
PHYSICAL REVIE% A VOLUME 21, NUMBER 4 APRIL 1980

Theory of ennssion of radiation from an assembly of X two-level atoms

Ranjana Prakash and Naresh Chandra
Department of Physics, University of Allahabad, Allahabad 211002, India
(Received 7 September 1977; revised manuscript received 29 June 1978)

Interaction with a multimode quantized radiation field of an assembly of N two-level atoms contained in a
small volume is considered for the special cases of (i) highly excited, (ii) weakly excited, and (iii)
superradiant atomic assemblies, and solutions of equations of motion are obtained in closed form. For (i) and

(ii) we show that, if the atomic assembly is in the Dicke state
~
r, m &, the spontaneously emitted radiation

is Lorentzian, and its spectral width and the numerical value of the Lamb shift are r +
~

m
~

times that
for a single excited atom. For (i) the sign of Lamb shift is opposite to that for (ii) and for a single excited
atom. Change in the frequency shift gives chirping in the pulse radiation emitted spontaneously by an
assembly of atoms. We obtain the reduced density operator for a -single mode and for the complete
spontaneous emitted radiation, and discuss its characteristic function, weight function in diagonal
representation, coherence functions, and normalized variance. We find that the emitted radiation is chaotic if
all atoms are excited or if the assembly is weakly excited and is in thermal equilibrium. For a superradiant
assembly, the radiation is coherent; it is only amplitude coherent if the initial atomic density operator is

nondiagonal. We also study stimulated emission and scattering for the cases (i) and (ii). For case (iii) these
phenomena do not take place.

I. INTRODUCTION

After the appearance of Dicke's paper' on spon-
taneous emission of radiation by an assembly of
atoms, cooperative effects and suyerradiance
were studied by several authors. ' " Some experi-
mental observations have also been reported. "
However, the study is largely incomplete as,
mostly, only the number of photons (or of in-
tensity)' ' and, in the name of coherence proper
ties of radiation, the variance of photons (or of
intensity)' ' and self-correlation' have been
studied. There have been some attempts' ' to
study coherence properties of radiation but the
authors have taken only a single resonant mode
of radiation. For a single-mode resonant radia-
tion closed form of atom plus radiation state has
been obtained by Smithers and Lu' and by the
present authors' for a few special cases of the
initial atomic state. All these studies involving
only a single mode of radiation do not give any
information about the intercorrelation of modes,
line-width arid frequency shift.

Frequency shifts in emission from a small
atomic assembly was studied quantum mechanical-
ly by Fain" and also by Arecchi and Kim' who
-studied linewidth also. Stroud, Eberly, Lama,
and Mandel" studied these in detail using the
neoclassical theory" and reported chirping in
emission. The results of all these authors are
different. Banfi and Bonifacio" have considered
a pencil-shaped atomic assembly and studied fre-
quency shift and linewidth.

In the present paper, we shall consider atoms
in a small volume interacting with a multimode

radiation field. We shall solve the equations of
motion for a few special cases and then study not
only the linewidth, frequency shift, and emission
rate but also the coherence properties of the
emitted radiation.

II. HAMILTONIAN

Consider an assembly of N identical two-level
atoms interacting with the radiation field. If the
atoms are assumed to be contained in a volume
whose linear dimensions" are much smaller than
the wavelength of the resonant radiation, and if
they interact with each other only through their
interaction with the common radiation field, the
Hamiltonian in the dipole and rotating wave ap-
proximation is given by"

H =&coRs+ P cu„a„as+ P (P,a„R,+H.c.), (2.1)

where ~, is the absorption frequency of the atoms,
v&, a&, and a&~ are the frequency, annihilation
operator, and creation operator for radiation in
the A mode which has wave vector k and the
polarization 7„, R, and 8, are the collective atom
operators, p& is the coupling constant given by

ps = tete. (2tr/tdsV)'"(e, .x„,)e' '"', (2.2)

V is the volume used for normalization, ex„, is
the transition dipole moment between the'upper
state u and the lower state I, of any atom, x,
is the mean position of the atoms, and H.c. stands
for Hermitian conjugate.

In the boson formalism, "we associate a boson
mode to the upper level and another to the lower
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level. If the boson annihilation operators for
these modes are b and c, respectively, the Dicke
operator's, R„R, and R„and the Dicke state'
~r, m) correspond, respectively, to the boson
operators btc, bct, and —', (b~b —ctc), and the
boson state ~n„n, }, where n, =r+m and n, =r m-.

The Hamiltonian then takes the form

ia„=P,*g exp(ib, ,t)c",

ic = —Z P„(*exp(-ib, ),t)a, ,

where

+Jti = (dp —400 ~

(3.4)

(3.5)

H =-, &u, (b b —c c)+ &u„a„a),
1

+ P (P,a),b c+ H. c.) . (2.3)

IH. SOLUTIONS OF EQUATIONS OF MOTION AND

LINEWIDTHS, LAMB SHIFTS, AND RADIATION RATES
FOR SPONTANEOUS EMISSION

It is difficult to solve the nonlinear Heisenberg
equations of motion obtained from this trilinear
Hamiltonian. However, in special cases, if one
of the operators is replaced by a c number, the
resulting bilinear Hamiltonian gives linear equa-
tions of motion which can be exactly solved. Some
special cases"'" are those of (i) highly excited
assembly of atoms, for which m —-r» 1 and hence
n, »n, and the b mode can be treated classically,
(ii) weakly excited assembly of atoms, for which
-m =x»1 and hence n, »n, and the c mode can
be treated classically, and (iii) superradiant
assembly of atoms, for which rn = 0 and hence
n&-, n, » 1 and both b and c mode can be treated
classically. We shall treat these cases one by one
in Secs. III and IV.

Coupled equations (3.4) can be solved by using
the Laplace transforms

1

&a(p) aa

dye "
0

c'(p) C

If we find Laplace transforms of Eq. (3.4) and
eliminate A„(P) between them, we get

(
PIP I' t(),g, g P. *,

p+ i)-") )) )) p +in ))

(3.6)

where c, and a„, are the values of c and a& at
t= 0, i.e., they are Schrodinger representation
operators, which coincide with the Heisenberg
representation operators at t = 0.

We now take theWeisskopf-Wigner-type ap-
proximation'4

+ (P+ i&))) IP) ~ I
= Px+ i~~ ~ (3.7)

where pA and eA are independent of p and give
the damping constant and Lamb shift, respec-
tively. For a single excited atom, the Weisskopf-
Wigner theory takes'4

Case A: Highly excited assembly of atoms (m = r )) 1) Z (p+ i&.) 'IP~ I' = I + i~, (3.6)
We saw for this case the b mode can be treated

classically. The term 2(d,blab in H in—Eq. (2.3)
suggests that b should be replaced by

- g e p(x--,'i t()(), where t' is a c number, satisfying
~$~'=n, =r+ mThe resulting bilinear Hamil-
tonian, "

and leads to the frequency of emission +0+~.
Hence, the damping constant and Lamb shift for
a highly excited assembly of atoms is ~$~'=r+m
times that for a single excited atom.

On using (3.7), Eq. (3.6) leads to

H =-~+pc c+ ~ cu~ai, a&

+, ~exp —,'i~pt a&c+H.c. , (3.1)

c = c, exp(p„t+is„t) + terms in a)„.
Equations (3.3) and (3.4) then give

a„=a„e p(x-ie t)+)y» +c~A»a„,

(3.9)

(3.10)

)

H, c c —~a&a& =0.
~a

We shall use this fact later in this section to find
the spectral width of the emitted radiation.

If we define new operators a& and c by

(3.2)

a„—= a, exp(iv))t), c —= c exp( ——,'i&sot), (3.3)

Hamiltonian (3.1) leads to the equations of motion

resembles with that for parametric amplification. "
We note that where

exp(- i&a,t) —exp(p„t —iQ„t)r» =Pa*&
A

—Zj A
(3.11)

exp(- i&u), t) —exp(- iso, t)
y

(dy —Ag

(3.12)

p (), l( l (e p(- (w,x() —exp(g„t —(0„))
~I r=~r

A —Zj A
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Qg = (dp —6g ~ (3.i3)
To study spontaneous emission from a highly
excited assembly of atoms in the Dicke state
lr, m), we note that initially the occupancy in

the c mode is x-m and no photons are present,
and hence we can write the initial state as
li) = lr -m, vac). The number of photons in the
k mode at time t is then

n&(t) =(ila~a~li) = Iy~„l'= » [1+exp(2»t) —2exp(»t} cos(w& -Q~)t] .lp„l'(r+m)(r -m+ 1)
(~. -f1~) +» (3.i4)

+n0 3
'e ~o~A Ixmt I

x (r+m)(r -m+ 1)(e'~~' —1) .

The rate of emission (d/dt)Z, n„obviously in-
creases exponentially with time.

We can find» by noting that Eqs. (3.3) and

(3.9) give the occupancy in c mode at time t as

(3.16)

This shows that the emitted radiation has a
Lorentzian line shape with the mean frequency

&p && and half - intensity-half -width p „.
Comparison with the emission frequency 0
= (dp+e for a single atom tells that the directions
of frequency shifts in these two cases are dif-
ferent. The total number of photons is

exp(- p, Bt —iABt) —exp(- iu&, t)
yaB = pa*a -0+ p+zI B

(3.23)

QB= p+6B .
These give

Ipal'(r -m)(r+ &)
na(t) =

(+0 ~B) +iB

(3.24)

(3.25)

x [1+e '"B' — 2e»' cos((u, -n )Bt], (3.26)

p~*p, Ill' exp(- i&@&t) —exp(- p, Bt —iQBt)
(d) —OB+ SP B (uP —AB —iP B

exp( i~I,t)-—exp(- i&u, t)
(dy —4l )

n, (t) =(ilc cli) = (r -m+1)e'""' —l. (3.16) Z n„(t) = (r+m)(1- e-»') . (3.2'l)
Using (3.2), (3.15), and (3.16), we then find that

»=' 3e &oflxlx r I (r+m)

Q n~= (r —m+1)(e "~' —1) .

(3.17)

(3.18)

Case B: Weakly excited assembly of atoms (-m =r» 1)

For this case, the c mode can be treated clas-
sically. Term ——,'~,c~c in II in Eq. (2.3) tells
that c should be replaced by qexp( 2i&uot), where p
is a c number satisfying Iql'=n, =r -m. II takes
the form,

II =y(vpb b+ cupapag,
1

+ Q [P,q exp(-,'i(u, t)a, b ~ + H.c.] . (3.19)

On proceeding in a way similar to that of case A
and using the Weisskopf-Wigner-type approxima-
tion,

Z (P+z~„) 'I p,qI'= VB+-z~B = (r -m)(p, +i~),

Thus we see that (i) the line shape is Lorentzian,
(ii) the linewidth and Lamb shifts are r -m
times that for a single atom, (iii) the Lamb shift
is in the same direction as that for a single ex-
cited atom (i.e., opposite to that for case A), and

(iv) the rate of emission (d/dt)Z, n, (t) decreases
exponentially with time.

Since, in cases A and B, magnitude and direc-
tion of the Lamb shift depends on m, it appears
that in a pulse of radiation emitted by an assembly
of atoms the frequency will change as m de-
creases, i.e., the radiation will be chirped.
Chirping in emitted radiation has been obtained
neoclassically by Stroud, Eberly, Lama, and
Mandel. Their results agree" with our results,
since m =~.

Case C: Superradiant assembly of atoms (r » m)

In this case both 5 and c modes can be treated
classically. Replacing b and c by (exp(- —,'i&a, t)
and q exp(-,'i~, t) respectively, we get the Hamil-
tonian

it is found that
(3.20 ) H = g &u&a&~a& + Z (p&g "ge' 0'a&+ H.c.) . (3.28)

~A

b =b, exp(- pBt -ieBt)+ terms in a~,

a, =a„exp(-i~, t)+y»b, + + A.»a„,

(3.21)

(3.22)

This gives the exact solution

k~' +r&&. (3.29)

yac=P&*in*(~~-~.) '(e '""'-e ' ") (3.3o)
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which leads to

n«(t) = 8ve'&u«0&v« 'V 'le x„,I'(r'-m')
x ((u« —(uo) 'sin'2 (&u« —(uo)t, (3.31)

(3.32)

Xar(f~«f t) =T»(0) expI ~ ~«u«exp —Z~«*+«~
j
(4.8)

p is then given in the Weyl representation by

p'=, e-' 4'e.e-" e-"e- '")X .((-e,), t),
We note that the radiation rate (d/dt)Z«n«(t) is
constant in time and proportional to square of
the number of atoms, as is expected for super-
radiant emission.

and in the diagonal representation by

&= f IId*ad ((a.), t)l(a.))«a.)l.

(4.9)

(4.10)

IV. COHERENCE PROPERTIES OF SPONTANEOUSLY
EMITTED RADIATION

Our solutions (3.9), (3.10), (3.21), (3.22), and
(3.29) of the equations of motion contain complete
information about the system. We can use these
to find the reduced density operator for any mode
of radiation or for the complete radiation field.
Our procedure is to first find the normally ordered
characteristic function"'"

!t&«(z, t) = TxfP(0)exp(za, )exp(-a*a«)], (4.1)

where p(0) is the initial density operator of the
system. The. reduced density operator for the k
mode, p, , is then given by the Weyl representa-
tion by26«27

tc=e 'f d'eX„,(-e, t)e "e"ae ' '", (4.2)

where the composite weight function P(f n«), i) and
the coherent state ~(o«]) are given by

~((~,), f)

Case A: Highly excited assembly of atoms (m = r )) 1)

Initially, if m =x -R, we have R particles in
the c-mode and no photons, present, then the
initial state can be written as ~i) = ~A, vac). Equa-
tions (4.1) and (3.10) and the identity,

A B B A f&,B) (4.12)

= ..., m
' d'zI exp -z&n&*+a&*n& X& z»t,

a„a~ = n, n~ (4.11)

and in the diagonal representation by' ' '

p, = f4'a p (a, t)la)„(al,

where"

P (a, t)=e 'fd'eXa(e, t)exp(ea —e a)

(4.3)

(4.4)

for operators A and B satisfying [A, [A, B]]
= [B,[A, B]]= 0, give

x)p«(~) &) = exp(- I(~r«~ I!')&dd (lr r«~ I') )

where

i,()= g [s! (B-n)!]-B!( x).

(4.13)

(4.14)

and j o)« is the coherent state for the 0 mode de-
fined by~8

is the Laguerre polynomial.
On writing X «t«(z, t) in the form

a~& &a=& &n ~ (4.5)

The occupation-number-space matrix elements
of the density operator «(m ~ p» ~n)«can be obtained
directly from Eq. (4.3). The coherence functions,

&«( '"l —= Tr [p(0)a™a"]= Tr(p a™a„",) .
can be obtained either by using the identity

(4.6)

1'"'" = (s/s&) (-8/s&*)"X (& t)l.=.*= (4 7)

or by using (4.3) and (4.4).
To find p, the density operator for the complete

radiation, we first obtain the 'complete normally
ordered characteristic function,

(4.15)

Equation (4.4) gives

I'«(~ t) = (v&') 'l~«~l ' '"I~I~exp(- l~/r«~l') .

(4.16)

We note that the radiation is chaotic if R =0, i.e.,
if all atoms are initially excited. For other
cases, the light is not exactly chaotic.

Occupation-number-space matrix elements and
coherence functions are seen to be
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«&mlp«ln&«=~ .(&]n!) '(n+&)!Ir«AI"

x(1+I I')-" ~ '

Z"«(~ ) =5 (ft!)- (~yn)Ily«

(4.17)

(4.18)
'2

X ({ ]et) , t=( Z "re (4.27)

The complete normally ordered characteristic
function is given by

(Z' (1 1))
-«[1"(«. «) (1"(1 1)

)«] —1+ ft (4.19)

This is greater than the value for the chaotic
light. Thus, if an assembly of excited atoms
radiate, the radiation is chaotic initially, but as
soon as m decreases the spontaneously emitted
radiation no longer remains chaotic and the
fluctuations increase.

For the reduced-density operator of the com-
plete radiation, we get

'She normalized variance of intensity of radiation
in this mode is

(r, mlp"Ir, m&=(1 e"-)e, x=(u,/ki'. (4.28)

Equations (4.23), (4.24), and (4.25) then reduce to

A nonsingular compact P((o«), f) does not exist.
p is, however, known in the Weyl representation
and can be used to study any intermode correla-
tion.

An important and interesting case is that of an
assembly of atom in thermal equilibrium. If the
temperature is so low and the number of atoms is
so large that r~, »kT, the reduced atomic density
operator p" gives

e ({e], t) = fe'ee*(e —Zer:)e ' ~ (*I,(le]'),

(4.20)

t'({ee],t) (ett t) =' f e*tt IOI

x&.(~, &) = exp(-n«l~l'),

«(mlp«ln&«= 5.( +"«) " "«
(m, n) g i nm

where

(4.29)

X, , 6 ~k — y (4.21)
n. =(e" —1) 'Ir«sl' (4.30)

Appearance of 6 functions in Eq. (4.21) show that
the modes are completely coupled in the sense
that the intermode correlations are completely
determined from the correlation in a single mode,

+kA +kA

x eftr[p(0)s& &«tt«sz«"«] (4 22)

These equations show that reduced nature of the
emitted light is exactly chaotic with n& photons.

For the composite coherence functions, in this
case, we obtain

X ({*e],t) = fe *e (e g'"'r -)eett{.(e., 1) -l*
l
]- ''

k

(4.31)
which leads to

({ )t, t)=efet ee '(e -()ett'tt{-(e' '—1)]el']

Case B: Weakly excited assembly of atoms (-m = r » 1)

For this case, if m =-r+R initially we have
R particles in the 5 mode and hence p(0)
= lB,vac&(R, vacl. Inthis case, Eqs. (3.22), (4.1),
(4.2), and (4.6) give

(4.32)

Appearance of the 5 functions gives the complete
correlation of modes.

Case C: Superradiant assembly of atoms (r» m)

x&«k, &) = is(l~r«s I'),

.&m I p« ln&«

(4.23) For this case, the results are

X~«(~, &) = exp(~r«c -& *y«c); (4.33)

fe(«2) (fe(1.1))2—
I

I4 (4.26)

= 5 .[n!(& —n)!1 '&!Iy«el'"(1 —ly«s I')" " (4 24)

1' '" = 5 [R /(B ]-n) ]Iy] (4.25)

We do not get a nonsingular compact P«(o.) in this
case as the number of photons is limited to A'

{the initial occupancy of the f) mode) and hence
the field is a quantum one. This is also indicated
by a negative value of the variance of intensity,
we have

xar«(& ~) =~o(21&y«cl)

P«(~, &) = (»Ir«cl) '6(l~l —Ir«c I) .
(4.35)

(4.36)

P,(o, t)=5'(().-r ) ~ (4.34)

X„and I' are products of all X» and I'k. Since y„~
[given by Eq (3.30)] is .proportional to $q*, we
see that if $ and q have definite phases the super-
radiant states emit coherent radiation. If, how-
ever, the phases of $ and q are random, the above
equations modify to
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The emitted light in this case is not exactly
coherent but only amplitude coherent. " It has a
diagonal density operator. Bialynicka-Birula"
also showed that the radiation emitted spon-
taneously from a superradiant assembly of atoms
is amplitude coherent but, as the author con-
sidered only a single mode of radiation, his ampli-
tude is proportional to t and hence the number of
photons to t'. Our radiation field has total number
of photons proportional to I given by Eq. (3.32).

and is inversely proportional to square root of the
number density of atoms. Further, since

(5.4)

(because Ve~o«1 in view of our assumption of a
small volume V and p,„«&u,), we find that ~„«
the relaxation time p&'. For small time .«g&',
we can discuss separately the cases t «7„and
7&«t«p&'. The net induced emission is

(5.5)

V. INDUCED EMISSION AND SCATTERING

where nf~(t) = Iy„„l'(r +m + 1) for case A and

Iy, sl'(r -m) for case B. Here the first term gives
the initial photons and the second term gives
spontaneous emission. The third and fourth terms
which are proportional to n, represent, respec-
tively, the pure induced emission and scattering.
For case C, Eq. (3.29) leads to n~(t) =n,5„+ I a„cI'.
In this case we see that no induced emission or
scattering takes place. The former is explained
by the fact that the population in the upper and
lower levels is the same and so induced emission
is anulled by equal absorption. The latter is in

agreement with similar results of Ajai and
Prakash. "

If we consider the i mode only, Eq. (5.1) gives

n,. (f) =n, + 2ReA. ;,n, + IA.,-, I'n, . (5 2)

While the second term gives "pure" induced
emission, the third term may be called forward
scattering and the total effect may be called "net"
induced emission. We shall first discuss below
this total effect for the cases A and B. Let us
consider the incident frequency co; to be well
within the narrow band of frequencies emitted by
the atoms. For case A, it means l&u, —A„l«p,„.
For small values of t, such that t « the relaxation
time P„', &;, =-,'Ip, )l't'= ,' (f/v„)'; the cha--racteristic
time 7„ is given by

In Sec. Dt, we took zero for the initial number

of photons in each mode. We now consider the case
where some phoions are present initially and study
induced emission and scattering. For the sake of
simplicity, we assume that only one mode (the
incident mode i) is initially populated with n,
photons and tha, t the initial density operator is
diagonal. For cases A and B, Eqs. (3.10) and

(3.22) give

n, (t) =n,5&; + n;~(t) + 2Rek&;5„n, + IA~; I'n, , (5.1) (5.6)

and show that p, ~7~ «1. The "net" induced emis-
sion is then

(2Rex, , + lx, , l')n, =-,'~,"I'(f'-4~,') . (5.7)

For t & 27~, we note that the "net" effect is nega-
tive and is due to a large absorption of incident
photon by the unexcited atoms. For t & 27~, how-
ever, the "net" effect is positive and is pre-
dominated by forward scattering. The absorption
is proportional to t' and to Ts' (i.e., to the number
density of atoms) the forward scattering is pro-
portional to t' and to rs' (i.e., to the square of
the number density of atoms).

Let us now consider the photon scattered into
other modes also. For scattering at an angle 6),

we obtain using the usual procedure, the dif-
ferential scattering cross section

x.(I'Ix. ( I'(&+m)'[(&u; -&&)'+ wg]
'

xruo(e'""'+ 1)cos'8, (5.8)

& ~0(e '"&'+ 1)cos'8 (5.9)

For t «7&, the pure induced emission predomi-
nates and it is proportional to f' and to 7„' (i.e.,
to the number density of atoms). For v„«t «P~'&
the forward scattering predominates and it is
proportional to f and to 7„' (i.e., to the square
of the number density of atoms). For large times,
such that t » p&', our theory shall not give cor-
rect results as the assumption of high excitation
will not hold for all times.

For case B also, we can. define a characteristic
time v~ given by

~g= IP;hl '= [»~.c'l~g x„,l'(~+m)/V] ', (5.3)
for the cases A and B. We note that the cross
sections are proportional to the square of the
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total number of atoms. The resonant increase is
given by the factors [(w, —0»)'+ p„' s] '. For
the case A the cross section increases exponen-
tially with time, while for 8, the cross section
decreases and stabilizes to one half of its initial
value.
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