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Within the framework of integral equations, the bound-state energies of tetramers in two spatial
dimensions are determined for simple potential models. The equations are solved by using unitary pole
expansions for the subamplitudes. Evidence is given for the coincidence of the thresholds of the binding of
the n-particle system with n =2, 3, and 4. For the class of potentials studied, it is found that the ratio
between the tetramer and trimer binding energies is, to a good approximation, given by 2.9. Using this
result, an estimate is given for the “He tetramer binding energy.

1. INTRODUCTION

In recent years the possibility of the existence
of small molecular clusters of helium atoms in
three spatial dimensions has been studied ex-
perimentally'? and theoretically.®”® In particular,
there are theoretical investigations indicating
that some trimer bound states exhibit the remark-
able property that their spatial extent can be
very large as compared to the range of the inter-
atomic potential.*® In view of the experimental
possibility of detecting bound states in monolayers
of quantum gases, it is interesting to study theo-
retically the bound-state problem of multiparticle
systems in two dimensions. In a previous paper®
it was shown that two peculiar phenomena present
in three spatial dimensions, the so-called Thomas
and Efimov effects, do not occur in two dimen-
sions. Furthermore, for reasonable interaction
parameters of the interatomic potential a trimer
bound state of *He atoms is found which has a
binding energy of the order of 0.1 K,” this being
significantly larger than obtained for the same
potential in three spatial dimensions.

The bound-state problem of four identical bo-
sons in two dimensions is considered in this pa-
per for simple interatomic potential models.
Since virtually nothing is known in this case about
the bound-state properties of the ground state of
tetramers, my results may serve as a guideline
for what to expect. Similarly, as in the four-
nucleon problem,® it is also found in this case
that a common linear relationship exists between
the binding energies of the trimer and tetramer
bound states for a certain class of two-particle
interactions.® From this the binding energy of the
tetramer of *He atoms in two dimensions is
estimated to be in excess of 0.3 K. The basic
question about the relative positions of the thresh-
olds of the multiparticle ground states can be
studied. From this work we find evidence that
the thresholds of the n-particle states (z=2,3, 4)
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coincide in two spatial dimensions.

Instead of solving the Schrddinger equation di-
rectly for the four-particle bound state, the so-
lution is obtained in this paper within the frame-
work of linear integral equations for the scatter-
ing amplitude. This approach has the advantage
that the boundary conditions are automatically
satisfied. Although there exists by now many
ways of expressing integral equations,'® the most
commonly used in actual calculations are of the
Faddeev-Yakubovsky type''''? and the quasi-
particle equations of Alt, Grassberger, and
Sandhas.!® These have the nice property that
they are free from nonphysical spurious solutions
in the scattering region. The integral equations
of the Faddeev-Yakubovsky type for four particles
in two dimensions are briefly described in Sec.

II. It is assumed that the two-particle scattering
amplitude admits a separable expansion and only
the zero angular momentum parts of the ampli-
tudes are kept. Section III deals with the sepa=-
rable unitary-pole expansions (UPE) of the vari-
ous subamplitudes occurring in the four-particle
equations. The resulting one-dimensional integral
equations for the four-particle system are written
down explicitly. Using these equations, I study
the bound-state properties of tetramers numer-
ically for various simple potential models. For
the interatomic potential I have taken pure S-wave
separable interactions. On the other hand, the
realistic interatomic potentials constructed up

to date are in general taken to be local and to
have a repulsion at short distances. As a first
step for more realistic calculations, I also con-
sider in this paper simple local-potential models
of a Gaussian form with the possibility of a re-
pulsive core. The results are presented in Sec. IV,
and some concluding remarks are made in Sec. V.

II. FOUR-PARTICLE SYSTEM

In this section I summarize the integral equa-
tions for the bound states of four identical bo-
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sons. Let us consider four spinless bosons with
mass m which are moving nonrelativistically
in two spatial dimensions. Their mutual inter-
action is described by S-wave pair forces, so
that the total Hamiltonian is given by
4 2
H= Z -2&7;[ + Z Ve, (1)
i=1 o
P; being the momentum operator of the ith par-
ticle and V, the potential between a particle pair
a=%,j. The starting point in the integral equa-
tion approach is the off-shell four-particle scat-
tering amplitude T, for which we can write an
equation of the Faddeev form

T =te+ Y, taGo(2)T*, )
B#a
with
T= E T, 3)
[+
In Eq. (2) G, is the free Green’s function
Go(z) = (z "Iio)“1 ) (4)

with H the kinetic-energy operator and z the
energy variable, Furthermore, {, is the two-
particle T matrix, satisfying the Lippmann-
Schwinger equation

ta=Va+VaGo2 )y . (5)

In order to get mathematically meaningful integral
equations an additional step is needed. With

M®=T%~t,, (8)

we decompose M into

M*=3 A+B, (7
X3

where the amplitudes A, and B are characterized
by means of the initial collision sequences which
take place between the particles. From Eq. (2) it
follows that, in all the terms of the Neumann-
series solution for M %, the first collision is
always between the particle pair a. The amplitude
A, contains all those scattering contributions in
which the second collision is between a third
particle % not belonging to the pair a with one of
the particles from the pair, while B contains the
terms in which the second collision is between
the other pair B#a. In the case of identical -
bosons, the various amplitudes A, can simply
be related to each other by permutations of the
particles, leading to a single function A. As is
known,'* the amplitudes A and B satisfy for the
four-particle bound state a coupled set of ho-
mogeneous equations. This can be written
formally as

G) (5o ) o
B 0 K, B

with z being minus the tetramer binding energy
E,>0 and where K,, and K,, are related to the off-
shell three-particle T' matrix and K,, to the am-
plitude describing the scattering of two noninter-
acting pairs of particles. It is convenient to define
two sets of relative momenta

k=(1/2Vm)(B,-5,),
P =(1/2V3m )(P, +D, - 2b,), (9)
G = (1/2V6m )(B, +D, +P, - 3,)
to be used in case of the amplitude A and
k=(1/2vm)(B, -5y,
P=(1/2Vm (D =Ds), (10)
§=(1/2V2Zm )(, + D, ~ Py = D)
for the amplitude B. The kinetic energy of four
particles has in the overall center-of-momentum
system for both sets of momenta the form
Hy=p*+q® + k2. (11)

In the following we suppose that the two-particle
T matrix can be written in the two-particle
Hilbert space as

(kB &y = 3 £i(R)yi (B gk, (12)
1,1
with E the two-particle energy variable. Further-
more, in the analysis of Eq. (8) we confine our-
selves to the zero angular momentum states and

TABLE I. Dependence of trimer and tetramer binding
energies E; and E, on the number of separable terms in
the UPE expansion of the two-particle T matrix of the
local potential, Eq. (22), for various strengths of the
coupling constants A;. Ny and Nj denote the number of
terms with positive and negative eigenvalues A.

N A N N;  E,(10%) By (10%)  E, 10Y)
08 0 1 0 0.82 7.42 2.32
2 0 7.44 2.33
3 0 7.44 2.33
33 10 1 0 1.24 8.26 2.31
2 0 8.28 2.32
1 1 8.12 2.25
T2 1 8.14 2.26
50 20 1 0 1.62 9.53 2.57
2 0 9.57 2.59
3 0 9.58 2.59
101 8.97 2.34
1 2 8.96 2.34
2 1 9.03 2.35
2 2 9.02 2.35
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assume in addition that all nonzero angular mo-
mentum contributions of the subsystems may be
neglected. Then the amplitudes can be written
in the plane-wave representation as

Ak, B,0)= Y g1kMy (=B, =p® = g)a,.(p,q), (13)

N
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Bk, 9,8)= ) & (k)du'( E,-p*=q*)b,(p,q). (14)

1,1’

The standard procedure of a partial-wave reduc-
tion of Eq. (8) leads with Eqgs. (13) and (14) to a
coupled set of two-dimensional integral equations
for a; and b;. They are of the form

a(p,a)= ) f q'dq’ d¢Kw(1>,qu1, Nyyn(=Ey = Q5 —q"*)a;«(Qs,q")

1, 1] :

- 2t
+ Zf q,dq' d(pLll'(paqlS].’q')dl'Z"(_E4_S§—qlz)bl”(sz’q’)’ (15)
1,1 %o
o 2r

bip, )= X [ arda [ do MypalS,, aMinsn(=E, 53— q")asu(S50"), (16)

10,14 ) 0

-

with
Q?=2¢q'%+3q> +39q’ coso, @
Q2 %.qz.‘.% +qu'COS¢,
S2=3¢2 + 12 + V3 qq’ coso, (18)

S2=%92+39'2+V3qq’ cos¢ .

The explicit expressions of the kernels in Egs.
(15) and (16) are given in Appendix A.

III. UPE EXPANSION OF SUBAMPLITUDES

In our study of the binding of trimers in two
dimensions, we made use of the simple separable
potentials

Ve, k") ==(1/2m)g(k)g(k"), (19)
with
gR)=(F+£)"", (20)

where m =1, 2. In the following the unit of the
energy is chosen to be such that 3=1. The solu-
tion of Eq. (5) for the two-particle 7 matrix has
the form of Eq. (12) with

d(z) = (1 xf gikdk) " 21)

In addition to these interactions, we also consider
in this paper potentials of a local type. They are
acting only in the S-wave state and also contain

a repulsive part. In the coordinate representation
they are of the Gaussian form

Vr)==re P +h,e"v7, (22)

with A; =0. These potentials can easily be trans-
formed to the momentum space, leading to

V(ky k') ==, /4m) exp[—3(R? + k' %) ]I ,(3kE")
+(1,/167) exp[ 15 (B + B'2) ]I (5kE"),
(23)

where I is the modified Bessel function of zeroth
order. To get the separable representation, Eq.
(12), for the potentials, Eq. (23), I have used the
UPE expansion.'® Let g; be the eigenfunction of
the homogeneous Lippmann-Schwinger equation
at the two-particle bound-state energy z =—E,
with eigenvalue A,;:

M) =2n [ war LEEL 6. s
(o]
The eigenfunctions form an orthogonal set. Let
g, further be real and normalized as

AL N
[ raresBac® (25)
We then approximate

Na
Vil k) == 5= 3 M)k, (26)
=1

with A; being the N, eigenvalues which are the
largest in magnitude. For this rank-N, potential
the two-particle T matrix can readily be obtained
from Eq. (5). It has the form of Eq. (12) with
d;;» a matrix of rank N, satisfying
N)\ ©
) <5,,,.+x, f . app 81F) ”;(k)>d,'.,,. @)
m o z-Fk
1"=1
1

- 'é—”h,li”: . (27)
For the special case that z =—E, we have, in view
of Eq. (25),

dzz'(—Eg)=—5zz'(7\1/277)1/(1—)\1)- (28)
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We now turn to the four-particle equations
(15) and (16). Although the solution of this type
of equations can in principle be constructed di-
rectly with the use of Padé approximants,'®''” for
simple central potentials it is numerically less
time consuming to find the solution by applying
separable expansion techniques to the subampli-
tudes in the kernel of the four-particle equations.
In this work we have used the UPE method. En-
couraging results have been obtained recently
in the study of the four-nucleon system with these
techniques.'®!® Proceeding in the same way as
in the two-particle case, we define

£ bp(p)=2m ), f p'ap' Wi, p'2,)

1m0
Xdyogu(z, =p"2 W, u(p")

(29)
and

77'.7)"1(?)=2”E _f prap' vy (p,p'lz,)
)

i
X dl "o (zz —plz)ﬁnl" (P') ’
(30)
with W;;. and V ;. given by Eqs. (A2) and (A9).

For the value of z, we have chosen the trimer.

bound-state energy z, =—E; and for z, twice the
dimer bound-state energy z,=-2E,. Expanding
the subamplitudes w;;. and v;;. in terms of the

eigenfunctions, given by Egs. (29) and (30), we
obtain the separable representations

wy(p,p'2) = Z Dy (D)Onn (2)D,014(p’)  (31)

n,n’

and

03P, 0'12) = 3 Di(P)Be(2) D, (7). (32)
The expressions of the propagators ©,,. and 4.
are given in Appendix B. Using Egs. (31), (32),
(A5), (A6), and (A8), we see that the solution of
Egs. (15) and (16) has the form

al(p’ q) = Z mnl(p)enn'(z "qz)an'(q) ’ (33)

bl(p’q)= Z: anl(p)Ann'(z _qz)gn’(q)Q (34)

where @, and ?3,, satisfy a coupled set of one-
dimensional integral equations

arl(q)= Z J- q’dq’er'(q,ql)en'n” (Z—qz)an"@')+ Z J‘ q’dq’ Ynn'(q’q’)An'n"(z_q'z)an"(q,)’ (35)

ntnt "0

=23 | ¢'da’ Zia,a)
ntin" "0

xen'n"(z_qlz)an"(q,)) (36)

with
3 2 2' A
Xnn'(q, ql) = <_2_7'§> & _! d(pwnl(Q]_)
Xdyo(2,)D,014(Q,)
(37)
27
Yrm'(qul)=%z J’ d¢wnl(sl)
I,l" 1]
Xd(2;)0,00,),  (38)
Znn'(q,q')=Yn'n(q',q)- (39)
Here we have defined the shifted energies
2,==E,-5(¢*+q'?+%3qq’ cos¢), (40)
2,==E, - 35(q*+q’%+%V3qq’ coso). (41)

IV. NUMERICAL RESULTS

In Sec. III we have shown that with the UPE
method coupled four-particle integral equations

0

f

in one continuous variable can be obtained. Ob-
viously the separable expansions of the subampli-
tudes are only useful if they converge rapidly
enough. In practice reliable answers can be ob-
tained for central potentials by keeping a limited

TABLE II. Dependence of tetramer binding energy £,
on the number of separable terms used in the UPE ex-
pansion of the subamplitudes w;;+ and v;;. for the two-
particle potential, Eq. (22), with A;=5, A,=20.

Z

N, Ey (107

2.57
2.56
2.54
2.54
2.65
2.70
2.70
2.65
2.73
2.75
2.75

L N T R e S N N
G O D W MO
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TABLE III. The dimer, trimer, and tetramer binding
energies E,, E;, and E, for various values of the cou-
pling constant A of the separable potential, Eq. (19),
with m=1,2,

A m E, (10%) Eg (10?) Ey (10%)
0.06 1 0.19 1.72 0.48
0.08 1 0.73 5.30 1.54
0.10 1 1.73 10.6 2.94
0.08 2 0.32 2.32 0.67
0.10 2 - 0.74 4.63 1.28
012 2 1.35 7.51 2.00
0.14 2 2.11 10.8 2.79

number of terms, say two or three, in the ex-
pansion. In Tables I and II are shown some re-
sults for the trimer and tetramer binding ener-
gies E; and E, for the local potentials of the
Gaussian type. The calculations are done by
discretizing the integral equations and solving
the resulting matrix equations. Gaussian quad-
ratures are used with 16 mesh points in the oc-
curring integrations. The accuracy was checked
by varying the number and distributions of the
integration points. It was estimated to be of the
order of two percent. Table I shows the depen-
dence of the binding energies on the number of
terms in the UPE expansion of the two-particle
T matrix. Only one term is kept in the sub-
amplitudes v;;.» and w;;.. From this table we see
that the convergence rate for both E; and E, is
extremely fast. To calculate the binding energies
to within one percent, we have only to include at
most two eigenfunctions belonging to the largest

03 T T T 7
/} o
7/,
V
L-J(12,6) 7
Yy ©
o2r o -
0 =
m=2 o
m=1 ]
- R =29 o~
1 L
0 005 010 o15

FIG. 1. E3,E, plot for the attractive separable poten-
tials, Eq. (19), with m=1,2. Each point corresponds to
the calculated trimer and tetramer binding energies E;
and E, for a given two-particle potential. The value of
E; for the Lennard-Jones (6,12) potential from Ref. 6

is also indicated together with the straight line R=E,/E;

=2.9.

15 o separable m=1
———— separable m=2

FIG. 2. The ratio of trimer and dimer binding ener-
gies Ey/E, as a function of the dimer energy E, for the
various separable and Gaussian potentials.

positive and negative eigenvalue. As to the qual-
ity of a one-term separable approximation to the
subamplitude w;;.,, we see from Table II that it is
excellent, while three terms are needed for v,;.
to reach convergence.

For the separable potentials, Eq. (19), the
tetramer binding energy has been calculated as a
function of the coupling constant A. Under the
approximation used here only one term is kept
in the subamplitudes v;;.» and w;;.. Some results
are given in Table III. Following Ref. 9 we have
plotted in Fig. 1 the calculated E; - E, values.
For both potentials m =1, 2 the results are close
to each other. They form a linear band in this
E, - E, plot, the deviation from the linear rela-
tion R =E,/E, =2.9 being larger at larger values
of E,. Also for vanishing small trimer binding
the tetramer becomes unbound at the same time.
To relate this to the threshold behavior of the
ground-state energy of the dimer, the ratio

FIG. 3. Dimer binding energy E, as a function of the
coupling constant A y for various strengths of the re-
pulsive part in the two-particle potential, Eq. (22).
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TABLE IV. The dimer, trimer, and tetramer binding
energies E,, E3, and E, for various values of the cou-

pling constants A of the local potential, Eq. (22).

N Ay E, (10?) E, (107) E, (10%)
0.6 0 0.15 0.18 0.57
1.0 0 2.33 1.75 5.16
3.0 10 0.33 0.28 0.81
3.2 10 0.85 0.61 1.72
3.4 10 1.72 1.08 2.97
4.6 20 0.48 0.35 1.02
4.8 20 0.95 0.62 1.71
5.2 20 2.53 1.37 3.60

E,/E, is plotted in Fig. 2 as a function of E,.
[In Fig. 2 from Ref. 6, the coupling constant I'
for the separable potential with # =2 is in con-
trast with what is stated defined there in terms
of s, through Eq. (19) with I'=ng?/B%] For
E,— 0 the ratio tends to a finite value. Hence
within the numerical accuracy the binding ener-
gies of the n-particle system with n=2, 3, 4 all
vanish simultaneously.

To study the effect of locality and repulsion in
the two-particle interaction, the potentials of
Eq. (22) are considered. In the calculations we
take for the strengths of the repulsion in the po-
tential A, =0, 10, and 20. The dependence of
the dimer energy on the coupling constant A, is
shown in Fig. 3. Some results for the binding
energies E,, E,, and E, are given in Table IV,
Also in this case, as is seen from Fig, 2, the
ratio E,/E, reaches for E,- 0 the value of 16.1—

- the zero-range result of the separable potential.®
In Fig. 4 are plotted all the results of E, and E,

obtained for these Gaussian potentials. They again

form independent of the repulsion parameter A,
a narrow band around the linear function R =2.9.
The remarkable linear relationship between E,

03 T ./1 )
L-ua2e” "
2
/
o2+ A _
/
4
/
/
*/
oxI= /0/ 4
s A=0 )
v As10 o
. ./0 )\2=20 +
w ¥ R=29 ————
. 1 . 1 A
o 005 010 015
E3

FIG. 4. The same as Fig. 1, but for the Gaussian
potentials.
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and E, has also recently been verified in three
spatial dimensions for a class of realistic inter-
atomic potentials.2®

V. CONCLUDING REMARKS

In summary, I have presented results for
the bound-state energies of tetramers in two
dimensions within the framework of integral
equations. In particular, we have demonstrated
the practical applicability of the UPE expansion
in this case. Similarly, as in the four-nucleon
system, a linear relationship is found between
the trimer and tetramer binding energies in a
certain region of E;, a relationship which is
independent of the two-particle interaction used.
If we conjecture that this result also holds for a
more general class of interactions, an estimate
may be obtained for the tetramer binding energies
for more realistic interactions. Taking the value
of the trimer binding energy E, =0.11 K obtained
from the variational calculations” for the Lennard-
Jones (6, 12) potential with the Boer-Michels *He
parameters, I estimate the tetramer binding en-
ergy from R =2.9 to be E,=0.32 K. The value of
R is expected to increase if we take more terms
into account in the separable expansion of v ;.
and w;;.. Furthermore, since studies of other
realistic potential models indicate more trimer
binding, the tetramer binding energy may be con-
siderably larger than the value estimated above.

Although simple potential models have been
used, the calculations described in this paper can
in principle be extended to the more realistic
interactions. Because of the singular nature of
some of the interatomic potentials currently in
use, the two-body eigenfunctions needed for the
UPE cannot.be constructed directly from the
Lippmann-Schwinger equation. A possible answer
in that case would be through the explicit solution
of the two-particle Schrddinger equation along
the same lines as discussed by Huber and Lim.*
It should be interesting to carry out such a calcu-
lation to see at least whether my conjecture about
the linear relationship is valid.

APPENDIX A

The kernels of Eq. (15) are expressed in terms
of the three-particle off-shell amplitude w;;.
which satisfies the Faddeev equation

wy(p,p'|2)
=Wy (p,p'2) + 21 Z j praAp" Wyya(p,p"|2)

jo g "0

X dyuy (e =" wy (5,9’ |2), (A1)
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with an effective potential

Wi (p,p'l2)

_1(2 [ £1(P,)g:(P,) (A2)
‘n(ﬁ)J; d¢z—§—(p2+p’2+pp'c0s¢)
and
Bi=ip*+5p'2+5pp’coso, (A3)
Pe=2p2+5p’2+5pp'cosd. (A4)

They are given by

Ky (palp'a’) = (g%)zww(p,p'l -E,~¢q")
(A5)
and
Ly (palp’a’) = 3wy (p,p'| - E, - a?). (A6)

Furthermore, for the kernel M;;. in Eq. (16) we
have

My (pql p'q") =30, (p,p'| = E, - ¢?), (AT)
where v;;. is the off-shell scattering amplitude
of two noninteracting pairs, given by

vy(p,p'|2)

Vg, o'l ezn 3 [ prap"Viul(p,p712)

g g 0
Xdyuym (2 =p" )0 mps(p”,0'|2), (A8)
with
Vip,0'|2) = g4(p") g1 (p)/ (2 =p* =p'?).
(A9)

APPENDIX B

In this appendix I give the explicit equations for
the propagators 6,,. and A,,. in Eqs. (31) and (32).
Consider the three-particle subamplitude w;;.
satisfying the Faddeev equation (Al). Suppose
that the eigenfunctions #,; from Eq. (29) are real
and normalized as

Y [ b i (puie, =51 (0) =0 (BY)

1,1¢ 7o

Then we expand the effective interaction W;;. in

. TJON 21

the eigenfunctions ,,;:

Wiae(p,0'12) =Y #,1(p)O% (@) tbere(p”).  (B2)

n,n’

Using (B1), we obtain
9,?".(2)
=2f pdpf b A" W, (PMi,1, (2, = %)
{z;1 © o '
XW1213(P;P'13W1314(21 —p'2)12},,.,4(p’). (B3)

Inserting (B2) into (A1) yields the separable
representation (31) with 6,,. satisfying a set of
linear equations

erm'(z) =9S,,.(z)

+ E ngu(z)S,,u,,m(z)G,,m,,:(z), (B4)

n",n"

with
Snn’(z)
=27 E f P AP W, ()1 (& = p*)W,ere(D).

1,1’ 0

(B5)
As in the two-particle case, we have for z =2,
O,,0(2,) ==0,,(E,/2M1 /(1= &,). (B6)

The representation (32) for the scattering ampli-
tudes of two noninteracting pairs can be obtained
in the same way by using the eigenfunctions

0,;. As a result we have '

Ann'(z)

=A3n’(z)+ z Agn"(Z)Rn"n'"(z)An"'n’(z), (B7)

e
with

Agn '(z)

=§ f pdpf p'ap' D ()i 1, (2, — %)
1; ,

[0} o

XV, (0,0'12)d1 1 (2, = p'*) 0,00, (p7)  (BS)
and
Run@) =20 Y [ o0, (0Muske =13,00).
a (89)

1A, P. J. van Deursen and J. Reuss, J. Chem. Phys. 63,
4559 (1975).

p.w. Stephens and J. G. King, Bull. Am. Phys. Soc. 23,
240 (1978). -

L. W. Bruch and I. J. McGee, J. Chem. Phys. 59, 409

(1973).

T, K. Lim, Mol. Phys. 33, 373 (1977).

5T. K. Lim, K. Duffy, and W. C. Damert, Phys. Rev.
Lett. 38, 341 (1977).

L. W. Bruch and J. A. Tjon, Phys. Rev. A 19, 425



21 BOUND STATES OF FOUR IDENTICAL BOSONS IN TWO... 1341

1979).

"F. Cabral and L. W. Bruch, J. Chem. Phys. 70, 4669
(1979). -

8For a recent discussion and relevant references to
this field see for example J. A. Tjon, in Few-Body
Systems in Nuclear Fovces II, edited by H. Zingl,
M. Haftel, and H. Zankel (Springer, Berlin, 1978),
Lecture Notes in Physics, Vol. 82, p. 320.

53. A. Tjon, Phys. Lett. B 56, 217 (1975).

10For a review see K. L. Kowalski, in Ref. 8, Vol. 82,

. 393.

0, A. Yakubovsky, Sov. J. Nucl. Phys. 5, 1312 (1967).

121,, D. Faddeev, in Proceedings of the First Intema-
tional Confevence on the Thvee-Body Problem in Nuc-
lear and Pavticle Physics, edited by J. S. C. McKee
and P. M. Rolph (North-Holland, Amsterdam, 1970),
p. 154, )

BBE. 0. Alt, P. Grassberger, and W. Sandhas, Phys.
Rev. C 1, 85 (1970). :

l4gee, for example, I. M. Narodetsky and I. L. Grach,
Sov. J. Nucl. Phys. 18, 342 (1974).

g, Harms, Phys. Rev. C 1, 1667 (1969).

183. A. Tjon, Phys. Rev. D1, 2109 (1970).

"5, Krdger and W. Sandhas, Phys. Rev. Lett. 40, 834
(1978).

18R, Perne and W. Sandhas, Phys. Rev. Lett. 39, 788
1977).

193, Sofianos, N. J. McGurk, and H. Fiedeldey, Nucl.
Phys. A 318, 295 (1979).

203, Nakaichi, Y. Akaishi, H. Tanaka, and T. K. Lim,
Phys. Lett. A 68, 36 (1978).

2y, S. Huber and T. K. Lim, J. Chem. Phys. 68, 1006
(1978).



