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Bound states of four identical bosons in two dimensions
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Within the framework of integral equations, the bound-state energies of tetramers in two spatial
dimensions are determined for simple potential models. The equations are solved by using unitary pole
expansions for the subamplitudes. Evidence is given for the coincidence of the thresholds of the binding of
the n-particle system with n = 2, 3, and 4, For the class of potentials studied, it is found that the ratio
between the tetramer and trimer binding energies is, to a good approximation, given by 2.9. Using this
result, an estimate is given for the 'He tetramer binding energy.

I. INTRODUCTION

In recent years the possibility of the existence
of small molecular clusters of helium atoms in
three spatial dimensions has been studied ex-
perimentally" and theoretically. ' ' In particular,
there are theoretical investigations indicating
that some trimer bound states exhibit the remark-
able property that their spatial extent ean be
very large as compared to the range of the inter-
atomic potential. ' In view of the experimental
possibility of detecting bound states in monolayers
of quantum gases, it is interesting to study theo-
retically the bound-state problem of multiparticle
systems in two dimensions. In a previous paper'
it was shown that two peculiar phenomena present
in three spatial dimensions, the so-called Thomas
and Efimov effects, do not occur in two dimen-
sions. Furthermore, for reasonable interaction
parameters of the interatomic potential a trimer
bound state of 4He atoms is found which has a
binding energy of the order of 0.1 K,' this being
significantly larger than obtained for the same
potential in three spatial dimensions.

The bound-state problem of four identical bo-
sons in two dimensions is considered in this pa-
per for simple interatomic potential models.
Since virtual. ly nothing is known in this case about
the bound-state properties of the ground state of
tetramers, my results may serve as a guideline
for what to expect, . Similarly, as in the four-
nucleon problem, ' it is also found in this case
that a common linear relationship exists between
the binding energies of the trimer and tetramer
bound states for a certain class of two-particle
interactions. ' From this the binding energy of the
tetramer of ~He atoms in two dimensions is
estimated to be in excess of 0.3 K. The basic
question about the relative positions of the thresh-
olds of the multiparticle ground states can be
studied. From this work, we find evidence that
the threshoids of the n-particle states (n =2, 3, 4)

coincide in two spatial. dimensions.
Instead of solving the Schrodinger equation di-

rectly for the four-particle bound state, the so-
lution is obtained in this paper within the frame-
work of linear integral equations for the scatter-
ing amplitude. This approach has the advantage
that the boundary conditions are automatically
satisfied. Although there exists by now many
ways of expressing integral equations, ' the most
commonly used in actual calculations are of the
Faddeev- Yakubovsky type"'" and the quasi-
particle equations of Alt, Grassberger, and
Sandhas. " These have the nice property that
they are free from nonphysical spurious solutions
in the scattering region. The integral equations
of the Faddeev-Yakubovsky type for four particles
in two dimensions are briefly described in See.
II. It is assumed that the two-particle scattering
amplitude admits a separable expansion and only
the zero angular momentum parts of the ampli-
tudes are kept. Section III deals with the sepa-
rable unitary-pole expansions (UPE) of the vari-
ous subamplitudes occurring in the four-particle
equations. The resulting one-dimensional integral
equations for the four-particle system are written
down explicitly. Using these equations, I study
the bound-state properties of tetramers numer-
ically for various simple potential models. For
the interatomic potential I have taken pure 8-wave
separable interactions. On the other hand, the
realistic interatomic potentials constructed up
to date are in general taken to be loca1. and to
have a repulsion at short distances. As a first
step for more realistic calculations, I also con-
sider in this paper simple local-potential models
of a Gaussian form with the possibility of a re-
pulsive core. The results are presented in Sec. IV,
and some concluding remarks are made in Sec. V.

II. FOUR-PARTICLE SYSTEM

In this section I summarize the integral equa-
tions for the bound states of four identical bo-
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BOUND STATES OF FOUR IDENTICAL BOSONS IN TWO. . .

sons. Let us consider four spinless bosons with
mass m which are moving nonrelativistically
in two spatial dimensions. Their mutual inter-
action is described by 8-wave pair forces, so
that the total Hamiltonian is given by

H=Q ' ++V~,

p~ being the momentum operator of the ith par-
ticle and V the potential between a particle pair
n =i,j. The starting point in the integral equa-
tion approach is the off-shell four-particle scat-
tering amplitude T, for which we can write an
equation of the Faddeev form

+11 12

0 Eggy

A.
'

G.(z)
B

(8)

with z being minus the tetramer binding energy
E4& 0 and where Ej j and Ej2 are related to the off-
shell three-particle T matrix and E» to the am-
plitude describing the scattering of two noninter-
acting pairs of particles. It is convenient to define
two sets 'of relative momenta

k=(1/2 '}(p,—p,),
p = (1/2 v'3m )(p, + p, —2p, },
q =(1/2v'6m)(p, +p, +p, —8p4)

T =t+ tC, zT',

with

(2)
to be used in case of the amplitude A. and

k = (1/2 vm )(p, —p, ),
p =(1/2')(p, —p,),
a =(1/2&2m)(p, +p. -p. -p, )

(10)

In Eg. (2) Go is the free Green's function

G,(z) =(z-Ho) ',
with Ho the kinetic-energy operator and z the
energy variable. Furthermore, t is the two-
particle T matrix, satisfying the Lippmann-
Schwinger equation

f.=V. +V.G,(z)f. .
In order to get mathematically meaningful integral
equations an additional step is needed. %'ith

we decompose M into

for the amplitude B. The kinetic energy of four
particles has in the overall center-of-momentum
system for both sets of momenta the form

H, =P'+q'+)t'.

In the following we suppose that the two-particle
T matrix can be written in the two-particle
Hilbert space as

(k~t(E)~ k') = Q g((k)d() (&)g, (&'), (12)
g, t'

with E the two-particl. e energy variable. Further-
more, in the analysis of Eq. (8}we confine our-
selves to the zero angular momentum states and

M = +4~+8, (I)
A4 Oi

where the amplitudes A~ and B are characterized
by means of the initial collision sequences which
take place between the particles. From Eq. (2) it
follows that, in all the. terms of the Neumann-
series solution for M, the first collision is
abvays between the particle pair a. The amplitude
A~ contains all. those scattering contributions in

which the second collision is between a third
particle k not belonging to the pair e with one of
the particles from the pair, while B contains the
terms in which the second collision is between
the other pair P en In the ca.se of identical-
bosons, the various amplitudes A~ can simply
be related to each other by permutations of the
particles, leading to a single function A. As is
known, "the amplitudes A and B satisfy for the
four-particle bound state a coupled set of ho-
mogeneous equations. This can be written
formally as
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TABLE I. Dependence of trimer and tetramer bindiag
energies 83 and 84 on the number of separable terms in
the UPE expansion of.the two-particle T matrix of the
local potential, Eq. (22), for various strengths of the
coupling constants X&. Nz and N~ denote the number of
terms with positive and negative eigenvalues X.

Nf E2 (10+) Eg (10 ) E4 (10 ~)
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assume in addition that all nonzero angular mo-
mentum contributions of the subsystems may be
neglected. Then the amplitudes can be written
in the plane-wave representation as

(~ p q) = P gr(k)d» (-E,-p'-q')a (p, q), (»)

fl(&, v, q) = Q gr(k)d» (-&,-p'-q')kr(p, q) (14)

The standard procedure of a partial-wave reduc-
tion of Eq. (8) leads with Eqs. (13) and (14) to a
coupled set of two-dimensional integral equations
for a, and b, . They are of the form

OO 2r

ar(p, q) = g q'dq' d4&r r'(p, qlQr, q')dr ~ r-( &~--Qa -q")ar-(Q2& q'}
ll lit 0 0

OO 21r

+ p q'dq' d4«r (p, qlS, &q')dr r-(-&, -Ss-q")err-(S»q')
&

le lw 0 0
(15)

r" . 2r
frr(p, q) = p Jl q'dq' d(p M„.(pqi S„q&)dr.r-(-E~-S22- q&2)ar-(S» q&),

li, l" 0
(16)

with

(17)

V(k, k') = -(A.,/4rr) exp[- —,'(k'+ k")]I,(-,'kk')

+ (A.,/16rr) exp[- -„(k'+k")]I,(8kk'),

(23)

Sr = 2q + pq +&r3qq cosf
&

S,'= yg'+ —,'q" +v3qq'cosQ.

The explicit expressions of the kernels in Eqs.
(15) and (16) are given in Appendix A.

III. UPE EXPANSION OF SUBAMPLITUDES

In our study of the binding of trimers in two
dimensions, we made use of the simple separable
potentials

, Vk, k'
&rgr(k) =2rr

~
k'dk' ' „g,(k').

0
— 2- (24)

The eigenfunctions form an orthogonal set. Let
gl further be real and normalized as

where Jtp is the modified Bessel function of zeroth
order. To get the separable representation, Eq.
(12), for the potentials, Eq. (23), I have used the
UPE expansion. " Let g, be the eigenfunction of
the homogeneous Lippmann-Schwinger equation
at the two-particle bound-state energy z = -E2
with eigenvalue ~,:

V(k, k') = -(A./2rr)g(k)g(k'),

with
k dk gr(k)gr (k)

(25)

g(k) =(k'+g) ", (20)

"g(k)'
d(e) = —I+A. —,kdk

27 (21)

where rn =1,2. In the following the unit of the
energy is chosen to be such that P=1. The solu-
tion of Eq. (5) for the two-particle T matrix has
the form of Eq. (12) with

We then approximate
Ng

V(k, k') =-
2 Q ~r gr(k) gr(k'),

l"-y
(26)

with ~, being the N& eigenvalues which are the
largest in magnitude. For this rank-N), potentia, l
the two-particle T matrix can readily be obtained
from Eq. (5). It has the form of Eq. (12) with
d». a matrix of rank N& satisfying

In addition to these interactions, we also consider
in this paper potentials of a local type. They are
acting only in the S-wave state and also contain
a repulsive part. In the coordinate representation
they are of the Gaussian form

g (&,,~ I &y&& ( )&. -( ))d ( }
0

=- —~l~ll2' ' (27)

V(r) =-A.re " +A,,e ~", (22)

with ~; ~ 0. These potentials can easily be trans-
formed to the momentum space, leading to dr r ~ ( &.) = 5» -(~r/2rr-)1/(I —~r) . (28)

For the special case that z =-E, we have, in view
of Eq. (25),
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We now turn to the four-particle equations
(15) and (16). Although the solution of this type
of equations can in principle be constructed di-
rectly with the use of Pads approximants, "'"for
simple central potentials it is numerically less
time consuming to find the solution by applying
separable expansion techniques to the subampli-
tudes in the kernel of the four-particle equations.
In this work we have used the UPE method. En-
couraging results have been obtained recently
in the study of the four-nucleon system with these
techniques is.ig Proceeding in the same way as
in the two-particle case, we define

goo

&.~.i(p) =2v Q ~
P'dp')V&r (P,P'lz, )

gg ~ll 0

x d, , (z, -p' }tv„,„(p')

(29)

For the value of z, we have chosen the trimer.
bound-state energy z, =-E, and for z2 twice the
dimer bound-state energy z2 = -28,. Expanding
the subamplitudes sv». and v». in terms of the
eigenfunctions, given by Eqs. (29) and (30), we
obtain the separable representations

and

i& ~(P O'Iz) = g ts.i(p)e.. (z)@.~ i ~(P') (31)
n, n'

v, ).(p, p'Iz} = Q v„,(p)b„„.(z)v„., (p') .
n, n'

(32}

The expressions of the propagators 8„„.and &„„.
are given in Appendix B. Using Eqs. (31), (32),
(A5), (A6), and (AB), we see that the solution of
Eqs. (15) and (16) has the form

q„f)„,(p) =2m Q p'dp' Vg j ~(p, p lz, )
s' r"

d l '1 " (z2 P"} .&
-- (P ')

(30)

with W». and V» given by Eqs. (A2) and (A9).

a, (p, q) = g e„,(p}e„„,(z-q')n„. (q),
n, n'

bi(p, q) = g f).i(p)&.. (z —q')&. (q),
n, n'

where a„and b„satisfy a coupled set of one-
dimensional integral equations

(33)

(34)

P aO
P 00

a„(q)= g q'dq'X„„(q, q')e„.„-(z-q')a„-(q')+ g q'dq'F„„.(q, q')&„„-( -zq")b„(q'},
n', n"

(35)

b„(q) =2 g Jt q'dq'Z„„. (q, q')
n' n"

x e„.„(z—q")a„-(q'),

with
2 I'2&

x„„,(q, q') = + I g J dgfv„, (Q, )
0

(36)

in one continuous variable can be obtained. Ob-
viously the separable expansions of the subampli-
tudes are only useful if they converge rapidly
enough. In practice reliable answers can be ob-
tained for central potentials by keeping a limited

xdg, .(2,)tv„., (Q,),

2&

Y'„„.(q, q') = —'g J dgt6„, (S,)

x d„(z,)8„., ~ (S,), (38)

TABLE H. Dependence of tetramer binding energy E4
on the number of separable terms used in the UPE ex-
pansion of the subamplitudes w» and v» for the two-
particle potential, Eq. (22), with /=5, +=20.

Z4 (10 ~)

&..~ (q, q') = ~. .(q', q).
Here we have defined the shifted energies

z, =-E~--,' (q'+q" +-',qq'cosP),

E, —,'(q'+q" +--', N—qq'cosP).

(39)

(40)

(41)

IV. NUMERICAL RESULTS

In Sec. III we have shown that with the UPE
method coupled four-particle integral equations

1
2
3
4
1
1
1
2
3
4
5

2.57
2.56
2.54
2.54
2.65
2.70
2.70
2.65
2.73
2.75
2.75



A. »o"1&$8

E3 (10 ')E, (jo )

d tetramer bindi gtrimerThe dimer
values of the c

TABLE ~
d E for various va

. (19
ener 'gies E2, E3

ble potential ~of the s eParaconstant
with m=1

E4 (10')
10

m="
(e m=2

2

0.06
0.08
p.10
p.08
p.10
0,12
p ]4

1
1
2
2

. 2
2

p.19
p .73
1.73
p.32
p 74
1.35
2.11

1.72
5.30

1P.6
2.32
4.63
7.51

1p.8

p 48

2 94
0.67
1.28
2.00
2.79

J (12,6)

CU

UJ

Lij

p.01
I

0.02 p.03
E2

dimer binding e
E for the

FlG. 2. The ra o o
of the dimer energy 2E a,s a function o

tentia]
gies &s/~2

d Oaussian povar ou epa, rable»

three, in the ex-number of te ~

nd II are shown
rms say "

some reIn Tables I a
inding ener-

pansion. In
d tetramer ynsu s, the loca po

lt for the t ™
1 tentials of theE and E4 for

'
ns are done bye. The calculations

in matrix equations. ' d-
used with

as checket ons. T
e number an ib varying the n

estimated to be
he depen-

integration porn . es
op

energies on ece of the binding e

is kept in the sub-
p v ~ and zo». . r

and E4 isg

pe ercent, we
mos t two eigenfunctions e

0.3

As to the qual-d negative eig enva, lue.
tion to thee arable approxxmat'f a one-term separa

Table II that it iswe see from abamplitude se». , w

re needed for v».hile three terms arexcellent, whi e
t reach convergenceto re

For the separa po
has been calculattt 'g

pou ling consnc '

a ' ation used here on y
Some results

a roxima '

nd ~tr' ~

9 we haveF llo ' Rfn in Table III. o
E -E4 values.p

' ' . 1 the calculated E3 4
=I. 2 th ltpo

lot, the deviation r r re
being larger a a

il. i iishing sma r'
'me.ecom 'd at the same tarn .

of E,.
omes unbount e m

ld b'h"ior 'f
groun-d-state energy of t e i

0.2

X =10
2 K =20

2

0.03-

0.02-

0
E3

0.05 0.10 0.15

0.01-

e arable poten-attractive sepa
tot corresponds

3 4

e potent Tg o-p
d-J nes (6, 12) po

1.s ' ' ted together wiis also indica
= 2.9.

1 2

function of then energy E2 as a n3. Dimer binding enerFIG.

h. .—,- ~
pling constan

pulsive part in



21 BOUND STATES OF FOUR IDENTICAL BOSONS IN TWO. . .

TABLE IV. The dimer, trimer, and tetramer binding
energies &2, &3, and 84 for various values of the cou-
pling constants ~ of the local potential, Eq. (22).

and E, has also recently been verified in three
spatial dimensions for a class of realistic inter-
atomic potentials. '0
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E,/E, is plotted in Fig. 2 as a function of E,.
[ln Fig. 2 from Ref. 6, the coupling constant I'
for the separable potential with m =2 is in con-
trast with what is stated defined there in terms
of s, through Eq. (19) with I =xg'/P'. ] For
E,—0 the ratio tends to a finite value. Hence
within the numerical accuracy the binding ener-
gies of the n-particle system with n =2, 3, 4 all
vanish simultaneous ly.

To study the effect of locality and repulsion in
the two-particle interaction, the potentials of
Eg. (22) are considered. In the calculations we
take for the strengths of the repulsion in the po-
tential. ~, =0, 10, and 20. The dependence of
the dimer energy on the coupling constant ~, is
shown in Fig. 3. Some results for the binding
energies E„E„and E, are given in Table IV.
Also in this case, as is seen from Fig. 2, the
ratio E,/E, reaches for E,- 0 the value of 16.1—

- the zero-range result of the separable potential. '
In Fig. 4 are plotted all the results of E, and E~
obtained for these Gaussian potentials. They again
form independent of the repulsion parameter A

a narrow band around the linear function R =2.9.
The remarkable linear relationship between E,

In summary, I have presented results for
the bound-state energies of tetramers in two
dimensions within the framework of integral. ;:.

equations. In particular, we have demonstrated
the practical applicability of the VPE expansion
in this case. Similarly, as in the four-nucleon
system, a linear relationship is found between
the trimer and tetramer binding energies in a
certain region of E„arelationship which is
independent of the two-particle interaction used.
If we conjecture that this result also holds for a
more general class of interactions, an estimate
may be obtained for the tetramer binding energies
for more realistic interactions. Taking the value
of the trimer binding energy E, =0.11 K obtained
from the variational calculations' for the Lennard-
Zones (6, 12) potential with the Boer-Michels 4He

parameters, I estimate the tetramer binding en-
ergy from R =2.9 to be E4=0.32 K. The val.ue of
R is expected to increase if we take more terms
into account in the separable expansion of v».
and m». . Furthermore, since studies of other
realistic potential models indicate more trimer
binding, the tetramer binding energy may be con-
siderably larger than the value estimated abbve.

Although simple potential models have been
used, the calculations described in this paper can
in principle be extended to the more realistic
interactions. Because of the singular nature of
some of the interatomic potentials currently in

use, the two-body eigenfunctions needed for the
VPE cannot. be constructed directly from the
Lippmann-Schwinger equation. A possible answer
in that case would be through the explicit solution
of the two-particle Schrodinger equation along
the same lines as discussed by Huber and Lim."
It should be interesting to carry out such a calcu-
lation to see at least whether my conjecture about
the linear relationship is valid.

APPENDIX A

The kernels of Eg. (15) are expressed in terms
of the three-particle off-shell amplitude ~».
which satisfies the Faddeev equation

I'&r ~ (P~P Is)

FIG. 4. The same as Fig. 1, but for the Gaussian
potentials. &«i-i-(s -p")~i-s ~ (0 "~P'I&)

~ (A1)
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with an effective potential

%( (P~p'I&)

g((P, )Z) (P,)
w v3 ) ~, z --,' (p'+p" +pp'cos(p)

They are given by

(A3)

(A4)

t' 3
&zs ~ (PVIP 0 )=

I 2~2]l was ~(P P I
-& -0 )

I, »&
(A5)

the eigenfunctions ze„,:

W„.(P,P'l~) = Q w„,(P)8„'„.(s) w„, (P') . (B2)
n, n'

Using (Bl), we obtain

8„'„.(s)

x K,r, (p, p'I~}d(, i,(~, -P"}w.),(P').
Inserting (B2) into (Al) yields the separable
representation (31}with 8„„.satisfying a set of
linear equations

(B3)

8„„,(~) =8„'„.(~)

=p f pdp f p'dp'w, (p)d (z, p)-
{~;) 0

and

4i (palp'q') = 2wll ~(P,P'I -&,-c') ~ (A6)
+ Q 80„-(s)S„-„"(s)8„.„.(s),

n" n'"
'I

(B4)

W, (pal p'q') =3v (P,P'I-&. -~'},
where v». is the off-shell scattering amplitude
of two noninteracting pairs, given by

v(i ~(P O'I&)

=)'»(),)'I*)+2~ Z f ("du" & ((,u'I~)
get inn 0

xd, „,„,(&-p" )v, „,g, (p ', p'l~), (AB)

with

~ii (P,P'I s) = gi(p')zi (P)/(~-P'-P").
(A9)

purthermore, for the kernel M„. in Eq. (16}we
have

with

s„„,(~)

=»Q Jt pdPw. i(P}di( ~ (~ P')w-. i (P)

(B5)

As in the two-particle case, we have for z =z,

8.. (~,) =-5..((./»)I/(I- (.). (B6)

The representation (32) for the scattering ampli-
tudes of two noninteracting pairs can be obtained
in the same way by using the eigenfunctions

As a result we have

&.. (~)

=~„0„.(~)+ g ~'„„.,(~)ft„-„-,(~)~„„,„,(~), (av)

APPENDIX B

In this appendix I give the explicit equations for
the propagators 8„„.and &„„.in Eqs. (31}and (32}.
Consider the three-particle subampl. itude u».
satisfying the Faddeev equation (A1}. Suppose
that the eigenfunctions w„, from Eq. (29) are real
and normalized as

Pdpw. r(p}d» ( sp')
~w(P) =-~.." (B1)

s, r'

Then we expand the effective interaction W». in

with

+' ~ (~)

= Q f P 4' f 9'dD'&. ,(D)d, ,(~. -P')
(r;) 0

«&...(p, p'I~}d(, i, (~, -P")6. i,(p')

and

&..~ (&) =» g J" Pdp9. )(p)di( (~ P')v. i -(P)
&, t'

(B6)

(B9)
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