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Local scaled Schrodinger relations and the virial theorem
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Local' scaled Schrodinger relationships are derived connecting the potential (assumed homogeneous of
degree q) and the kinetic-energy operator and also between the total energy and the kinetic-energy operator.
The virial relationships that follow from these local equations are derived. A reduced local energy
connection between the total energy and the kinetic-energy operator is derived in terms of "scaled one- and
two-particle density matrices. "

I. INTRODUCTION

One necessary constraint that a wave function
represent an accurate solution of the Schrodinger
equation is that the virial theorem be satisfied,
and this is achieved by making a scale transforma-
tion of the coordinates of the approximate wave
function. Various aspects of this problem and
other details on the virial theorem have been dis-
cussed at length in the literature. ' '

It is possible to derive simple local. connections
in configuration space between the kinetic-energy
operator, the potential-energy operator and the
total energy simply by making scale transforma-
tions of all coordinates in configuration space for
the exact eigenfunction and the Hamiltonian oper-
ator. The principal restriction employed is that
the potential operator be homogeneous of some
specified degree. Potentials which can be decom-
posed into a sum of terms which are homogeneous
of different degrees can also be employed, though
the resulting expressions rapidly become compli-
cated for this situation.

The local relationships between the kinetic-
energy operator, the potential operator, and the
total energy that are derived in this note have ob-
vious similarity with the virial relationships.
However, the former are best regarded simply
as scaled relations, since virial connections in-
volve some averaging procedure; in classical
mechanics a time average of the kinetic energy,
in quantum mechanics a spatial average of the
kinetic and potential operators is employed.

II. SCALED RELATIONS

The starting point for the derivation of local
scaled Schrodinger relations is the Schrodinger
equation

If(r„r„.. .r, }+(r„r„.. .r„}= Ze(t„t„.. .t, ) .

To simplify notation, (r„r„.. .r„}is denoted by

It is assumed that the Hamiltonian can be writ-
ten as

x [X,.'4'(X) r) T(r)4(X,.r)

X,%(X,.r)T(P)@(X,.r)]. (8)

Equation (8) constitutes a local scaled connection
between the potential- and kinetic-energy operator
and the wave function. The special case of Eq. (8)
of most significance in molecular quantum me-
chanics is when V(r) represents the Coulomb po-
tential, and so q= —1. For this case Eq. (8) reads

V(r) = (x,.—x,) [x',.Xp(X,.r)e(x,.r) ]-'

x [X',.4 (X,.r)T(r)4'(X,.r)
—~',.e(X,.r)T(t)e(X,.r) ) .

a(V) = T(r)+ V(r),

where T($) is the kinetic energy operator and V(7)
is the potential operator which will be taken to be
homogeneous of degree q.

If each coordinate in Eq. (1) is multiplied by the
scale factor X,, then

[T(X,.r) + V(X,.r) ]4 (Xg) = M (X,.r), (8)

and similarly for a different scale factor X&(X, & A&)

[T(~g)+ V(X,Z)]e(z, r) = Ze(z, r-) . (4)

The kinetic-energy operator satisfies

T(X,.r) = X,.'T(r) .
Substituting Eq. (5) into Eqs. (8) and (4) leads to

X,.'e(X r)T(T)e(X,r) —X,.'e(X,r)T(r)4 (X,.r)

=4(X,r)4(X,.r)[V(X&r) —V(X,.r)], (6)

and we have assumed that V(P) contains no differ-
ential operator. If the homogeneous assumption
for V(r) is employed, then

v(x,.r) = x;.V(r) .
Using Fq. (I), Eq. (6) simplifies to give

v(V) = [(x; x;.)e(x,.r)e(~, r)]-'
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Instead of eliminating the energy from Eqs. (3)
and (4), the potential operator may instead be
eliminated to determine a local relationship con-
necting E and T. From Eqs. (3) and (4) we obtain

Ze(~,.r}e(X,P)

X", ~ e(Xg)T(f)e(z,.r) —1',."+(X,.f)T(P)+(&g)
X;X~(Xdj —Xd)

(10)

which simplifies for the special case of a Coulomb
potential (q = —1) to give

X,4'(A
~ r)T(j)4 (X,r) —.X,}id(X,.r) T(P)4(A» F)

x,.x,.(x,.—1,.)
Equation (10) represents a generalization of a re-
lation given recently by Levy. '

If a third scale parameter X„(X,xX,.; X„xA,) is
introduced, both the potential operator and the
energy can be eliminated to obtain a local con-
straint involving the wave function for the three
different scales and the kinetic-energy operator;
that is,

(X;.—X;)X',.1', e(X,.r)e(~,r)T(P)e(z, r)

+ (~;—~;)~;X2,e(X,r)e(~, r)T(P)e(X,r)
+ (1.;—X;)X',XP(ZP)e(z,.r)T(I')e(X, r) =0,

which may be written in compact form as

I'„,[(X;. X;)X',.X', +(~,.r)e(X, r)T(f)e(zg) ]= 0,
(13)

where I',» denotes the sum of the terms with the
indices ijk permuted in a cyclic manner. Equa-
tion (13) represents a necessary criterion which
the exact wave function must satisfy. The case
of particular interest is that of the Coulomb po-
tential (q= —1); so that Eq. (13) becomes

S,.„[(X, X,)X,.XP(X,r)4(z,.r)T(P)e(z,r) ]= O.

(14)

Equation (11) exhibits a local dependence on the
set of all coordinates ff„P, . .P„.]. This equation
may be reduced to a relationship depending locally
on only a single-electron coordinate by integra-
tion over all coordinates but one. From Eq. (11)
we have

(x, —rr}rPrd fd(r, r„.. . r;r„}P(rrr,;.. . r, r }dr, .rd'd„:.

which can be simplified to

(1,. —Xr}rrrdP (l,.r, ; r r}= (T(r}[lrP(rr, ; Xrr'} —XP(err„' l,r'}}

(15)

(16)

where the "scaled one- and two-particle density matrices, "with scale parameters X,. and A.
~

are given,
respectively, by

p, (X,r~; X, r, ) =N J[ }Id(A.;r„.. .A;I'z)4'(XI P„WIr2, . .'. l}IP&)df2 . .df'fz, '.

p(xr„rr, ; x r„rr}=Nr}r1}JrrP}xr„.. . xr„}P( rr„rrr„rr„d. . . rr F„}dr, . .dr'.(18)

In the limit 1,.- I and A~- I, Eqs. (17}and (18}reduce to the normal definitions (for real eigenfunctions)
of the one- and two-particle density matrices, respectively. With the notational simplifications

Equation (16) may be written as

(20)

(»)
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(22)

which is the reduced local scaled relationship be-
tween the energy and kinetic-energy operator in
"density matrix" form.

III. VIRIAL CONNECTIONS

(e(x,F) I r I e(X, r-)) X', X',.(V,. —X;.)
(~(X,.r) i V I +(X,.Z)) (X', —X',.)

(24)

For the special case q= —1, Eq. (24) simplifies to

Generalized virial relationships may be derived
directly by integrating the appropriate equations
of the previous section over all configuration co-
ordinates. From Eq. (8)

(X; X;.)(e(X,.r)
~

V(r) ~e(X,.r))
= v,.'(e(~, r)

~

r ~e(~,.r)) —x-,'(e(~,.r) I r ~+(~, r)),
(23)

that is,

I

Taking X,.= 1 and the limit A,.- 1 in Eq. (28) gives

E= —(@ IT IC). (29)

A simple local connection between E and V is not
available, since 4(Xr) cannot be expressed as a
simple product of a scale factor multiplied by
4(r). The connection between the total energy and
matrix elements of V can be obtained from Eqs.
(24) and (27), and the result is

which simplifies for the special case q= —1 to
give

(31)

Setting X,.=1 and X~- 1, gives the well-known viri-
al relation

E= , (4
i
Vi4-). (32)

(25)

For the particular case 1,.=1 and X,-1, Eq. (25)
yields

(+(r) ITIC(P)) 1

(~(r) i V i~(V)) 2 ' (28)

which is the usual virial relation connecting ma-
trix elements of T and V. Note that although Eq.
(25) is defined for X,. = A,.= 1, the starting equation
(8) assumes X,. c X&.

In a similar manner, we have from Eq. (10)

(X',"-~2,.") (e(~,.r) I T Ie(X,.r))
~',~',(X; ~;)ge(X,.r) I e(x, .r-))

' (27)

(e(~,.r) I r I e(X,.r))
X,.X,(e(X,.r) I e(X,.r))

' (28)

For the special case q= —1, Eq. (27) simplifies to

In summary, local scaled Schrodinger relations
represent necessary conditions which the exact
wave function (corresponding to a particular po-
tential) must satisfy. Such relationships repre-
sent more severe restrictions of the wave func-
tion than the standard virial conditions. The usual
virial relations, which have been widely employed
in molecular quantum mechanics, test the wave
function quality in the global sense. However,
local scaled Schrodinger relations can be used to
test the quality of the wave function at any point
in configuration space. For this reason the local
scaled Schrodinger relations should be of some
significance in molecular quantum mechanics.
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