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Asymptotic forms of two-electron wave functions with a monopole interaction
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The leading term in the Neumann expansion of 1/r» is I/r„where r, signifies the greater of r, and r, .
Defining the monopole Hamiltonian (also called the radial-limit Hamiltonian) as the two-electron
Hamiltonian with the replacement 1/r»~1/r„ the author presents asymptotic forms of the eigenfunction of
this operator. The bound-bound, bound-free, and free-free cases are treated. "Asymptotic" means here that
r, +m, r2~oo, but r, /r, is not restricted.

I. HVIODUCTION

In the theoretical treatment of atomic-mo-
lecular processes in which the final state consists
of an ionic core plus two free electrons, a long-
standing problem has been how to account cor-
rectly for the mutual screening effects of the two
free electrons. The effect of this screening will
be most important for low-energy reactions and
should show up vividly in differential as opposed
to total cross sections. A wave function with these
screening effects incorporated, then, would be
useful for the treatment of low-energy electron-
impact ionization of atoms and molecules' ' and
also for the calculation of double-photoionization
cross sections. ~'

In perturbation-theory (PT) or configuration-
interaction (CI) approaches to this type of prob-
lem, one chooses an orthogonal basis set of bound
and continuum orbitals, and it is not possible to
choose continuum orbitals which are computed in
correct asymptotic potentials for all states of the
system under description. For example, the
asymptotic effective charge in a Coulomb po-
tential for a free electron is one for a singly-
ionized state and something else for a doubly-
ionized state, yet one basis set must, in principle,
describe both situations. The signal that incorrect
asymptotic forms are being used in the basis is
the occurrence of singularities in certain matrix
elements due to the long range of the Coulomb
potential. ' These singularities can evidently be
integrated over in PT treatments, "but are more
difficult to deal with in a CI approach. '

This two-free-electron screening problem is
found at its simplest in tmo-electron systems,
so we will consider only these. The term in the
electron-electron interaction which gives rise to
asymptotic Coulomb fields is just the first term
in the Neumann expansion of 1/r», i.e.,

1/r„= 1/r)+ '' ',
where x& is the greater of r, and ~2. The two-
electron Hamiltonian with just this term included

will be called the monopole Hamiltonian H„, and
evidently, eigenfunctions of H„will always have
proper asymptotic forms whether describing
singly- or doubly-ionized states.

The eigenvalues of H„ for ground states have
attracted some interest in the past. The prob-
lem reduces to a two-dimensional one, and various
forms of variational wave functions have been
employed" as well as a pure numerical treat-
ment. " Calculations of phase shifts, using B„
as the Hamiltonian, have also been carried out for
electron-hydrogen elastic scattering. "

We present in this paper asymptotic solutions
to the SchrMinger equation, with H„, for all
possible two-electron states, i.e. , bound-bound,
bound-free, and free-free. "Asymptotic" means
here that r, —~, r, ~, but r, /r, can have any
value. The asymptotic region is specified more
closely below. The free-free states are of the
greatest interest and may have immediate appli-
cation by themselves, but the motivation of this
investigation is to generate ultimately two-di-
mensional basis functions which are eigenfunc-
tions of H„and use them for a CI or PT treat-
ment of continuum processes. Such basis sets
have the virtue that there are no singular matrix
elements of the interaction, not even in the ele-
ment with four continuum functions. Some pro-
gress has been made in this direction, whichwill
be reported in a later paper.

II. THEORY

The Hamiltonian, in atomic units, whoseeigen-
values and eigenvectors we are seeking is given
by

Because the interaction term I/t'& is not able to
transfer angular momentum between the two
electrons, the individual angular-momentum
quantum numbers of each electron are good quan-
tum numbers. Thus the wave function factors into
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a radial part times a product of spherical har-
monics, or a linear combination of such terms.
If both electrons have the same angular momentum,
the wave function is just a simple product and we
consider this case first. For simplicity we let
/, =l2=0. The case with the electrons carrying
different angular momenta will be dealt with
later.

With angular variables taken care of, the prob-
lem reduces to two dimensions. Introducing scaled
variables, P,. =Zx, , i =1,2, the Schrodinger equa-
tion, for an energy E, reduces to

s2 s2
, + a-+ —+ —+& IC'(pi p.}

k SP1 ~P2 Pl P2 ]
0& Pl P

2"
P2»P 1

(5)

All constants which play no significant role in
the development have been suppressed. The com-
plex-conjugate term is noted specifically in Eq.
(5) but will not be carried further as it adds
nothing essential. The factor p,' ' is present
because the p, function must be an asymptotic
solution to the Coulomb wave equation with ef-
fective charge g.

The form in Eq. (5) is a solution to Eq. (3) to
O(1/p', ), but ca,nnot be extended to the region
p, =p, because it does not obey the boundary con-
ditions (4c) or (4d}. However, a function which
obviously satisfies the boundary condition is given
by a symmetrical version of (5),

where 0=1 —1/Z, & =2E/Z', and C (p„p2) is p, p
times 4 (p„p,), the eigenfunction. For p, ~ p„
the variables p, and p, are interchanged in Eq.
(3). This equation is to be solved subject to the
boundary conditions

@(p p ) ~
p e-ug p'tcf 0 e&ku2

1

+ p g P2 pi~/k'~i%Pl

-4"(p„p,)+@'(p„p,),
(6)

s~(p„p.)+ (Pl~ P2) ~

Pl P2

must be finite everywhere,

4(p„p,), , -„0 for bound states,

8% M
= 0 (singlet states),

p, =p, P2 p =p1 2

4'(p„p,), , = 0 (triplet states) .

(4a)

(4b}

(4c)

where the upper sign is for singlets and the lower
for triplets. With 4 (p„p,) given by Eq. (6),

1 1ac (p„p,)„„+2(f —1) ———C"(p„p,)
P2 Pl

2

+o(c/p,', e/p', ). (7)

Now, except in the limit p, /p,
—=R - 1, 4'(p„p, )

vanishes exponentially compared to 4 (p» p2) and
so the second term in Eq. (6) can be neglected
compared to the first. As R-1, the leading term
in Eq. (7) becomes

The imposition of conditions (4a) and (4b) fol-
. lows from general requirements of wave mech-
anics. Condition (4c) is necessary to ensure
that the derivatives of 4(p„p,) are continuous at
p, = p, . Because the function 4 (p„p,) is sym-
metric in p, and P„ the slope normal to the pl
= p, line must vanish. The spatial part of atriplet
wave function is antisymmetric with respect to
p, and p„and condition (4d) enforces this.

But now we are able to restrict the domain of
p, and P, to p, ~ p, because we have boundary con-.
ditions along the p, = p, border. From here on,
it is understood that p, - p» and we will no longer
note it explicitly. Having the wave function in
one half-plane, it is a simple matter to represent
it in the other. For singlet functions 4'(p„p, )
=4(p„p,), while for triplets, 4(p„p,) =-4(p„p,).

We begin by looking at states in which one elec-
tron is bound and one is free. We consider scat-
tering states of the type 1s —ks, i.e., elastic
scattering only. In the region P2» p, we write
down the familiar scattering-type asymptotic
form,

lim 1 ——C '(p» p, ) =0.2(r-1)
1 P2

(6)

Thus, for any R Eq. (6) is an asymptotic form,
but only the first term need be retained, except
in the region p, = p, .

For states of the type 1s -ns, i.e., both elec-
trons bound, we make the substitution

u-f/X,

(1/~') .
For all such states, including 1s', A. &1, and so
the same analysis as just given goes through for
this case also resulting in the asymptotic form

@(p p ) ~ p g ng pal' 8-n2/x-
1

P2Moo

~ P e-P2 p)tf ~-Pl/X (10)

However, in this case, we cannot exclude further
terms of the type 2s —X's, Ss —A.'s, etc. , so that
the form in Eq. (10) does not appear to be imme-
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diately useful.
%e have yet to consider states in which both

electrons are in the continuum. It proves ad-
vantageous in this situation to start by writing
down a form in the region p, = p, . Suppose the
asymptotic energies of the two electrons are
k', /2 and k,/2, then we try the form

@(p p ) ~ pc/ki e krak~ pil'/kkeikkkk

The ansatz for Q is

Q = a, + g a'„(p,/p, )"+ g 8' (p, /p, ) .
n=l nt=1

This form is chosen because the second deri-
vatives in Eq. (14}produce terms of the forms in
Eq. (15), and thus these derivatives can be ne-
glected. Furthermore, the terms in Eq. (14),

p mOO

+ pi/ kl e iklk2 pi~/k2 eikkkl [1+Q (p /p )]

1 BQ 1 BQ

Pl &Pl P2 8P2

can also be neglected. Thus, with the following
definitions,

where Q is an as yet unspecified function of p, /
p, ." Using exponentials in Eq. (11) is the most
convenient in what follows. A more general
expression would contain, in addition, terms
containing complex conjugates of the forms given.
These other terms would be necessary to match
Eq. (11) to an inner wave function in an actual
application, but they play no role in our treatment
here so we don't introduce them. For this func-
tion to obey the slope condition Eq. (4c), we have

[(if/k, p, +ik, —i/k, p, —ik, )Q],

f, (1 =-f)/—ik„
f, = (1 -f)/i—k. ,

X, =—klP, ,

x, —= k p, ,

the Q equation becomes

~- —' (1+Q) — — =o.BQ BQ

X2 Xl ~Xl X2

8p"2 pl-p2

=0. Rewriting Q in terms of x, and x„ i.e.,

We meet this condition to O(1/p, ) by requiring
that

Since Q is a function solely of p„/p„both de-
rivatives of Q in Eq. (12) are of O(1/p, ). In the
triplet case, Eq. (13) ensures the exact satis-
faction of condition (4d).

To satisfy the differential equation, Eq. (3),
we have

(
(1- f) (1- f) 1 8'Q 8'Q t

1+Q ——,+
Pk Pi 2 BPi Bpk /

-(if/k, p, +ik, ) —(i/k, p,+ik, ) =0, (14)
BQ . . BQ

8Pl ~P2

(20}

we. note that BQ/Bx, and BQ/Bx, operating on the
first series in Eq. (20) produce terms of the form
xki/xkk" while the derivatives operating on the sec-
ond series yield terms like xkk/xki", so that in
deriving recursion relations for the coefficients,
the a„and b do not appear in the same expres-
sion. This, of course, greatly simplifies finding
the solution.

%e now show the first few recursion relations
among the a„coefficients found by equating the
total coefficient of various combinations ofpowers
of x, and x, to zero:

1/Pk Pk ~

(i5a)

(15b)

where terms of O(1/p,') have been neglected. "
We will find a solution to Eq. (14) valid in the

asymptotic region defined by writing down the
leading neglected terms. These are

Term

1/xR

x,/x',

x,'/x,'
x'/xk"

1 2

Coefficient

f,(1+a,) —a, (1+f,) =0

a,(f, +1) —a,(2+f,) =0

a, (f,+2) —a,(3+ f,) =0

a,(f,+p) —ak. ,(p+1+ f,) = 0

(21)

(p,/p, )"—,, N some integer.
Pl

(i5c)

The region is thus that for which p,-, p, -
I, ~ (p,/p, ) ~ ci, where ci is an arbitrarily large
number.

So the ratio of coefficients is

ak„/ak = (f, +p)/(f, +p + 1),
but this ratio is the same as for the hypergeo-
metric function

(22)



1384 P. L. AI, TICK 21

F(1, r, ; f, + 1;x, /x, ) . (23) Q(x,/x, ) =a, +(1+a,)[—2+F(1, t;, g, +1;x,/x, )

Similarly, the series in (x,/x, ) can be written as +F(1, -g„-g,+ l, x,/x, )].
(25)

F(1, -g, ; g, +I; x,/x, ).
Finally, adjusting the constant term,

(24)
The boundary condition, Eq. (13), is satisfied by
choosing a, so that Q(k, /k, ) =0, i.e. ,

—[2 —F(1,f; r, +1;k,/k ) -F(1, -g, ; —g, + 1;k /k, )]
[1-F(1,g, ; g, +1;k,/k, )-F(1,-g, ; —g, +1;k,/k, )] (25)

Eq. (25) is the primary result of this paper. With
it we have an analytic form for the asymptotic
wave function describing two electrons in the con-
tinuum interacting through the monopole term of
I/~„.

We next ensure that the expression for Q in Eq.
(25) is defined for all physically possible values
of the arguments, and then look at limiting forms.

There is no loss in generality in assuming

@(p„p,)„.
P2~ ™
n2/n~»j

i/kjg ~jPl ~ ~ ~2 + 2 2

)( i/%laic-'u/k2 efki&2 ~c/k2 ik2D1 (31)P2 &1

k,/k, ~ 1. (27)
%hen this form is operated on by the differential
operator in Eq. (3), we find

Re(f, +1 —g, —1)&0, (23)

Re(f, +1 —f, —1)=Be(0, —f )

= (1 —g)q/k,'& 0 . (29)

The same situation also holds for F(1, f, ; -g2-
+1;1). When ~x,/x,

~

&1, adding the imaginary
part to k, means that the hypergeometric function
is evaluated by approaching the real axis from
below.

The most interesting limiting case is when
x,/x, »1; i.e., p, /p, »1. By using an analytic
continuation formula" we can write

The hypergeometric function is defined by an-
alytic continuation for all complex values of its
argument except for a cut running along the real
axis from I to infinity. Thus there is no am-
biguity in the evaluation of the function with
argument x,/x, except when k, =k,. The function
with argument x,/x, ~ 1 must, however, be defined
as the limit in approaching the real axis from
either above or below the cut. We find that by
letting k, -k, -iq, where g is infinitesimally small,
that Q is defined everywhere without singular-
ities. For instance, let k, =k, and p, = p„ then
F(1, g» f, +1;1) is defined if

P 4'(p„p ) -O[(P /P )1/P,], (32)

which is consistent with the approximations made
in arriving at Eq. (31). If k, =k„Eq. (31) reduces
to just a, sample product,

(pp)pi / 0+ikP&pit/ke&kP2 (33)

x=-ka px/knp2~

Since the starting form, Eq. (11},was written
down simply by analogy to the earlier cases, it
may be well to give a physical interpretation to
Eq. (31}. The discussion is most easily carried
on in terms of wave packets. A reasonable phys-
ical picture for large p, and p, is that of two
packets emanating from the origin. The packet
carrying the coordinate p, is at p, -k, t for some
large t and is traveling with a velocity k,. The
other packet is at p, -k,t and has a velocity k, .
Since k, &k„p, is much greater than p„a. condi-
tion consistent with the specification of the limiting
form. Now packets formed from Eq. (31)give
just this picture. The first term produces the
desired packets while the second term suffers
destructive interference for all p, » p, .

The other limiting situation is when p, —p,.
Here, we let

}
I'(-C, +1)1'(1+g,) x ~

I'(g„- g, +1) x,

So the entire wave function is

(3o)

x, =-k,/k„
&=p2- pa~

and expand Q around x,. The result is
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4(p„p ) ~„p,' "z'~ 22e" z'22"2[1 —i(k, +k, )6 —i(1/k, + f/k, —iC)6/p, ]
p ~ jjo

2
+z-P3

for singlets and

C(p p ) ~ p' 21"~ 2 e""1+22"2[i(k2-kz)6+i(t/k2 —1/k, —iC)]6/p,

(35)

(se)

for triplets, where C is an involved constant.
We now briefly consider the alterations nec-

essary when one or both of the electrons have
angular momentum. The results are most simply
presented for functions representing s-P con-
figurations, so we will work only with these. Ex-
tension to other possible values of angular mo-
menta is straightforward.

The basic form of the wave function is"
4.(p„p ) =F(p„p )Y, (0 )+F(p„p,)Y„(O,).

(37)
When this form is used in the Schrodinger equa-
tion, one of the resulting radial equations is

2 + --2—+ + —~+~ + pg~ p2 =0 ~

~pg p2 p& p& p2

(33)

The other is found, by interchanging p, and p,. This
is to be solved subject only to the conditions of
finiteness and continuity. There is no boundary
condition along the p, =p, line in this c'ase.

For the bound-bound case, evidently an accept-
able asymptotic form for 1s-np type function is

F(p p ) ~
p e Pzpzj e P2/z-

1
P2

where e = —1 —1/A. 2 as before. But now, in con-
trast to the s-s case, this form is valid over the
entire p, —p, Plane. When pz/p2(1, the above
form is obviously correct. When pz/p2) 1, the
first term in Eq. (37) becomes exponentially small
compa, red to the second and so the second term
provides the asymptotic behavior. When p, /p,-1+, a similar result to that given in Eq. (8) is
found to apply here also, so there are no re-
maining terms of O(1/p, ) anywhere in the plane
after operation on F(p„p,) with the differential
operator.

Similar remarks and arguments apply to the
bound-free case. For the free-free situation, let

F(p p ) ~ pi/21 si21P2 pjf/22sj22Pz

P2

for pi~ p2. For p, (p2~ we try

F(p p ) p ze' 1~2pz 2e' 2 1[1+Q(pz/p2)],
(41)

f

where Q i, , =0 as before. Thus F(p„p,) is a
continuous function with continuous first deriv-
atives at p, = p, to O(1/p, )—the departure from
perfect continuity coming from derivatives of
Q. To get F(p„p,) in Eq. (41) to satisfy the dif-
ferential equation, we, are faced with exactly the
same situation as in the s-s case; i.e., Q satisfies
Eq. (14). So Q(p, /p, ) is the same function as
previously found, namely that given by Eq. (25).
Thus, the asymptotic form for the s-P case is
established.

We note that addition of angular momentum does
not change the asymptotic forms of the wave func-
tions because angular momentum provides an
effective potential that goes as 1/p' for large p.
On the other hand, the symmetry requirements of
the radial wave function change from the s-s case
due to the presence of spherical harmonics in the
complete wave function, and it is these symmetry
requirements which lead to distinct results for
the s-s vs the s-P cases.

III. CONCLUSION

Asymptotic forms of two-electron eigenfunctions
of the monopole Hamiltonian have been presented
in Eqs. (6), (10), (ll), (39), and (41). Theseforms
are also correct if a short-range core potential is
added to the Hamiltonian and so could be used for
the description of processes taking place in
heavier atoms as well as two-electron atoms.
The wave function for two free electrons is mani-
festly nonseparable due to the double requirements
of proper screening and proper symmetry. The
form of this function is not as simple as could be
hoped for; on the other hand, the properties of the
hypergeometric function have been investigated
extensively so their evaluation in particular cases
is quite feasible.

It would be interesting to see the impact of using
these proper asymptotic wave functions rather
than intuitively constructed functions in, say,
electron ionization calculations. Work is now
underway to find practical means of generating
monopole eigenfunctions over the entire x, -x,
plane to be used in such calculations.
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