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Dynamical and geometrical effects on the physisorption of atoms
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The physisorption of atoms moving uniformly parallel to a plane surface and of atoms situated near a
metal sphere is analyzed. A local dielectric function is used to calculate the energy of interaction in each
case. The dynamical case is shown to give significant effects for atomic energies well beyond the thermal
domain. The energy for both instances is calculated using a frequency- and space-dependent quantum-

mechanical self-energy function.

I. INTRODUCTION

The analysis of the physical interaction of an
atom with a surface has a history which demon-
strates its fundamentally interesting character.

A pioneering work based on the image potential
was presented in 1932 by Lennard-Jones, who re-
marked, even then, at the extensive literature on

the subject.’ His calculation was substantially im-

proved during the ensuing decade by several inves-
tigators who, while maintaining the inverse-cube
nature of the energy, modified the coefficient to
include the electronic response characteristics of
the surface.»3® The spatial dependence (for dis-
tances which are large comparedtothe wavelength of
the ground-state-to-excited-state transitions) was
modified in 1948 by Casimir and Polder by includ-
ing retardation.* They found an inverse-fourth-
power dependence using quantum electrodynamic
calculations, although the same result was found
within ordinary quantum theory by McLachlan fif-
teen years later.®

Intensive investigations of van der Waals ener-
gies with modern quantum field theory were car-
ried out by Power and Zienau®; Aub, Power, and
Zienau’; Dzialoshinskii®;and Dzialoshinskii, Lif-
shitz, and Pitaevskii® resulting in inclusion of
many-body forces and the contributions of all the
interaction frequencies. Parsegian has utilized
the Lifshitz dispersion theory for macroscopic
bodies in biological applications.®

Mavroyannis considered the problem of phys-
isorption with the radiative correction in 1963, ob-
taining the results of the Lifshitz theory in this
case.'’ For reference purposes, the leading term
in the asymptotic series in inverse powers of dis-
tance from the surface in the “close-distance”
limit (distance much less than the smallest wave-
length of the atom’s spectrum) of the result of
Mavroyannis [Eq. (21)] is given here as
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where (V) is the energy of interaction of the atom
with a plane surface a distance z, away; 5 1 <q>lnlz

= [(1lz|ny 2= [<1]x |ny|2= |(1]y |n) |2, with each
matrix element taken using the ground state and
the nth excited state with appropriate angular-mo-
mentum quantum numbers (left understood) to sat-
isfy the selection rules; w,, is the angular frequen-
cy associated with the energy of the ground-state-
to-nth-state transition; and €(iw) is the frequency-

, dependent dielectric constant of the surface bulk

material evaluated at an imaginary frequency iw.
In hartree atomic units (e=%=m =1), Eq. (1) re-
duces for a perfect conductor to the Lennard-Jones
energy —(v2)/12z3, with (%) the ground-state ex-
pectation value of the square of the radius vector.
For hydrogen (#2) =3 hartree a.u.

Many of the developments pertaining to phys-
isorption are discussed in the text by Margenau
and Kestner.'? The discussion of the dielectric
constant and polarizability which is germane to
the present work is given by Landau and Lif-
shitz.!3 1

New investigations of physisorption have been
stimulated by the great scope and variety of ex-

" perimental techniques in surface physics which

have evolved in recent years.!®!® Effects due to
surface diffuseness were analyzed in 1976 by
Zaremba and Kohn.'” More recently, Mehl and
Schaich'® have verified a significant difference be-
tween theory and experiment found by Raskin,
Kusch, Shih, and others'®-2® and conclude that the
theory overestimates the interaction. This appar-
ent overestimation has been a recurring problem
in the field, and the issue remains unresolved. Of
course, the problem may lie in the host of diffi-
culties well known to occur in this type of experi-
mental work, and only further detailed work can
isolate the discrepancies.

Motivated then in part by the necessity of pro-
viding a theoretical framework for new experi-
ments, we have analyzed two modifications of the
static, planar, quantum image energy. [We use
the terminology “quantum image” to distinguish
(V) of Eq. (1) from the classical image energy.]
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Both modifications are obtained with an efficient
scheme involving the frequency- and space-depen-
dent self-energy, which is illustrated in Sec. II by
rederiving Eq. (1). The first modification con-
sidered is a dynamical one due to motion of the
atom near the surface at energies extending well
beyond the thermal domain. This is also accom-
plished in Sec. II. The second modification is a
geometrical one and is analyzed in Sec. III where
we consider an atom in the vicinity of a spherical
surface.

Since the experiments cited above as analyzed by
Mehl and Schaich involve the scattering of moving
atoms from a cylinder, one really should consider
quantitatively both dynamical and geometrical ef-
fects in the analysis. While both effects are un-
doubtedly small, since the atoms have only ther-
mal energies and scatter within a few hundred
A of a one-inch cylinder, Mehl and Schaich did un-
cover some peculiarities in the trajectory analy-
sis. They found that an added attractive interac-
tion which varies as the inverse sixth power could
affect the data in such a way as to make it appear
as if an added repulsive force were acting. In-
deed, by calculating the effect of surface rough-
ness, they found just such an inverse-sixth-power
energy. Unfortunately, its strength was too weak
to affect the discrepancy between the data and the
Lifshitz dispersion theory. It is interesting that
the spherical geometry examined in Sec. III below
also contains a small corrective term in the ener-
gy with an inverse-sixth-power dependence. (It
also contains other dependences and actually is
cast as a series.) Yet it is certainly true that one
would have to conjure up much more to explain
satisfactorily the currently available data, and we
hope for additional experiments, both on atoms and
on ions near surfaces. (Some experiments involv-
ing aloof scattering of charged particles near sur-
faces are currently under way.?*) Data obtained
under circumstances governed by the applicability
of the formulas developed below would be very
useful in deciding the adequacy of dispersion theo-
ry in general. It would be particularly valuable to
contrast ion and atomic scattering near surfaces,
especially in light of the wealth of theoretical anal-
yses of dynamical effects for the former.?-32 One
might then discern whether inconsistencies, if they
arise, are due to inadequate description of the
surface or of the projectiles.

II. THE SELF-ENERGY OF A MOVING ATOM NEAR
A SURFACE

We first examine the case of an atom at a dis-
tance z, from a planar surface with condensed
matter filling the space z<0. Subsequently, we

allow the surface to move in order to describe the
equivalent situation of a static surface and a mov-
ing atom in the simplest fashion. We wish ulti-
mately to calculate the effect upon the energy of
interaction of the motion for the case of an atom
moving parallel to the surface with the uniform
velocity V=vi. The surface is taken to lie in the
xy plane; and except for the atom, we assume vac-
uum everywhere for z>0.

As a first requirement one needs the electro-
static potential for z >0 if a unit charge appears
with charge density

p=06(x —x")o(y —y")6(z = 2")6(t =¢'). 2)

The solution of this boundary-value problem is
obtained here with the surface characterized by a
local, frequency-dependent, dielectric function
€(w).

The potential due to the surface charge and en-
gendered by the unit instantaneous charge is the
homogeneous portion of the total potential for
z>0 and is used in forming the potential energy.
The homogeneous potential is here calculated to be

J‘dK J‘ ©@n) (1::(((,(:)))))

x exp{iK* R-R") - w(t -')] - K(z + 2')} , (3)

where K is kxi*+kyj* and R is x1 +yf.
For the present purposes we require the fre-
quency component of the expression in Eq. (3) for

the case of an atom with its nucleus located at z,.
That is, we take

V= [ IR (1ocl))

1+e(w)
X exp [iK* (R-R) - K(z +2' +2z2,)],
(4)

where z—-z+2, and z' -z’ +z,. The frequency
component of the self-energy function is then ob-
tained from V (¥, ¥') and the Green’s function of
the Schrddinger equation for the atom.
Incorporating all the atomic quantum numbers
into the single index » and writing a general wave
function as u,(f"), the self-energy function is3®
>\ (i
T e 42 5 v 00

(5)

where 7w, is the energy eigenvalue belonging to u
and the prime on the summation indicates one
must take proper account of the angular-momen-
tum states.

From the Schrddinger equation of the system,
the effective potential energy operator V. () sat-
isfies

n
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where u, is the ground-state wave function.
The ground-state expectation value,

(Vy= ful(r)V oo (Fu, ()T, (™)

is the interaction energy essentially equivalent to
that obtained in second-order perturbation theory
by a more standard approach. (Note that u, is
real.)

In the dipole approximation, one finds

<V>—— }: f ( :&’;) f dK K?e~2K%
41(‘1)1;1‘2 (8)

(w-wy,)’

where the square of the magnitude of the elec-
tron’s dipole matrix element |{g),,|? enters for
,,2) as

[ |x |y |2+ [ w |y [2+2])1 |2 |0} [2= & [<@Daal 2,
©)

the spatial average being taken, and w,; =w, - w,.

For comparison with standard results, one util-
izes the known behavior of €(w) in the complex
plane to convert to imaginary frequency, as shown
by Landau and Lifshitz.’® One obtains

4 < 2 f” W
<V>—311(220)3 Z": @)1, A dw w?+ w2

X (ﬂw_)} (10)

1+€e(iw)

which is the same as Eq. (1).
If one takes the simple form

€(w)=1-w}/w?, (11)

there results the quantum image energy,

(q/
UQ‘“_122 Z Wep + Wy (12)

where wy, = w, /V2 is the surface-plasmon frequen-
cy.

It is now an uncomplicated step to take if one
seeks to describe the situation in which the atom
moves parallel to the surface with uniform speed
v. By examining the Fourier components of the
potential, charge density, and dielectric func-
tion, one finds the energy of the dynamical case to
be

® dw [1-€(w)
=g . Grnye <1+e(w))
X fm Kze-szodK

o . LM
de in
xfo- Z w-vKcoso —w,,’
(13)

where we have replaced w in Eq. (8) by w — vK cosé
and have an integral over 6 to perform.

Again converting to imaginary frequency, Eq.
(13) becomes

. 1-€(iw)
(Vy= -&Z I<q>1nl (217)2 (m)

x f K2e-2K'o[(w,K)dK, (14)
0
where
27 1
I(w,K)=l do <w"1+iw—vK0039

—1 ) (15)

W, —tw — vK cosf

If one uses here Eq. (11), the result is that

' . 2
2": |<@)1a] 1@z
X [Io() = Lo()], (16)

where u is 2z4(w,,)/v, I() is a zero-order Bessel
function, and L,(x) is a zero-order Struve func-
tion.3

If v < 224(wg, + w,;), one may use the asymptotic
form

= T
) =-%

W l<‘1>1
V)~ 1225 G wg +w,

2
[1 +3”— (—i——> ] an
222 Wy + Wy

This approximation has been numerically evalua-
ted for atomic hydrogen as a function of 7 the
“oné-electron radius.” In hartree atomic units,

=3/23, (18)

and the graphical results are shown in Fig. 1. For
simplicity, we have divided (V) by the Lennard-
Jones classical image energy [ — (1/4z3) hartree
a.u.] in obtaining the curves shown. Several dif-
ferent values of v/z, are shown in the figure. We
have displayed only the velocity-dependent portion
of (V) for each given v/z,. The static portion is
also shown. At v=0.1 z, the velocity-dependent
portion is about 4% of the static portion and at
2o=1 Bohr radius this corresponds to an energy of
250 eV for the kinetic energy of the hydrogen atom.
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FIG. 1. Ratio of the energy of interaction of atomic
hydrogen with a conducting wall to the Lennard-Jones
energy as a function of 7, in Bohr radii (Eq. 17). The
static and dynamic contributions are shown separately.

The summation in Eq. (17) was accomplished us-
ing the general formulas for the oscillator
strengths first found by Sugiura.*® That is, one
introduces the oscillator strength f,, by (in har-
tree a.u.)

l <q>1n I 2 =3fn1/2wnl

with w,, = (n* - 1)/2r?, and for the discrete states
of the sum for hydrogen one uses

2° n%(n — 1)
fh??—@jﬁﬁr,

while for the continuum, one uses (in hartree a.u.)

df _2*exp[-4(2E)"/2tan!(2E)*/?
dE " 3(E +1/2)]1 - exp[27/QEV?]|

The usual sum rule for the oscillator strengths
is then

ns(n 1)2n—4 24 wdf
Z “wsDm *3 ) aE -

We have also tested the much simpler forms for
the oscillator strengths given by Dalgarno and Vic-
tor®® for our calculations. Their variational re-
sults are accurate to a few tenths of a percent. In

10 T | T T T
0.5 ]
& STATIC PORTION ONLY
——
02 — /s \\\ —
/ S~
~
ot 1 T~
/ ~-
0.05 /

0.02

0.0t

0.005

CURVES LABELED BY sz, SHOW

ONLY THE PORTION OF THE ENERGY
WHICH CONTAINS v

*o' [oX]

0.002

RATIO OF INTERACTION ENERGY TO LENNARD-JONES ENERGY (He ATOM)

0.004

FIG. 2. Ratio of the energy of interaction of atomic
helium with a conducting wall to the Lennard-Jones en-
ergy as a function of », in Bohr radii (Eq. 17). The
static and dynamic contributions are shown separately.

Fig. 2 we have used their results for helium. In
the case of atomic helium, the Lennard-Jones
image energy is roughly —3/(16z2), but rather than
dividing by this, we have simply normalized the
static portion of (V) for helium at »,=0. This
makes the normalizing factor the correct result
for a conductor with zero response time, as in the
Lennard-Jones limiting case. We then used the
same value of the normalizing energy to divide the
dynamical portion of (V). Calling the normalizing
energy Vy., Fig. 2 shows the static and dynamical
portions of (V)/Vy, as a function of 7 just as in
Fig. 1. At7,=2, the velocity-dependent portion is
roughly 21% of the static contribution for »=0.5z,
and is about 8% of the statlc contribution for v
= 0.3z,.

It is evident from the above results that the dy-
namical contribution to the interaction, as given
by Eq. (17), is negligible for thermal atoms. Ex-
perimentally one might consider passing keV pro-
tons through water vapor, electrostatically de-
flecting away from the beam those protons which
do not capture an electron and subsequently
scattering the remaining H atoms near a surface.
In this instance the dynamical contribution would
be highly significant.
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III. INTERACTION WITH A SPHERE

The electrostatic Green’s function for an instantaneous charge with spherical coordinates (', 6', ¢)
outside a sphere of radius a has a frequency component which we have calculated to be

(5 F)od ii z ( 1-¢(w) ) la?H+t
Wi 1= W1=o m=0 p=—1,1 e(l+1+1/ @ +1)0rr)*

Y5 (6, 0)Y%,(6°, ¢>) (19)

where if PT(cosf) is the associated Legendre function, the real spherical harmonic is

47l +m)!

2 (6,6)= ((2- 6?,,)(21+1)(z_m)1) P;"(cose){

One may transform G, to an origin at z,>a, with

¥ =7y, v' -7} as illustrated in Fig. 3 using®”

e I+l )P;n(cose) = ; a_—%’l&im_ﬁ

yl’l
><——,--;Z(,),+°+ Pl (cosy). (21)

The angle v is shown in Fig. 3.

After this transformation; which yields V, for
the present case, one follows the same procedure
as in Sec. II and obtains the dipole approximation
to the energy of the interaction to be

(VY= ; i |<2:;3!2 (a)21+1

1=0
X1(+1)(20 +1) f” dwA,(w), (22)

where

1-€(iw) )

Ap (@)= wz +ou2 (e(iw)l +1+1

and where 7 is now the distance of the atom from
the center of the sphere.

One may compare the form of the terms in the
large parentheses on the right-hand side of Eq.
(23) with similar terms in the classical expres-
sion for a dipole interacting with a dielectric
sphere. The classical energy in the latter case is
found by us for a dipole of moment p to be

-P2(€ 1) 10+1)2L+1) [a\&*
Ve ,Z; TA+l+1 (7) , (29)

(23)

where € is the static dielectric constant for an in-
sulator. For €—«, Eq. (24) becomes (note that
the I =0 term contributes in this limit but does not
contribute for finite €)

_ —ap? 2a%p?
=~ B2 —a?)? - 3(r2 -a?)?’
which is the classical image result for a conduct-
ing sphere.
For € given by Eq. (11), the integration in Eq.
(22) can be performed, and one finds in this case

(25)

cosmp, p=1 ) . (20)

sinmo, p ==1

r -
the energy (Vi) =~ (Vi0), where

=S K20 +1) (@)@
Vo= 3y ey (7)o @9

n=2

where the angular frequency of the surface-plas-
mon resonance is given for the /th mode of the
sphere by

lw?
w, =ﬂ-fl—. (27)
If one takes w,~« so that €(w) in Eq. (11) goes to
-, the instantaneous-response, perfectly con-
ducting limit, then Eq. (26) reduces to Eq. (25)
with p? equal to 3 hartree a.u. for hydrogen; i.e.,
the sum over »n of [(q>1,, |2 is p2. Just as in the re-
duction of Eq. (24) in the limit €~, the mono-
pole term I =0 contributes only in the limiting
case. Thus, Eq. (26) does not uniformly converge
to Eq. (25) as w, is increased, since for any finite
value of wp the monopole term in Eq. (26) is zero.
There would be a discontinuous difference in the
binding of either a neutral atom or an ion in orbit

FIG. 3. Geometry used in reference to Eq. (21).
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FIG. 4. Energy of atomic hydrogen near a metal sphere
as a function of ;. The energy is divided by the image
energy, and curves for various values of a/# in Eq. (26)
are shown.

about a sphere between the case of a good conduc-
tor and the case of a perfect conductor having an
instantaneous response (a fictitious case).

Schmeits and Lucas® have considered geometri-
cal effects on physisorption. A later paper by Cole
and Schmeits® also treats several geometries.
The present results differ from these authors in
the fact that we have done the sum over atomic
transitions in Eq. (26), while they approximated
the sum by a single term. There is an alteration
in the spatial dependence of (V;,) when the sum on
n is done as Eq. (26) shows.

It should also be noted that the » dependence of
(Vso), as well as the coefficient of the interaction,
is different from the » dependence of V. In the
planar limit the quantum and classical energies
differ only in the coefficient. The variation in
7 dependence between (Vso ) and V,, is due in part
to the variation in » dependence between Ve and V,,
and in part to the sum over » in Eq. (26). For the
latter variation, the fluctuating dipole moment
causes therefore an alteration in the » dependence
not found in the planar limit (a— ). These fea-
tures are potentially encouraging for experimen-
tal prospects. Including retardation effects would
further add to the variation in the » dependence,
although we reserve this for future work.

One may use Eq. (26) to plot (Vso)/V,, for atomic
hydrogen as a function of .. The results are
shown in Fig. 4 for several values of a/». The
curves for larger a/» approach the planar limit,

‘which is shown as the dashed line and which is

taken from Fig. 1. One discerns from Fig. 4 that,
as the planar limit is approached, the slope for
small 7, increases. Since the finite 7, results
converge continuously to the 7, =0 limit for a
plane, one expects the behavior shown for a/»
near unity and », small. The missing /=0 term in
the sum in Eq. (26) for finite 7, is less significant
for a/r near unity, the higher values of I being
then the more important. [Notice w, from Eq.
(27) becomes w,, =w,/V2 as I ~.]

In conclusion, while curvature effects are not
significant for experiments done to date, the use
of small target spheres (and cylinders) would pro-
vide substantial information on the adequacy of
dispersion theory.
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