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Correlation coefficient and electron correlation
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The correlation coefficient which is used in mathematical statistics is evaluated for an exactly soluble

electron correlation problem. Our results show that a wave function with a very "negative" correlation
coefficient is not necessarily energetically (hence variationally) a good approximation to the exact wave

function. %e discuss the importance of this result vis-a-vis the notion in the literature that the correlation
coefficient provides a useful tool for analyzing approximate wave functions.

I. INTRODUCTION

The correlation coefficient for two variables
(say r~ and T.) is defined as

An important result from the theory of statistics
is that )p( ~ 1. The lower limit corresponds to
perfect negative correlation (i.e., r, = —r,), and
the result p = 0 means either r, is independent of
r, or that they are correlated in a particular way

(say, r, if',}.
Kutzelnigg, Del Be, and Berthier, ' as well as

Banyard' ~ suggested the use of the correlation
coefficient as a measure of electron correlation
in wave functions which go beyond the Hartree-
Fock level of approximation. It is, however, to
be noted that "independent" particle models (e.g. ,
Hartree-Fock theory) do not necessarily imply

p = 0; that is, the particles are not independent in
the sense employed in mathematica1. statistics.

Owing to the difficulty of evaluating the neces-
sary integrals using reasonably well-correlated
wave functions, Kutzelnigg eI, gl.. restricted their
numerical evaluations to two special cases; a ra-
dial correlation coefficient [involving ~, ' and

(r,r,) '] and an angular correlation coefficient
((r,) =(r,) =0). Among their conclusions, Kut-
zelnigg gg g/. . point out that in these simple special
cases for ground states of atoms the correlation
coefficients are very small, as if the electrons
were more or less independent.

In the following section we consider a model two
electron problem where the Hamiltonian includes
an electron interaction term. The problem is
solved exactly, and the correlation coefficient p
[Eg. (1}f is evaluated for the exact wave function.
Although p is negative it may be close to zero,
depending on the parametrization of our model
Hamiltonian. Furthermore, energetically crude

approximations to the exact wave function are
shown to give p close to -1. Thus, a wave func-
tion with a very "negative" correlation coefficient
is not necessarily energetically (hence variation-
ally) a good approximation to the exact wave func-
tion. Although the correlation coefficient provides
a measure of electron "correlation" in the proba-
bilistic sense of the term, it does not necessarily
measure electron correlation in the energetic
sense of the term. In view of this, it appears
most sensible to restrict the analysis of electron
correlation via various correlation coefficients to
very accurate wave functions.

Upon introducing the variables

5=2 '~'(r, +F,),
y/2(~ ~

)

(8)

(4}

the exact solution to the Schrodinger equation is
obtained; for the ground state

@"'=0(&)4 (r )I tx (1}P(2}—P(1)a (2)]/2"'

y(g) = (k&~2v)&~4exp( ikj~&ft2)

P(r ) = (k' '/w)' 'exp(- —'k' 'r'),

(6)

(6)

(7)

where

k„-=(k —2a) .
The exact ground-state energy is given by

Z~ l = —'(k '+k'„')

(8)

Evaluation of the correlation coefficient p is fa-
cilitated by the formula (see Fellere)

var(r,*ar4) =2(1+p[r, r,]), (10}

II. THEORY

Davidson' reported an exactly soluble problem of
two interacting electrons trapped in an external
harmonic oscillator potential. The Hamiltonian
for the problem is
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where

r,*-=(r 3 (-r3& }/[var(r 3)]"'.
(As the variance is never negative, it is clear

from (10) that (p( does not exceed unity. } Now,

var(r ~*+r f) = 2(B3) /(r,3),
var(r,*—r,*}= 2(3"') /(r,3), (13)

(a') = 3(2k")-',

( 2) 3(2kl/2) —1

(14)

(15)

The Appendix shows the derivation of Eqs. (12) and
(13) in some detail.

Substitution of Eqs. (12)-(15) into (10) gives the
correlation coefficient for the exact solution to the
Schrodinger equation

pi'& [r„FJ = (k' '-k' ')/(k.' '+ k'") . (16)

Note that if k„=k (i.e., a = 0) the value of pf' is
zero. This corresponds, of course, to two inde-
pendent electrons. If k„0 (i.e. , 2o. k) we find
that p~ -1. This corresponds to two perfectly
negatively correlated electrons, a physically in-
teresting result as in this case the two electrons
repel each other to the extent that the external
harmonic oscillator potential cannot bind both
electrons.

Consider an approximate wave function

g = q(5) P (F),
where g is given by Eq. (6},

y S(r ) —(pl/3/~) 3/4 eXp( 4 pl/3 2)

and P is a variational parameter.
If the parameter a in $C is small, the exact cor-

relation coefficient p~ ~ is a small negative num-
ber. Furthermore, with an appropriate choice of
P the approximate wave function 4' gives a corre-
lation coefficient p which is slightly more positive
than -1. With this choice of P, $ is energetically
(hence variationally) a poor approximation to 4'"'
(E-3/2k'/' versus E @'=3k'/3) despite the nearly

perfect, negative correlation coefficient.
This model problem clearly illustrates an im-

portant consideration, namely, that the correla-
tion coefficient does not measure electron correla-
tion in the energetic sense of the term. Although
it is necessary to exercise caution in generalizing
conclusions from a model problem such as the one
treated herein, it is suggested that the (probabil-
istic) measure of electron correlation provided by
the correlation coefficient is useful in the analysis
of approximate wave functions only when the exact
(or very accurate) wave function is already avail-
able.
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APPENDIX

Again, using Eq (A1), w. e obtain

var(r, )=(r, r, ) -(r, ) ~ (r, ) . (A4)

The second term vanishes by symmetry. Upon
combining Eqs. (A3) and (A4), one obtains Eq. (12)
of the text. The derivation of Eq. (13) is a trivial
analog of the derivation of Eq. (12).

As requested by a referee, details of the deriva-
tion of Eqs. (12) and (13) are presented in this Ap-
pendix.

The variance associated with a vector quantity p
may be defined as follows (see Feller' )

var(%)=(x 1)-(1)~ (x) . (Al)

Because [g( is symmetric in coordinates r~ and r„
var(r, }=var(r3). Thus, from Eqs. (3) and (11),

r,*+rf=2' '(5-(5) )/[var(r, )]' '. (A2)

Note that (5) vanishes by symmetry. Thus, from
Eq. (A1),

var(i',*+re) = 2(5 5) /[var(r, )] '/'. (A3)
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