
PHYSICAL REVIEW A VOLUME 21, NUMBER 4 AP R I L 1980

Non-l, orentzian laser line shapes and the reversed peak asymmetry in double optical resonance

5. N. Dixit, P. Zoller, * and P. Lambropoulos
Department of Physics, University of Southern California, University Park, Los Angeles, California 90007

(Received 5 September 1979)

The interaction of an atomic system with a laser having phase fluctuations is studied within the phase-
diffusion model, with the finite correlation time of the time derivative of the phase taken into account. This
finite correlation time introduces a line shape which is Lorentzian near the center and falls off faster than
the Lorentzian at its wings. The authors apply this model to calculate the spectrum of double optical
resonance for excitation by a laser having this non-Lorentzian line shape. It is observed that the reversed
peak asymmetry reverts to normal far off resonance owing to the cutoff of the laser spectrum, in agreement
with recent experiments. Numerical results are presented.

I. INTRODUCTION

In recent years much work has been focused on
the theoretical understanding of the excitation of
an atomic transition by strong radiation of finite
bandwidth. ' ' One of the qualitatively new re-
sults has been the prediction of a reversed peak
asymmetry in the doublet spectrum of double
optical resonance (DOH)" and a sideband asym-
metry in the triplet of resonance fluorescence
(HF)" for off-resonance excitation. In DOH a
strongly driven atomic transition is probed by a
second, weak, laser-inducing populations to a
third unperturbed state, "" while in BF the fluo-
rescence spectrum of a two-'level system in an
intense laser field is observed. " The reversed peak-
asymmetry in DORhas recentlybeenobserved exper-
imentally by Hoganet al." In these experiments,
however, the reversed peak asymmetry persisted
only for detunings of a few laser linewidths, re-
verting to normal for larger detunings, whereas
theory —based on the assumption of a Lorentzian
laser line shape as given by the phase-diffusion
model (PDM) —predicts a reversed peak asymme-
try for arbitrary detunings. ' Physically, the re-
versal of the peak asymmetry is caused by the
overlap of the wing of the laser spectrum with
the atomic resonance, leading to an enhancement
of the two-step process in comparison to the off-
resonant two-photon asborption line. '" The dis-
agreement between theory and experiment may,
therefore, be attributed to the fact that the line
shape of the laser (pulse) was not Lorentzian in
these experiments; its wings were faDing off
much faster than those of a Lorentzian. " As a
result, calculations with a realistic laser spec-
trum should be expected to lead to a reversed
peak asymmetry only within a certain range of
detunings, because for large detunings one would
expect the laser to appear monochromatic to the
atom.

The purpose of this paper is to present a rigor-

ous theory of the interaction of an atom with
phase-diffusing laser light of non-Lorentzian leone

shape. The model employed in the calculation
allows for the fluctuation of not only the phase
Q(t) of the field but also its time derivative P(t).
If $(t) fluctuates over a time scale 1/P, the wings
of the resulting spectrum fall off much faster than
Lorentzian for detunings larger than P. As the
time 1/P tends to zero, the correlation function
of Q(t) becomes a 5 function, and the spectrum
tends to a Lorentzian. Thus by changing P we
are able to show how certain features of the peak
asymmetry in DOR arise from the long wings of
the Lorentzian.

These bandwidth effects can also be given a
different but equivalent interpretation by viewing
the process in the time instead of the frequency
domain. Knight et al. ' recently articulated this
interpretation, discussing the sideband asymmetry
in BF in terms of what they call the "reinitiation
of the transient response of the atom. " This con-
cept relies on the observation by Benaud et al. '
that the off-resonant spectrum of BF becomes
asymmetric if a coherent exciting field of finite
duration is turned on instantaneously. This is due
to the transient response of the atom, which is
also known to present peculiar features in other
contexts. " Based on this observation, Knight
et al.' suggest that fluctuations of the phase P(t)
of the laser field can be viewed as continually re-
inforcing this transient response and thus genera-
ting asymmetric sidebands in the stationary spec-
trum of RF. This interpretation is consistent
with the assumption of a 5-correlated time deri-
vative Q(t) of the phase in the PDM, which for
off-resonance excitation implies fluctuations of
Q(t) over a time scale 1/P much faster than any
other time scale of the problem. In particular,
this means a fluctuation time 1/P much faster
than I/&, which is the time scale associated with
the detuning 4 from resonance. Thus we have
1/P «1/& or P» &, which of course is related to
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II. STOCHASTIC LASER MODEL

We consider a laser field with stochastic phase
Q(t), constant amplitude z„and mean frequency

In accordance with the laser theory of a
single-mode laser far above threshold, we as-
sume the phase to obey the Langevin equation"

dP(t)/dt =5 (t), (la)

where &(t} is a Gaussian random force with cor-
relation function

Thus $(t) obeys

—&(t)+ p s(t) =E(t) (1b)

where I' is a 5-correlated Gaussian force fulfill-
ing

the assumption of an instantaneous pulse rise
time of Renaud et al."

In view of the recent discussion of the role of an
instantaneous versus adiabatic pulse rise time in
off-resonant multiphoton ionization by Theodosiou
et al. ,

" one would expect the transient effects
and therefore the sideband asymmetry in RF to
be much smaller for an adiabatic turning on of
the electric field far off resonance. For the same
reason one expects a finite fluctuation time I/P of
Q(t) to lead to a less pronounced sideband asymme-
try for b. »P than a 5-correlated P(t). The same
argument applies of course to the reversed peak
asymmetry in DOB. The connection between the
two interpretations in the time and frequency
domains is established in Sec. III, where we note
in detail that a finite correlation time 1/P of Q(t)
in the PDM corresponds to a cutoff of the Loren-
tzian laser line shape at frequencies P.

On the basis of these qualitative arguments, it
is evident that far off resonance the modeling of
a laser spectrum —which in its far wings falls
off faster than a Lorentzian —by stochastic models
with Lorentzian line shape such as the PDM is
bound to lead to erroneous results. A descrip-
tion of the excitation of an atomic transition valid
both on and far off resonance require's the study
of models with non-Lorentzian line shapes. In
fact, this is also supported by ideal-laser theory. "
After presenting the theory in Sec. II, we present
results in Sec. III on its application to DQR.

are discussed by Haken. " The meaning of these
parameters can be readily established from Eqs.
(1}: 1/P is the correlation time of the time deriva-
tive Q(t) of the phase, while b gives the bandwidth
of the field in the limit P —~. We will consider
P and b below as independent phenomenological
parameters. The spectrum of the laser described
by (1) is given by the Fourier transform of the
correlation function:

(exp[ted(t+ ~) —ty(t)1)

For b «P the spectrum is Lorentzian with width
b„=b and has a cutoff at frequencies P. In the
limit P -0 and b —~ with the product (Pb)' ' re-
maining finite, the spectrum becomes Gaussian
with width be = (Pb)'~'. Therefore we define,
albeit somewhat arbitrarily, an effective line-
width b,« ——b„bo/(b„+ be) and a line-shape param-
eter o, = b„/be, which for o, -0 gives a Lorent-
zian spectrum of width b,« ——b~, and which for
n —~ becomes a Gaussian of width b,ff AQ.

In the limit 13- ~, P(t) becomes 5 correlated,
and Q(t), according to (1a), obeys a Wiener-Levy"
process, which in the context of laser theory is
usually referred to as a phase-diffusion model
(PDM)." Below we adopt the name phase-diffu-
sion model for Eq. (1) with finite P as well.

The interaction of an atomic system with a laser
whose phase is fluctuating according to the PDM
leads in a natural way to the study of the multi-
plicative stochastic differential equation

—+A+if(t)B x(t)=0,~
~

dt

where A and B are constant matrices and x(t) is
a vector containing the dynamical variables of the
system, whose averages (x(t)) are required. In

particular, we note that, for example, the den-
sity-matrix equation and the equations for atomic
correlation functions are of the type of Eq.
(3).'"" Furthermore, an equation formally
identical to (3) is encountered in the description
of the interaction of an atom with a real Gaussian

An equation of the form (3) has been considered
by Fox, van Kampen, ' and Wodkiewicz'0 for the
special case of a Gaussian 5-correlated Q(t)
(P - ~). They find that the averages (x(t)) obey
the equation

(F(t)F(t')) =2bP2b(t —t'). —+A+bB' (x(t)) =0 P-
dt (4)

The phase P(t) is therefore a projection of a two-
dimensional Markov process characterized" by
the parameters P and b. Explicit expressions for
P and b in terms of fundamental laser constants

We will now generalize this result for a finite
correlation time of Q(t) =&(t). To this end, we
note that Eq. (3) together with (lb) describes a
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—+L, +A+iFB x S, t =0
dt

according to

tx(t)) f =Ace'(et),

I. is the Fokker-Planck operator"

a ~
a'

~=I'ar 't" ar"

(5)

Markov process. " The averages can therefore
be found by averaging the solution of'9

Note that the averages (x(t)) are given by (x(t))
=x'(t). Equation (8) will be the basis of our
analysis of DOH in Sec. II.

The physical content of Eq. (8) valid for finite
P, as opposed to that of Eq. (4), which holds in
the limit P —~, becomes more transparent by
transforming the system (8) to an equation for
the average (x(t)) alone. Taking the Laplace
transform

x" (e)=f Ate "x )t)"
0

of Eq. (8), we find
of the master equation (8/Bt+L)P(&, t) =0 corre-
sponding to the Langevin equation (1b). Equation
(5) must be solved under the initial condition"

x(s, t=O) =(x(t=O})P,(r),

1
x(s}= - (x(t=0)),

where K(s) is the matrix-continued fraction

(lo)

with

Po( tt) = 1/(2Pbm)' ' exp(-S'/2Pb)

K(s) =B B . (11)

s+P+A+B B2Pb
s+2 +A4+. . .

being the stationary distribution obeying I,P,(5)
=0. We solve Eq. (5) by expanding x(S, t) in the
complete biorthogonal set of eigenfunctions defined
by'

LP„(r)= Ag„(S)

Inverting the Laplace transform gives us the
integro-diff erential equation'4

(
d t—+A (x(t)) + K(~)(x(t —~))d~ =0. (12)

and

I.ty„(s) = ii„*y„(r).
For I given by Eq. (7) the eigenfunctions with
corresponding eigenvalues A„=nP are given by

P„(~)=P.(s)4„(5)
and

[~/(2Pb)'"]
$„(5:) B„(„„), (n 0 1, . . . ),

SB /

with H„being the Hermite polynomials. In this
way the partial differential equation (5} is re-
duced to the infinite system of the differential
equations

—+ nP +A. x" + iB[Pb(n+ 1)]' 'x""
dt

+iB(Pbn)' 'x" '=0 (n=o, 1, . . . )

for the averages

"(t) fAxB (x) (=x, t)
~ t)0

(B„[~«}/(2pb)'"1 (t))
(2nn ) )1/B

with

x"(t =0) = 5„,(x(t = 0)) .

(8)

The kernel K(r) clearly exhibits the memory
effects associated with the finite correlation time
1/8 of tI)(t). In the limit of rapid fluctuations of
P(t) (rapid compared with the time scale associ-
ated with A), the finite correlation time of K(r)
can be ignored (Markov approximation), in which
case (12) simplifies to

(13)

Equation (13) obviously reduces to Eq. (4) in the
limit P —~. For arbitrary correlation time,
Eq. (12) or, equivalently, Eq. (8) cannot be sim-
plified. We are able, however, to obtain an
explicit exact solution for (x(t)) in the stationary
limit [dx"(t)/dt =0] valid for arbitrary P. From
Eq. (8) we find that the stationary average (x(t))
obeys

[A. +K(s =0)](x(t))=0, (14)

where K(s =0}is the matrix-continued fraction
(11). It should be noted that, in general, K(s =0)
depends in a complicated way on the infinite
series of atom-field correlations, as evidenced by
the repeated appearance of different combinations
of P, A, and B in Eq. (11).

III. APPLICATION TO DOR

We apply now to DOR the theory described in
Sec. II. In DOH the Stark splitting of a strongly
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(
d + k2 p22 —z Q p12+ C.C.
dt (15a)

( k12 p12= z2Q p11+ 2'Qe p02~ 15b
dt

driven two-level atom (with the ground state
denoted by ~0), the excited state by ~1), and their
respective energies denoted by bur, & Sue, ) is ob-
served using a weak probe that induces a transi-
tion to another state (denoted by

~

2) with energy
A~2&ke, &kur, )."2n In particular, one observes
the population of level 2 as a function of the detun-
ing of the probe field. This is usually accom-
plished by detecting fluorescence from

~

2) or its
ionization. " The transitions ~0) —

~

1) and
~

1)
—~2) are assumed to be dipole allowed while

~0)
~

2) is assumed to be dipole forbidden. Let
E =a(e'n&'&e'"'+c. c.) describe the strong exciting
field, with P(t) obeying the phase diffusion equa-
tion (1), and let E'=c (e'"'+ c.c.) describe the
weak probe field, which for simplicity is assumed
to be monochromatic. With the assumption that
the probe field's weakness does not affect signifi-
cantly the strongly driven

~

0) —
~

1) transition
(p» «p„, p»), the equations obeyed by the slowly
varying density-matrix elements are"~"

(0.(i(t)/(2Pb)'"}p, , (t))
P3J (2nnt )1/2

obey

(k, + pn) p,",= —,'ill'p» + c.c. ,

T p + i[bP(n ~ 1)] / P
+ + i(bPn) /2Pn-

2ZQp12 ——2ZQ pp1

B„W"+iA(P» —p",,) =-k„b„,,
pn + i[bp(n+ I)]1/2pn+1+ i(bpn)l/2pn 1

——'iQW" =0,

(17a)

(17b)

(17c)

(17d)

(17e)

where B„=k,+Pn, R„=ih, +—,'k»+nP, S„=id,

ppo we have also made use of the re lation p11
+ poo=&. 0 ~

Our objective is to calculate p', ,= (p»(t)), since
the observed signal in DOR is proportional to the
population of the level 2 (p»(t)) (Ref. 11). From
(17a) this is given by

(p»(t)) = p,', = —,'i0' pn»/k, + c. c. (18)

Eliminating p» and W" from Eqs. (17b)-(17e), we
obtain

( + +1+ ~2 + 2k02 ~02 2ZQ p01+ 2zQe p12dt

(
d 1' . i$—+ k, p» ———2ZQe ~

po, + c.c. ,dt

(15c)

(15d)

(r„+,'n'/S„—)p"„+i[bp(n+ I)]'"p,"

y i(bpn)I/2pn-I+ it@I(I |fl2/S B )pn

+ n'i(Q'fl'/S„B„) p"„=0,

(R + '0'/B )p" + i[—bp(n+ 1)]' 'p"+'

(19a)

+z 1+2k01 p01 ——2 Qe P11 —Poo p

~ ~ (15e) + i(bpn)'/'p" ' —'(Q'/B -)p" = —-'iQ5„, , (19b)

where k„and k, are the spontaneous widths of
states

~

1) and ~2), respectively; h, =to —ur» and
62=a' —co» are the detunings, and Q=2p, „& and
0' = 2p, g' denote the Habi frequencies for

~
0)

—~1) and
~

1) —~2) transitions, respectively,
with p,„and p.» being the corresponding dipole
moments. k,.&

are defined by k, &

—k,. + k& with
k0= 0.

The stochastic nature of the phase &f& makes
Eqs. (15) a set of stochastic differential equa-
tions. ' One therefore needs to obtain the aver-
aged density-matrix element (p»(t)).

Defining new variables p„=p„e ' and p„
=pn, e '~, we transform Eqs. (15) into a stochas-
tic set of equations of the form of Eq. (3}. Using
Eq. (8}, we find that the steady-state averages

(R„*+—,'n'/B„)Pn, —i[bP(n+ 1)]'/'Pn"

—i(bPn) "P" '--'(n'/B )P" = 'inb- (19c)

Defining

r
P10

ff tfX = Pop

'F02,

yo = 21iQ

0,
(20)

and a„=bPn, we can rewrite Eq. (19) as

and taking the complex conjugate of Eq. (19b}, we
obtain the equation for p"„, viz. ,

(&.(0 (t)/(2Pb)'"}P. (t)) (18a)
I/~n i(a )I/ngn+1 i(a )&/n&n &

=y,5„, (n=o, 1, . . . ), (21)

where the matrix V„ is given by
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R ++ '0-'/8

-', n2/a„

'0—/It„

-(R +-', n2/a„)

0

(22)

--,'In'n2/SP„t-n'(1 ——,'tl'/SP. ) (T-„+,'fI'—/S„)

The solution of (21) for x can be expressed in
the form of a matrix-continued fraction:

p', o' '&p,o(t))

~'= p'., = &P.,(t))

(23)

Vp+

portional to the square of the intensity. There-
fore, in the case of monochromatic fields' the
two-photon line will be stronger than the two-step
line. This is known as the normal peak asymme-
try'.

Let h~ and h~ correspond to the heights of the
peaks of &p»(t)) which (for fixed ~,) occur for
larger and smaller values of 4„respectively.
Then h~ and h~ correspond to the two-step and two-
photon processes, respectively, for &,&0 and
vice versa for 4, &0. Thus with a monochromatic
exciting laser hv~A, s for +i 0 whi. le hv&&s r
4y ~ 0 . Def ini ng the asym me try param eter" & as

V3 + 0 ~ ~ A = (k~ —k~)/(k~ + k~), (24)

analogous to Eq. (14). Since the matrices p„are
nonsingular, there is no ambiguity in the form
of the solution in Eq. (23). Even though there
seem to be no general theorems on the conver-
gence of matrix-continued fractions, numerical
calculations indicate that convergence is achieved
with only a few terms for a wide range of the
parameters. For smaller values of P the conver-
gence is the worst, while for P —~ immediate
convergence is obtained after the first term.

Having calculated (p„(t)), &p„(t)), and &p„(t))
from (23), one can proceed to calculate (p»(t))
with the help of Eqs. (1Va), (17b), and (1Vd), with
n =0. This is done numerically, and typical
results are presented in Sec. IV.

IV. NUMERICAL CALCULATIONS AND RESULTS

We have calculated &p»(t)), as described in Sec.
III. The parameters chosen in these calculations
were k, =k, =1.0, 0=4.0, 0'=0.4, P =10, and
b =1.0. This corresponds to the line-shape pa-
rameter a =1/v10 and the effective bandwidth
b„,=~10/(1+~10)=1. For a fixed value of r „
&p»(t)) is plotted as a function of h~ in Figs. 1
and 2. When 0 «k„&p»(t)) exhibits a peak
around &,+4,=0, while for Q»k, the spectrum
becomes a doublet owing to Stark splitting. One
of the peaks occurs at &,+ ~, =0 and corresponds
to the off-resonant absorption of a photon from
each laser to populate leve12 (10& -""- I2)) (Ref.
8). We call this the "two-photon" process. The
other peak, which occurs near ~, =0, corresponds
to the "two-step" excitation IO)-" ll)"- I2) (Ref. 8).
For a monochromatic exciting laser (b = 0) the
two-photon line is proportional to the intensity of
the strong laser, while the two-step line is pro-

we clearly see thatA &0 for 4, &0, and A&0 for
4, & 0 correspond to normal asymmetry. "

When the exciting field has a finite bandwidth,
the two-step. process is enhanced by what can be
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FIG. 1. Laser spectrum and asymmetry parameter A
for DOR. "Exact" corresponds to the spectrum given by
Eq. (25) for b=1 and /=10, "Lorentzian" to the case
b=1 and/- . A=4.0, Q'=0.4, kg=42=1, b=1, and
P = 10 are used in the calculation of the asymmetry for
the exact case, while P = with the other parameters
fixed is used for the Lorentzian case.
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= l for all curves. (a)-(d) correspond to 6&= l. 0, 2.0, 5.0, and 10.0, respectively; in each,
0.'=0.2, 0.5, l.0, 2.0, and 5.0, respectively. For clarity, each of the curves is shifted by a
previous one.
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~'=0. 4, k&—- k2 ——&, and b,z&

curves l-5 correspond to
constant with respect to the

described qualitatively as the absorption of pho-
tons from the wings of the laser. This will gener-
ally cause the asymmetry to be reversed, since
the two-step process becomes resonant while the
two-photon process is still off resonant. There-
fore, for finite-bandwidth lasers with Lorentzian
line shapes, we have 4&0 for 4, &0 and A. &0 for
6, & 0. This has been demonstrated explicitly
in recent theoretical work. '

Now if the spectrum of the exciting laser falls
off faster than the Lorentzian, the absorption
from the wings of the spectrum will weaken
thereby reducing the enhancement of the two-step
process. Thus if the spectrum falls off sufficient-
ly fast, one should expect the asymmetry to re-

vert to normal, viz. , A & 0 for 4 & 0 and A & 0 for
6, & 0. This behavior is clearly demonstrated by
the laser model in Fig. 1.

The laser spectrum for the phase-diffusion
model described in Sec. I is proportional to

with y being the incomplete y function, and is
plotted in the upper half of Fig. 1 for b=1 and

P = 10. The corresponding asymmetry parame-
ters designatedas "exact" for b =1, and P =10
and "Lorentzian" for b =1 and P —~, are plotted
in the lower half. The Lorentzian spectrum with
b= 1 is also plotted for comparison.
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As is evident from Fig. 1, the asymmetry is
reversed for 4, «P. For ch,, »P the asymmetry
reverts to normal for the exact case, while it
stays reversed for the Lorentzian case, in agree-
ment with our preliminary and more qualitative
discussion in Ref. 20. The reversal of the asym-
metry to normal for larger detunings is explained
by the fact that the two-step process excited by
the wings of the spectrum is weaker owing to the
cutoff of the laser line shape. The asymptotic
values of A are +1 for finite values of P, while
for the Lorentzian line shape (P —~).

the laser spectrum is Lorentzian only for a few
laser linewdiths, the calculations performed with
the present model should have many applications.
For example, some of the results presented in
the literature for multiphoton ionization with a
Lorentzian spectrum would be affected by the non-
Lorentzian line shapes of the laser. Such a calcu-
lation based on the present model will be pre-
sented elsewhere.

ACKNOWLEDGMENTS

(k, + k2)k, —2b (2b + k2)

k, (k, + k )+ 2b(2b + k )

i~|i»k, 2b, k .

(26)

The authors acknowledge helpful discussions
with Professor A. T. Georges. This research
was supported by a grant from the NSF. One of
us (P.Z. ) acknowledges support from the Max
Kade Fourdation and the Osterreichische Fonds
zur Forderung der wissenschaftlichen Porschung
under Contract No. 3291.

For k, =k, =1 and b=1, A-~0.5, as seen in
Fig. 1. Because the present model does not in-
corporate intensity fluctuations, these results
for the exact case cannot be compared quantita-
tively with the experimental results of Hogen et
al. ," since the laser they used had some intensity
fluctuations as well.

In Fig. 2 we plot (p») for various values of the
line-shape parameters ~. Recall that for ~ -0
the line shape becomes Lorentzian, whereas for
e — the line shape assumes a Gaussian form.
Again we have chosen 0=4.0, Q'=0.4, k, =1=0„
and b,« —1.0 as in Fig. 1. In all parts [(a)-(d)],
curves 1-5 correspond to z =0.2, 0.5, 1.0, 2.0,
and 5.0, respectively. As can be seen from
Figs. 1 and 2, for smaller values of z the asym-
metry of the spectrum is reversed, while increas-
ing values of ~ cause the spectrum to revert to
normal for a fixed value of 6,. The parti, cular
value of z at which the asymmetry reverts to nor-
mal depends on the value of 4„since the more
physical comparison is whether a, »p or 6, «p.
The curves are plotted for 4, =1.0, 2.0, 5.0,
and 10.0 and exhibit the reversal to normal asym-
metry for smaller values of ~ an 4, is increased.
For clarity, each of these curves has been shifted
by a constant in the vertical direction relative to
the previous one.

In conclusion, we have demonstrated that within
the PDM model described in Sec. I the asymmetry
in the DOR spectrum reverts to normal far off
resonance when the wings of the laser spectrum
fall off faster than the Lorentzian. The atom sees
the field as monochromatic far away from the cen-
ter of the spectrum owing to the cutoff of the
spectrum described by Eq. (I). Since in practice

APPENDIX

The usual method of calculating a continued
fraction (CF) has been to truncate the CF and
evaluate it starting from below. However, this
method is cumbersome and time consuming for
checking the convergence of the matrix-continued
fraction (MCF). In this appendix we generalize
a standard technique for calculating ordinary
CF's to MCF's. ' This allows one to calculate
the MCF starting from the top in successive ap-
proximations with a minimum number of matrix
operations.

Consider a three-term recursion relation

cpXp+ dpXp i + epXp i —5p 0 Y'0 (p —0~ 1i ' )

Z~, = -b~,Z~+ a~Z, , + 5~i. (P =0, 1, . . . ), (A2)

where a~= d~'e~ and -b~=d~, c~, (P =1, 2, . . .).
Equation (A3) has the explicit solution for Z„

1
Zo ] a, .

bi+ b2+. . .
Successive approximations of (AS) can be found
from

(As)

Zo&
"& =B„iA„(r= 0, 1, . . . ),

in the sense that

Z, = lim S,'"& .
gw ce

(A4)

(A5)

(Al)
where c» d~, and e~ (e, =0) are n&&n matrices
and X~ and Fo are n-dimensional column vectors.
Equation (Al) must be solved for X,. Writing X~

Spy Pp with Z~ n x n matrices we see that, the
Z&'s fulfill
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A~., = bp„A~+ a~„A.~,
(P=0, 1, . . .),Bp., ——bp„B~+ a~„Bp

(A6)

The matrices A~ and B~ can be recursively calcu-
lated from

rvith the starting values A, =1, A, =O, B,=O,
and B,= 1. Equation (A4} together with (A6) con-
stitutes the desired set of equations. Equations
(A5} and (A6) can be easily proved by induction.
We have applied this procedure in calculating the
MCF given in this paper.

*On leave of absence from the Univ. of Innsbruck, Inns-
bruck, Austria.
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