

For sake of illustration we now apply our ex-
change perturbation theory to the problem of low-
energy elastic s-wave scattering from atomic
hydrogen. Since l = 0 throughout, the angular-
momentum index will be suppressed henceforth.
For a one-state initial approximation the asymp-
totic boundary conditions require the zeroth-order
primitive function to be of the form

lim p', = aq', Co(r, )(kr, ) 'P, (cos8,)u„(r,),
f'2~ oo

which leads to

lim (1+P„)y',="qgCo(r, )(kr, ) '
g~~ OO

& P,(cosa, )u„(r,) (37)

lim G'= (kr, ) 'sin(kr, + q').
~ eo

'This zeroth-order wave function will satisfy a
Schrodinger equation

(H' E)y'=0

in which B has the general form

(43)

(44)

when combined with Eq. (29a). The last expres-
sion agrees exactly, as it must, with what is ob-
tained by expanding "g, as

Pq PqO+ Pql~ Vq2+ ~ ~ ~ (38)

"q = —(m) k(2l+ 1)(pI I
"AVp', ) . (41)

There are other ways to partition the phase shift
into second- and third-order contributions, but
the one we have given is the most obvious. Note
that the, wave function through first order deter-
mines the phase shift through third order. Final-

in Eq. (20}. Note that if q', = 0, both y', and
(1 +P») pt will be square-integrable functions.

As the next approximation we take "Q,
= "A(go+ p', ). The corresponding correction to the
phase shift is found by substituting this wave func-
tion into Eq. (33) with the result

"qg —("qog+ "qig) = —(w) 'k(2l+ 1)

x (&yi I
"AVpl)+ &yl I "Avgas&) (39)

To simplify Eq. (39) we have taken advantage of
the first-order perturbation equation (25b}.
Again, by comparison with the analogous treat-
ment of potential scattering, the right-hand side
is defined as the sum of the sec'ond- and third-
order perturbation corrections with

"rPg = -(7r) 'k(2l+ 1)(@gI "Avy'g) (40)

H'= ——,'V', + U,(r, ) —~gV', —r, ', (45)

and Uo is the zeroth-order potential for the free
electron. The perturbation, of course, is V
= B-H' with B being the total Hamiltonian of Eq.
(1).

As indicated earlier, a reasonable choice for
U, may be found by solving the one-state (static)
exchange equation

dr2 ui, (2)(H —E)"Ap

-D
0 (47)

This choice for U, has the correct general behav-
ior desired, but as we shall see, it turns out to be
too crude to give very high accuracy through third
order.

'The solutions of the spherical. -well Schrodinger
equation are well known. " Applying the boundary
conditions at the asymptote and at the origin
(where the wave function must be finite) one obtains

o( )
N sin(Kr~) r~ ~ ro
sin(kr, +q') r, &r„ (48)

= [—g V,'+ Uo(1) —gk']Go(1) = 0. (48)

Even though U, is an optimal one-state potential,
we decided to use something simpler for illustra-
tive purposes —namely, the attractive spherical
well defined by
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with EP =k~+2D,

N = sin(kr, +'rP)/s in(Ãr, ),

@0=tan-'[(r /X) tan(If'r, )] n—r,

(49a)

(49b)

TABLE I. Optimum spherical-well parameters and
phase shifts for s-wave'scattering from atomic hydrogen.

Phase shift
Spherical Static

well exchange "Exact"

(s"J/s .).= (8 /~sI)f„( s0'/sif)„'(s"n'/s .).
Equation (51) together with the requirement

(51)

The phase shift g' depends upon the parameters
K and r, which can be optimized by any of several
variational methods whose advantages and dis-
advantages have been discussed elsewhere. '"
We employ Hulthen's procedure' here because the
resulting first-order wave function is square-in-
tegrable, which simplifies the calculations. Ac-
cordingly, the functional

"Z=
& Wj'~(a E)~-y'& = &"~y'~ Vy'& (50)

is made stationary with respect to the spherical-
well parameters while "g' is held constant. Then
the phase shift is obtained by setting "J equal to
zero. The left superscript has been added to g
at this point to indicate that the zeroth-order
phase shift wi. ll depend upon the symmetry of the
wave function. For. each x, there is a value of E
that will keep "go fixed and vice versa. If xo is
taken as the free variable the Hulth6n stationary
condition becomes

0.8 0.856 1.754
0.7 1.048 1.484
0.6 1.507 1.127
0.5 2.214 0.870
0.4 2.849 0.728
0.3 3.388 0.627
0.2 3.767 0.552
0.1 3.968 0.505

Singlet
0.734
0.806
0.901
1.036
1.219
1.467
1.813
2.338

0.651
0 744
0.869
1.031
1.239
1.508
1.871
2.396

0.886
0.930
1.041
1.202
1.415
1.696
2.067
2.553

0.8 0.975
0.7 1.016
0.6 1.055
0.5 1.091
0.4 1.122
0.3 1.146
0.2 1.162
0.1 1.170

l.983
l.912
1.847
1.790
1.743
1.706
1.680
1.66'5

Triplet
1.547
1.676
1.822
1.989
2.176
2.387
2.620
2.874

1.614
1.749
1.901
2.070
2.257
2.461
2.679
2.908

1.643
1.780
1.933
2.105
2.294
2.500
2.717
2.939

The width yo and depth D of the well are defined in Eq.
(47); the energy of the free electron is ~2&, and K =&
+2D. All parameter values are in a.u. ; phase shifts are
in rad.

See N. F. Mott and H. S. W. Massey, Hef. 4, p. 530
for the values reported here and the original references.' The extensive variational results of Ref. 29 are taken
to be "exact."

"Z= &Wy'~ Vy'&= 0 (52)

Ep' = e ~"~e o"2 a.r, ~r, ~r„~
j=1

(54)

yields two relations that determine Z and x,.
Note that Eq. (52) immediately makes the first-
order phase shift "q'=0 [cf. Eq. (34)]. Finally,
the optimum parameters were solved for by Newt-

on-Haphson iteration" with the results shown in

Table I.
Our zeroth-order phase shifts (Table 1) are,

typically, in error by 10-15'Pz for the singlet and

2 —6% for the triplet as compared to Schwartz's"
extensive variational calculations. Because there
is no minimum condition on the error, a small
value for this quantity does not necessarily imply

an accurate initial approximation. Indeed, for the

singlet, at energies above k= 0.5 a.u. the static-
exchange phase shifts are worse than those cal-
culated for the spherical-well approximation.

The first-order wave function was obtained from
a variational equivalent of Eq. (25b):

6Z', = 5(&$'~ (H' E)y'&+ 2&&j'
~

"A Vy—'&)= 0. (53)

For y' we chose a Hylleraas-type linear trial
function

of the sort employed by Schwartz" and others" in
electron-scattering calculations. The exponential
constants P and Q may be selected arbitrarily.
We set Q= 1.0 to reproduce the 1s state of hydro-
gen. Then in order to partially optimize P, a
series of computations with V-9 term trial func-
tions" was carried out. From these we found
P =0.8 (singlet) and 1.2 (triplet) as values where
the phase shift is relatively stationary over the
entire energy range from k=0.1 to O.V a.u. Qf
course, as the basis set is increased in size, P
becomes a redundant parameter. "

Considerable exploration was undertaken to es-
tablish which values of (K, , L&, M&) should be in-
cluded in the trial function. A sensitive test of
basis set completeness utilizing an alternative
formula for "q' was developed (see Appendix A)
for this purpose. The two formulas give the same
result if the first-order wave function is exact
but differ for approximate wave functions. At
first (N = V-9) there were farily large discrepan-
cies but, eventually, we were able to get both
formulas to agree to within 0.5% at all energies.
Our final basis sets for the singlet and triplet are
listed in Table II. A greater number of correla-
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TABLE II. Basis set for variational calculation of
first-order wave function. Each basis function is of the
form e &e ~tr&&rq~r j with P aud Q fixed at the values
given in the text below Eq. (54).

Singlet ' Triplet

r'r'r' +. . +r'r'r'1212 1 2 12

001002rjr2r12+rfr 2r f2

rrr +'' +rrr1 2 12 1 2 12

101+0 1 1+110rjr2rj2 rir2r12 rir2ri2

r fr2r f2+ r jr2r f2+ rjr2r 12
111201211
102+012rfr2rf2+rfr2r f2

rfr2r 12+ + ri r2r12000+.. ~ +1100
0 0 1+ 0 0 2r jr2rf2+ r jr2rf2

r'r'r' +" +r'r'r'12 12 12 12

Just the first18 terms were used for jp=0.3, 0.5, and
0.7. The 23-term function was necessary only for &=0.1.

tion terms containing r» with M, &0 were re-
quired for the singlet, whereas more free-electron
distortion terms of the form r, 'r,'r» were neces-
sary for the triplet.

The perturbed phase shifts determined from Eqs.
(40) and (41) are reported in Table III. Our values
for the singlet are quite satisfactory considering
the initial approximation. Through third order
the residual error is 3-6%%uo (down from the original
10-15%%uo). For the triplet, the residual error is
less but the perturbation treatment provides only

a modest improvement of the zeroth-order val-
ues. The. perturbation corrections obtained here
would be the right order of magnitude if "Ago were
chosen as the static-exchange function. 'Thus,

it appears likely that an improved starting point
will give much better triplet phase shifts through
third order, although the explanation for this is
not obvious.

As a further test of the spherical-mell initial
approximation (in contrast with the electron ex-
change aspects of our treatment) a calculation of
scattering due to the static potential of atomic
hydrogen was carried out. In other words, we
solved the one-electron Schrodinger equation
(h —ak')6=0 in which

1 ) [u„(r,)]'
(55)

using perturbation theory. Of course, there is no
electron exchange in this problem. It turns out

that the first-order wave function can be de-
termined analytically (see Appendix B). Thus,
the second- and third-order phase shifts listed in
Table Dt7 contain no basis set error.

The low-order perturbation expansion of the

phase shift for tbe static potential is similar to
that of the singlet (which includes exchange) in

several respects. In both cases the total correc-
tion averages -8-10%; the ratio rP/rl' is, typical-
ly, -0.2 to -0.3; and tbe mean residual error in

the total third-order phase shift is about 4-5%%uo.

It is clear that the spherical well is too crude an
approximation to the static potential to give high
accuracy (say I-2%%uo) through third order. Fur-
thermore, the errors in tbe total phase shifts
through third order have the right order of mag-
nitude to account for most of the difference be-
tween our exchange perturbation theory results
and the exact values.

The preliminary results presented here indicate
the desirability of further investigation. Qbvious-

ly, test calculations based on the static-exchange
potential as the initial approximation are of top
priority. One should also recognize that yo is not

TABLE III. Exchange perturbation theory phase shifts ' for s-wave scattering by atomic
hydrogen calculated from Eqs. {40) and (41).

&(a.u.)
Total through
third-order

Static'
exchange Exact

0.1
0.3
0.5
0.7

2.338
1.467
1.036
0.806

0.156
0.154
0.151
0.121

(A) Singlet
-0.022 2.472
-0.026 1.596
-0.039 1.148
-0.054 0.873

2.396
1.508
1.031
0.744

2.553
1.696
1.202
0.930

0.1
0.3
0.5
0.7

2.874
2.387
1.989
1.676

0.006
0.016
0.019
0.019

(B) Triplet
0.000 2.881
0.001 2.403
0.000 2.008
0.001 1.695

2.908
2.461
2.070
1.749

2.939
2.500
2.105
1.780

~ In radians.
b See N. F. Mott and H. S. %. Massey, Hef. 4, p. 530 for the values reported here and the

original references.
The extensive variational results of Bef. 29 are taken to be "exact."
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TABI E IV. Perturbed phase shifts ' for s-wave scat-
tering by the static potential of atomic hydrogen.

p(a. u.)
Total through
third-order "Exact"

0.1
0.2
0.3
0 4
0.5
0.6
0.7
0.8

0.515
0.785
0.900
0.942
0.951
0.943
0.927
0.906

0.185
0.191
0.166
0.119
0.105
0.087
0.074
0.061

-0.066
-0.068
-0.055
-0.043
-0.034
-0.027
-0.021
-0.017

0.634
0.909
1.011
1.019
1,022
1.004
0.980
0.951

0.721
0.973
1.046
1.057
1.045
1.021
0.993
0.963

In radians.
See N. F. Mott and H. S. %. Massey, Ref. 4, p. 530

for the values reported here and the original references.

restricted to be a one-state function; our theory is
easily generalized to include a multistate initial
approximation. " The best ajproach, therefore,
could turn out to be some combination of a limited
close-coupling calculation followed by an exchange
perturbation treatment.

+ z(~„~,),
in which

(A6)

Y(r, , r2) =-[I—exp(-px, )](2v) '&Q ~VQ )
xr, 'Coo(~, )u„(2) (Av)

Z(~„r,) = -[1—exp(-p~, }](2v) '

&
~'

~

~„V~'&.2'C;(r,}u,.(2) . (»)
The first term on the r.h.s. of Eq. (A6} is the
same one that was used for Q' except the coeffi-
cients are now changed from a~ to b, . There is an
arbitrary exponential constant p in the expressions
for Y(r„r2) and Z(r„r2) which was set equal to
15.0.

Since the only variational parameters in X' are
the coefficients of the bound functions, Eq. (1) is
equivalent to the Euler condition

where C00(r) =cos(km+ go). In order to satisfy these
boundary conditions the variational function X'
was taken to have the form

PT

X'=e "&e c"2 b,r, .~r2 r~,"2 ~+Y(~, , x2)
j=

APPENDIX A

We derive here an alternative "mixed" expres-
sion for q in terms of Q' and a first-order wave
function X' determined from the polarization equa-
tion34

(H —8 )X + VQ =0 . (A1)

lim X' = —(2&) &f ~Pq2VA ) &2 Co(r2}u&, (1) ~

y2~ OO

(A5)

As noted in Sec. III, this mixed expression pro-
vides a sensitive test of completeness for the basis
set employed to expand Q'. Multiplication of Eq.
(Al} on the left by &Q'

~

yields

&0'
~

Ve'& = &0' ~(If'--ES'&. (»)
Since Q' is bound, &Q' ((& -E}X'&=&X ~(II -E)0'},
and, therefore, the perturbation equation for Q

[Eq. (25b)] can be postmultipl. ied by &X'
~

to obtain

&e'~Ve'&=&X
~

~Vs'&=-v"n'k '(2f+ I) '. (AS)

From the derivation just given one can see that
the above relation holds, in general, only for the
exact Q' and X' which is why it serves as a, check
of the fi.rst-order wave function.

Note that Eq. (AS) is valid regardless of the
boundary conditions on X . We arbitrarily chose

lim X = —(2w) &~ IV~ )r) Co(x()u~, (2), (A4)
y(~ OO

APPENDIX B

In this Appendix our perturbation calculation of
electron scattering by the static potential of a hy-
drogen atom is briefly described. The appropriate
equations may be derived from those of exchange
perturbation theory by the following substitutions:

"A-1, (B1)

Q' —G'(1)u„(2) . (B2)

It has been assumed here that the wave function
$, in Eqs. (9}, (10a), and (11) is now defined with-
out the factor of 2 which was introduced to account
for the exchange symmetry. After substituting
(B2) and postmultiplying with (u„(2) ~, the pertur-
bation equations become

(k ——', k )G' + vG' ' =0, (BS)

«x——5(&X'~(ff'-E}X'&+2@'~Vy'&)=0. (A9)

For small basis sets the variationally optimized
Q' and X' gave substantial discrepancies between
the two sides of Eq. (AS). In the singlet state, for
example, the nine-term function consisting of the
first two lines in Table II led to differences as
large as 10/o. As noted in the text, we continued
adding functions to the basis until this last figure
was reduced to less than 0.5/p in all cases. Most
of the initial deviation was due to X rather than
y1
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where h is the spherical-mell Hamiltonian,

e = k —ko = —(r+ + 1) exp(-2r) —U~, (B4)

and the wave function Go is given in Eq. (48). The
same derivation that previously led to Eqs. (30)
now yields the perturbed phase shifts

If the optimum depth and width of the spherical
well are determined by the Hulthen condition, then
g vanishes, causing the first-order wave function
to be bound. By manipulating the perturbation
equations in the same way as for bound states one
can obtain an alternate expression for the third-
order phase shift

and

(k—/2~}(G' ~~G'),

g' = -(k/2v}(G' ~~G'&,

q =-(k/2w){G ieG ) +
6 (6 ) .

(B5)

(B6}

(Bv}

qs = —(k/2m)('G' inG') (B8)

which requires only the first-order wave function.
An analytical solution for 0 has been obtained

by Knudson. 5 In the outer region (r & ro} this so-
lution is

rG'(r) = —k+(-,'k(1+ k2) ' exp(-2r}[sin(kr+ q ) +k cos(kr+t} }]
I

+[E,(2r) —cos2q~ReE&(2r+2ikr) —sin2q ImE, (2r+2ikr)] cos(kr+0 )

-[sjn2qo IteE, (2r + 2ikr) —cos2&'ImE, (2r + 2ikr)] sin(kr+ '0 )) l

in the inner region (r ~ ro) it is

rG'(r) =2Nk ~([c —~ ImE&(2r+ 2iKr) —~K(1+K )
' exp(-2r)]

xsinKr+( —,
' ln(1+K )'~2 -E&(2r)+ ReE&(2r+2iKr)

—Dr + ~K (1+K ) [1—exp(-2r)]j cosKr),

(B9)

(B10)

E,(z)= j" e'/fdf

which has the real and imaginary parts ReE&(g)
and ImE&(z}. Finally, the phase shifts reported
in Table IV were obtained by numerical integra-
tion of Eqs. (B5), (B6}, and (B8).

(B11)

where c is the constant that makes the function
continuous at r =so. The parameters X, D, &,

, and ro in the above expression are defined in Eqs.
(47)-(49a); and E&(z) is the exponential integral
function
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