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In calculating K-shell-hole production when an ion collides with an atom, account must be taken of the

fact that processes involving electrons other than the K-shell electron can occur. For example, after making

a K-shell hole an L-shell electron may be knocked into it, or an L-shell vacancy may be produced and the

K-shell electron promoted to that vacancy in the "Fermi sea" of the target-atom orbitals, In 1973 a theorem

was proved by one of the present authors demonstrating that all these multielectron processes cancel in an

independent-particle model for the target atom. In this paper it is shown that the same thing occurs for hole

production by charge transfer to the ion. The authors demonstrate that multihole production does not obey

this simple rule and that the probability for multihole production is not the product of independent single-

electron probabilities. The correct expressions that should be used for these processes are given, together

with new results for charge-transfer processes accompanied by hole production.

I. INTROOUCTION

An intensive theoretical effort has been made
recently to give some understanding of inner-shell
ionization and charge-transfer processes when a
fast projectile assumed moving on a classical pre-
determined path 8 (t) impinges on a target atom. '
Heliable ionization and charge transfer calcula-
tions for such systems as protons on hydrogen
have proven very difficult to produce. Analytic
approximation schemes' give errors difficult to
estimate and numerical schemes such as coupled
state methods are very time consuming. With
such difficulties for the simple system of a proton
on hydrogen it is unrealistic to think that progress
can be made by immediately going to the full multi-
electron calculation. It is imperative, at least
initially, to make some simplifying assumptions.
The most promising of these is an independent par-
ticle model approximation, to wit assuming that
the electrons have no interaction with each other
but interact with the projectile and target nucleus
with some average potential independent of elec-
tron configuration. To begin with, this treatment
is clearly exact for bare ions impinging on hydro-
genlike atoms. For many-electron systems it
consists of assuming the electron-target interac-
tion is some self-consistent Hartree-Fock poten-
tial. The advantage that inner-shell processes
have in this regard is that the most important
force is the electron nucleus attraction and screen-
ing effects are only of secondary importance. As
a particular illustrative example consider a fully
stripped oxygen ion impinging on a copper atom.
To calculate X-shell hole production in this model
we would assume that all the electrons move in the
Hartree-Fock field of the atom in its ground-state

configuration and in the pure Coluomb field of the
ion. Of course we make no assertion that such a
treatment is more than a first starting point for
a full many-body calculation. If the oxygen ion
captures seven electrons then the assumption that
an eighth electron sees the full ionic potential is
clearly grossly inaccurate. What is known is that
such an event is extremely unlikely in the medium
energy range of ionic collisions considered of in-
terest here. However in this paper we are not
concerned with justifying this independent particle
model but rather with developing the correct ex-
pressions to use in calculating cross sections once
this model is assumed.

Even with the assumption of independence one is
still faced with the requirement that the system
wave function be antisymmetric in the electron
indices. This correlation cannot necessarily be
ignored. If one is working in first-order pertur-
bation theory E-shell-hole production is correctly
obtained by calculating the process for the K elec-
tron to be lifted above the "Fermi sea" of occupied
target orbitals, i.e., the other electrons play a
passive role. This is because to excite an L-shell
electron and a K-shell electron involves two pro-
jectile-electroo interactions, which is beyond first
order. If one wishes to obtain a more accurate
expression for K-shell hole production one can cal-
culate the amplitude for an isolated K-shell elec-
tron to be lifted above the Fermi sea to higher
order, ignoring the presence of other electrons
completely. This is what is done in the treatment
by Basbas et al. ' with the idea of "increased bind-
ing. " However a little reflection will show that this
approach is not necessarily consistent because if
we go beyond first order, multielectron processes
are now of equal importance. We might first cre-
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ate an L-shell hole and then a K-shell hole not by
lifting the K electron above the Fermi sea but
rather by filling the L-shell vacancy. This will
add to the K-shell hole production cross section.
Alternatively, having created a K-shell hole it
could be refilled from the L shell. This would
subtract from the process. The complication of
such a calculational approach will be evident to
the reader. What is. needed is a simplifying idea.
This is provided if we first note that for K-shell
hole production we are concerned with only the
final state of the target K shell. Vacancies in the
other orbitals are irrelevant. Because of this it
is possible to use closure and prove a theorem,
viz. , K-shell hole production is correctly cal-
culated by ignoring completely the presence of all
the other electrons. The cross section is iden-
tical to that one would obtain by considering the
projectile incident on a single electron system
and calculating all processes, in which the elec-
tron is removed from the K shell to any orbital
not initially occupied in the original many elec-
tron system.

This theorem was proven in 1973.' lt has been
discussed by McGuire et al. ' It is the basis on
which higher-order calculations of x-ray produc-
tion rest. The proof given though was deficient in
tha, t charge transfer from the K shell to the pro-
jectile was not included as a possible channel.
And further the projectile was considered to be
initially a bare ion with no attached electrons. In
this paper (Sec. III) we rectify that situation. We
find that we simply have to add to the isolated
single electron excitation and ionization cross sec-
tions already calculated the contribution from
charge transfer to states not occupied initially on
the projectile. Indeed this is once again exactly
what has been assumed without proof by other auth-
ors.

The fact that for K-shell hole production the pro-
cess proceeds independently of the other electrons
might lead the unwary investigator to assume that
a similar result is true for all similar processes.
This certainly is not the ease for such simple gen-
eralizations as multihole production or charge
transfer accompanied by hole production in a speci-
fied state. In particular, if we introduce the nota-
tion that p,. is the probability for producing a hole
in the orbital state labeled by j, initially occupied
in the target, our first theorem states that

Here a„. is the amplitude for a transition from
state j to k and k is taken over all orbitals initially
occupied. It is natural in view of our proceeding
discussion to guess that the probability for pro-

ducing two holes in states 1 and 2, p», would be
given by p~2= p+2.

And indeed this is what has been assumed. ' How-
ever, the correct result is a determinant

Z asau

This is demonstrated in Sec. IV. The result for
producing n holes p». ..„ is the determinant of the
n by n matrix the ijth element of which is
(~ 'k Z k a 'ka 'k) '

Further, it is demonstrated that antisymmetry
also plays an important role in charge transfer
accom'panied by hole production. The expression
used to analyze the experiment of Cocke et al. '
is incorrect. This is done in Sec. V.

The importance of all these results is that it has
been shown that for ion-atom collisions all the
single electron amplitudes a;,. can indeed be cal-
culated very rapidly and accurately whenever, there
is asymmetry between the projectile charge and
the target nuclear charge. ' The methods have been
developed for ionization and this work is essential
to an understanding of charge transfer effects,
which have been demonstrated to play a part in
x-ray production. '

To prove the results that we wish it is necessary
to establish a theorem for the time dependent per-
turbation of a single electron system in the semi-
classical limit. As noted by Shakeshaft and Spruch'
there is an annoying difficulty with long-range for-
ces for non-neutral systems that are of interest
here. As a preliminary to the main results in this
paper we next examine this difficulty and produce
a prescription for avoiding it. We do not claim
this is the best solution to the problem, only a cor-
rect one.

II. ORTHOGONALITY AND COMPLETENESS

In the independent particle model for the elec-
trons the total wave function for the system, g~ ~,

is factored into an antisymmetrized product of
single-particle channel wave functions g„($,, t).
Here $, denotes position r, and spin of the tth elec-
tron. The label o. denotes the quantum numbers
of the orbital yt„~ (],, t) to which g~„'(g, , t) develops
as t- ~, i.e., when the projectile and target are
far apart. The states g~ ~ ($, , t) are usually thought
of as falling into three classes: the electron bound
on the projectile, or on the target, or in some
scattering state with specified asymptotic energy
and momentum. The superscript, redundant in the
first two eases, implies incoming spherical wave
boundary conditions. For Coulomb forces as we
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shall see these states warrant further discussion
which will be given below. In calculating the cross
section formulas in the following sections we will
need to evaluate sums over a complete set of g~„) .
Hence an important question to be dealt mith is
what comprises a complete orthogonal set of sys-
tem orbitals g'„' at time t. We first discuss the
completeness and orthogonality of the g~„'($, , t).
Having established this, the completeness and
orthogonality of the g'„i(],, t) then follow from the
unitarity of the time-development operator. That
is, (g~„', (j)t8') is a constant (independent of time)
and so therefore e(luals (y~„), it~8) ).

The only solutions of the time dependent Schro-
dinger equation which have been shomn to be ortho-
gonal and complete are stationary states. Kato"
has shown the important property that the Schro-
dinger operator is self-adjoint, and Ikebe" has
proven that the bound states and scattering states
of a fixed time independent potential are orthogon-
al and complete. .oollard' extended these consid-
erations to scattering with Coulomb forces. It is
homever easy to show that mith Coulomb forces
all the states y~„) ($, , t) cannot be stationary or
therefore mell defined by the label e. The problem
lies firstly with the infinite in number, barely
bound Rydberg states. Consider the system under
discussion to be a bare ion charge Z~ incident on
a hydrogen atom, and let us consider the electron
to be left on the proton in some high Bydberg
state. For the ion at some large finite distance A
from the proton, there will be an infinite number
of Rydberg states, principal quantum number n
greater than n„which have a binding energy less
than the perturbing attractive ionic potential. Here
n, is defined by

e'/(2a~, ') =Z„e'/Il .
An electron placed in such a state mill have no
difficulty in tunneling away from the proton and
eventually ending up on the ion. And even as R
is increased arbitrarily large the long-range na-
ture of the Coulomb force assures an infinite num-
ber of levels arbitrarily close to the continuum
of the proton-electron system that mill not be in
well-defined bound states, and therefore not in
stationary states as the ion moves. . A similar
statement may be made about the lorn-energy scat-
tering states of such a system.

Of course these Rydberg states will rarely be of
any importance in any physical process. They are
merely a mathematical inconvenience, but one that
must be dealt with nevertheless if we are to pro-
ceed in an orderly fashion. A simple may out of
this difficulty is to adiabatically stop the ion at
some large but finite time t~. Because we wish
to preserve time reversal symmetry we also as-

sume the ion is slowly accelerated from rest ini-
tially before the collision at some time -t~. The
electron is nom moving, for times greater than
t~, in a fixed static potential, V(t~), provided
by the proton and ion, both at rest a large but fi-
nite distance away from each other. The electron-
ic bound states and scattering states of such a
system are now clearly defined and give the set
y(„)(],, t). That is they are eigensolutions of the
Schrodinger equation

mith definite energy F.~, satisfying the boundary
condition specified above. The time dependence
of these states is simply exp( iE„t/-5). Ikebe"
has shown such a system of states to be complete
and orthogonal. The "deeply" lying bound states
can be made arbitrarily close in all characteris-
tics to the isolated proton-electron an'd ion-elec-
tron bound states that are usually regarded as the
"final states" of a scattering process. Further,
as long as the ion is slowed down adiabatically
"shake off" processes may be made arbitrarily
small. Of course the barely bound states of the
isolated system will depend on t~ and the slowing
process but if these are not of physical interest
then that is of no concern. We should also add that
in reality the projectile is often accelerated or de-
flected before the electronic state is measured.

Having established that y~„) (], , t) are complete
and orthogonal the uniqueness and unitarity" of
the time, development operator U assures that
(j)~„) (&, , t) will be well defined, orthogonal and com-
plete, e.g. ,

= &(c(,P).
An alternative approach to the problem is to

replace all Coulomb forces in the system by some
cutoff potential. If the reader prefers this ap-
proach the proof of orthogonality proceeds smooth-
ly. There is now no problem with high Rydberg
states as there are none. The only tricky thing
is to prove that the scattering states are ortho-
gonal to the bound states. First we must demon-
strate that the scattering states are stationary.
We define a state to be stationary if it has definite
energy. Thus the hydrogen atom moving with re-
lative velocity v with respect to a fixed frame is
considered stationary even though it has a time
dependence other than exp( iE„t/5). The -station-
ary nature of the scattering states may be estab-
lished by using the multiple scattering expansion
for two potentials asymptotically far apart. ' The
orthogonality can then be established by showing
that in the region of the target X~„' behaves like a
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target scattering state and in the region of the pro-
jectile it behaves like a projectile scattering state.
We do not give more details here as we find the
cutoff method lacking in aesthetic appeal.

Finally we remark that in the coupled-state ap-
proach to the problem the fact that the channel
wave functions are orthogonal and complete has
been used since the development by filets and
Gallaher' of the "unitarity check" which is merely
an assertion of the same result in a different lang-
uage.

Having given our reasoning as to why the
g(„'(],, t) are orthogonal and complete we now apply
this result to the much more interesting physics
problem at hand.

III. E-SHELL-HOLE PRODUCTION

As stated in Sec. I, we wish to determine the cor-
rect expressions for the probabilities of various
inner-shell-hole production and charge-transfer
events, in the independent particle model but allow-
ing for antisymmetry. In the independent particle
model the initial (t& -t~) state of the target is de-
scribed by a determinantal wave function Q(g„. . .
(», t)(N!) '~'. This is the determinant of a Nx N
matrix the ijth element of which is X("($&,t). Here
Xr((, , t) is the ith single particle bound-state wave
function of the target, and (,. as stated in Sec. II
gives the space and spin coordinates of the jth elec-
tron. There are N electrons initially bound to the
target nucleus. Note that in the independent par-
ticle model a state of the system is specified by
stating which orbitals are occupied. For the tar-
get initial state we are considering the orbitals
X, . . .X,„are occupied.

For a bare (structureless) projectile incident
on a target in the above independent particle model
initial state, the scattering amplitude for producing
a final state 0. ~ q is given by

{Ij,
(-) (( t). ..y(-) (( t)

x y(&„.. .&., t))(N!)-"'.

Here, and in the following, the time t is to be taken
such that t& -t~. (As defined in Sec. II, -t~ is the
time in the adiabatic approximation approach at
which the target and projectile are slowly acceler-
ated from rest. ) The final state n )) is speci-
fied by stating the single particle wave functions
(either target bound orbitals, projectile bound or-
bitals, or continuum orbitals) that are to be oc-
cupied at t& t~. We have used the idempotent pro-
perty of the antisymmetrizer to write the expres-
sion for the amplitude so that a simple orbital
product, not a determinant, appears on the left
in the inner product.

We first calculate the probability p, of produc-

ing a final state in which there is a.K-shell hole
(in a particular spin orbital X, ) in the target, but
where the final state of the system is otherwise
unrestricted. %e denote by g~1 the target K-shell
spin orbital which we require to be occupied ini-
tially and to be unoccupied in the final state of the
system. Then p, is given by squaring A„... and

summing over all final-state orbital occupations
"g, except the restriction is imposed that the

orbital X, in which the K-shell hole is to be cre-
ated must notbe occupied in any of the e .p in-
cluded in the sum, Kith the notation that

P«=S' (&,', t)S' (&„t)

we obtain, on using the closure property estab-
lished in the previous section to evaluate the sum
over final-state orbital occupations,

N N

P1 d i,„,d i 1y ~ ~ Nyt
i=1 i =1

x ) (t(&.,'. ,.&,) -P )y(&„.. &„. t)(N!)-'.

We have used primed and unprimed (, 's to denote
the two separate integrations over coordinates in
the A„*... and A ...„ factors appearing in p,

Since P«P«p(]„. . . $», t) produces a function
which is symmetric in the indices g,

'. , (I, ,whereas
P(]'„~$», t) is antisymmetric in these indices,
matrix elements of the form (p, P,Q„(t)) are.
zero. To see this in more detail, use the idempo-
tent property of the antisymmetrizer to replace
the antisymmetrized (determinantal) function on the
right in Eq. (2) by a simple orbital product

N N

P1 d i d j (1P ~ ~ ~

i=1 =1

x I5(~'. , ~,). . .P ~]X (~ t) ~ ~ ~
X (g t).

j= 1

Terms of the form (P, P„P«P) thus becom. e

(P, P«P«Q) = (tl'x ~ Xjg(pi ~ X()

x {y~((~' ' ' g», t), X~ (g~, t)

...~(-) (~~ t). . .q(-)(~( t)

X„(4,t)).

In the last factor p is antisymmetric in g,
'. , (,'. ,

whereas the function in the right is symmetric in
these indices. Hence the integral is zero.

With the above observation, Eq. (2) for p, re-
duces to
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p, = IIdf; ?Id','P*(hl, '''k', i)
i'=1 i=1
N

~ j. [&(&,', &;) —gP„.[, (t,', $, ) l.[x,'(~;, f)
j=l k=1 j~k i=1

Using the orthogonality of the yr(], , t), this then
can be written

N

p, =l —Q Ia„l', (6)

where g~ is the one-electron matrix element, g~
= (g~, ~, Xr), and the sum on k is over all orbita, ls
initially occupied in the target. We note that Ia»I'
is the probability of the electron initially in orbi-
tal k being scattered into orbital 1, the orbi-
tal where the K-shell hole is to be produced.
Thus we may interpret p, as the probability
of not scattering any electron into the orbital &1,
including the electron originally in this orbital.
Alternatively. , using time reversal, i.e. , la„l'
= Ia;, I', we may interpret p, as the probability of
not scattering the K-shell electron into an initially
occupied orbital. Using the completeness of the
target bound orbitals, projectile bound orbitals,
and the continuum orbitals, we can also write

p, = Q la„l', ( 1)
k&N

where the symbol k runs over the unoccupied bound
orbitals of the target, the bound orbitals of the pro-
jectile, and the continuum orbitals. This expression
says that the probability of producing a hole in the
initially occupied orbital X~1 is just given by the
sum of the probabilities of exciting an electron
from this orbital to any of the initially unoccupied
orbitals of the projectile-target system. This is
exactly the cross section one would calculate if
only a single target electron were interacting with
the projectile. This result is the generalization
to include charge transfer of the one previously
obtained. ' Calculations in the independent particle
model' have been based on it though the derivation
has not been presented before. Note that the ex-
pected value of the number of K-shell vacancies,
as opposed to the probability for a hole in a speci-
fic K-shell spin orbital (labeled 1 or 2 for the two
spin states), is given by p, +p, = 2p, for spin in-
dependent forces.

This becomes clear if we consider the following.
The probability p, is of course inclusive of pro
ducing two holes in the K shell. Thus with the no-
tation described above the probability for produc-
ing one hole only in the K shell (state 1) is p, —p».
Similarly the probability for producing the other
hole only (state 2) is p, —p». The probability for
producing two holes is of course p». This latter
process leads to two holes (and therefore possibly

tsvo x-rays); the former two processes lead to one
hole. Hence as stated above, the expected value
for the number of K-shell vacancies isp, -p„
+Pa P»+ P 13 P1+P2 2P1.

Of course everything we have proven for K-shell
hole production applies equally well to any other
state. It would be difficult, however, to justify
the independent particle model for the outer elec-
trons and there would be important correlations
other than antisymmetry.

Lastly we remark that there is no meaningful
distinction in our formulism between target states
and projectile states. Thus systems in which
several electrons are initially present on the pro-
jectile give the same result as Eq. (6) but now we
should consider the sum over k to run over all the
states initially occupied both on the target and pro-
jectile.

IV. MULTIPLE-HOLE PRODUCTION

In Sec. III we demonstrated that other electrons
may be ignored for single-hole production. Here
we demonstrate that this independence is true for
two-hole production if the spins of the electron
holes are different; it is not true when they are
the same, e.g. , when we have in mind creating
simultaneously a K-shell and L-shell hole with the
same spin.

To calculate the probability of producing a hole
in spin orbital g~1 and also in g~2 we, as in Sec.
III, square A ...„and sum over all final orbital
occupations that correspond to holes in g, and X, .
That is, we exclude from the sum those orbital
configurations that have either (or both) of gr, or
gr, occupied. The closure property of our complete
orthogonal set of single electron orbitals can again
be used to evaluate the sum. Defining the operator
P@ analogous to the operator P„- in the previous
section we obtain the probability p» for producing
holes in each of spin orbitals 1 and 2 as

N Np„=, d$, . [d$,'P*($'„'' $'„, )

x ..., (~(&, , &,
') -P„-P,) ...[~,"(t,, i).

This may be simplified by the same methods used
previously to

N

p,.= 1 —Q(la„l'+ la I')
t —1

+ /de, [.d$,'P*($,', . . .4, t)

Q (P„.P~+Pz P»)
k&j

N N

&& ].I ~(('., $.) IIx ($, f).
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Here we use the notation a@ = (g~, ~, yr), in analogy
to the previous definition for a„. The last term
in Eq. (9) is of a type not previously encountered.
Writing it as B we note

ajj Q2i -ali Q2j al Q2 ~

To simplify the notation in the following steps we
let E(i,j) represent the expression being summed.
Thus

(10)

Even for holes in orbitals of the same spin the
result of Eq. (13) is obtained if the antisymmetry
requirement is not imposed on the wave functions,
i.e., if the electrons are treated as distinguish-
able particles. Equation (12) thus shows that the
correlation produced by antisymmetry has yielded
a probability p» which is always less than the
simple product of independent probabilities one ob-
tains if antisymmetry is not imposed. The pre-
cise amount by which p» differs from p, p, will be
answered in numerical calculations now being per-

' formed by the present authors.
The generalization of the result of Eq. (12) to the

case of many-hole production can be inferred by
viewing p» as the determinant of the matrix M,

(14)

i=1 j=i+1 i=1 j=f

The latter step follows as E(i,i) is zero. Proceed-
ing, we write

Thus the probability of producing n holes, p, ...„,
is given by the determinant of the nxn matrix
whose matrix elements are M„. = 6,, +a„-a,
This gives, for example, that the probability for
producing three holes is

N 2 N

p,~ =p, p2p3 —~ al,.a2,. ps — ~ al;a3, p2

The latter step follows from noting F(i,j) = I' (j,i)
Thus we demonstrate that

N N N

P 2= —
lk

' — Q2k
' — alka2k

k=1 k=1 k=1

(12)
All sums are over the orbitals initially occupied.
The first term in this expression may be identified
as p,p, where p12 is the probability of forming a
hole in orbital 1 and p, is the probability of forming
a hole in orbital 2. The last term subtracts from
this and may be thought of as the probability of
knocking particle 2 into the hole 1, or vice versa,
through an intermediate state Imt. Thus the cor-
relation produced by antisymmetry destroys the
independence of probability for this process.

It is interesting to note for spin independent
Coulomb excitation that if the orbitals 1 and 2 are
of opposite spin (for example the two K-shell orbit-
als), then when a„ is nonzero a~, must be zero.
Thus in this case we recover

p12= plp2 y

N

Q a@a~) p~
—2 He

pa„a„pa &a„. pa a~) .
i=1 j=l k= 1

All sums are again over the initially occupied states
of the target projectile system. That this expres-
sion is indeed correct has been explicity verified.
For many-hole production it is the off-diagonal ele-
ments in M that prevent p, ...„from being given by
the product of independent probabilities p, ~ p„.
As far as we know, the result of Eq. (12) for two-
hole production, and its generalization to many-
hole production described above, has not been pre-
viously presented; it is a new result.

Our result, that for producing holes in orbitals
of the same spin the probability is not simply a
product of single-hole production probabilities, of
course alters the simple binomial form discussed
by several authors for multiple hole production. '
This binomial distribution arjses from writing

1=(l-'p+p)"= Q b p"(1-p)~ . (16)

the probability of simultaneously producing both
holes is just the product of probabilities for in-
dependently producing each hole.

Here p is the probability for producing a single
hole, in any initially occupied orbital of the tar-
get. Thus the term p (1-p)" is meant to refer
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to the probability of producing m holes (only m
holes; no more, no fewer). But our results show
that the probability of producing m holes is not
simply the m-fold product of single-hole produc-
tion probabilities.

We emphasize that our p, is the probability of
producing a hole in orbital 1, irrespective of the
final orbitals of each of the electrons. That is, in

pl are included all processes in which the hole in
orbital 1 is accompanied by none, one, or many
additional holes, and a similar statement can be
made about our multiple hole production probab-
ilities. But our formalism also yields expres-
sions for probabilities such as p„ the probability
for producing a hole in orbital 1 while at the same
time not producing a hole in orbital 2. We can
write, for example, p, =p»+p,', which in turn says
that

N

p, = +la;I (( —p la I )+ pa„a; '. ((pI

Thus for p„as for pl2 there is an extra term
which prevents it from being written as a product
of the independent probabilities for producing a
K-shell hole and for scattering (perhaps elastical-
ly) an electron into orbital 2.

V. CAPTURE IN THE PRESENCE OF A HOLE

An interesting process is that in which a K-shell
hole in the target is formed, accompanied by cap-
ture to a definite orbital X~ of the projectile. Here
then we are interested in the amplitude A,

[Eq. (1)], where each of c. through q can take on

all values except the hole state X~l, and one of n
through g must refer to y~.

Let us first of all though consider just capture to
the orbital g~~, with no regard to the hole states
also being produced. This probability p~ is given
by summing ~A ... ~' over all final orbital occupa-
tions, but requiring that g~ be always occupied.
This yields

II«; II«:~*(~; "~'. t)
i = 1 i= 1

N N N"2&„II~«„&') IIx.'(~;)
j=l
N

= Q/a„. f'=-1 —p, .

That is, we simply add the probabilities for cap-
ture from all orbitals initially occupied. This re-
sult could have been deduced directly from Eq. (6)
by merely replacing the state 1 by state J through-
out the proof.

The probability p, of capture to the orbital g~
while leaving a hole in X, is given by summing

~A ...„~' over all final orbital occupations that
leave a hole in y, and X~ occupied. This yields

p; = Z I
„I'-g(x;(~;)x, (~, )

x;-(&;)x,(h&), y' (],.)a„.g~ (~,.)a„)

The last step follows as the term involving i=j
is zero. Proceeding,

N N N

p, = P la,.
I (( —P la .

I )
+ g a .a",

(19)

(20)

In this approximate expression p, is given by the
probability of the K-shell electron itself being
captured, plus the probability of capture from any
other state, for example the 1. shell, accompanied
by production of a hole in the E shell by any pro-
cess, for example ionization. In a recent set of
experiments Cocke «al. ' observed the production
of a K-shell hole accompanied by charge trans-
fer, for protons incident on Ar, Ne, O„and N, .
They interpreted their results (apparently on phy-
sical grounds) in the above approximation. They
further argued that the second term of Eq. (21) is
somewhat smaller than the first, and that their
results, approximately corrected for such effects,
could thus be interpreted in terms of capture from
the K shell. It will be of great interest to test the
validity of this argument, and further to test the
validity of the approximate Eq. (21) itself, by an
accurate evaluation of Eq. (20). Such numerical
calculations are being carried out by the present
authors. Note that there will be corrections to the

Here as before, if X~ and X, are orbitals of dif-
ferent spin we obtain a sensible uncorre1ated re-
sult, the first term in Eq. (20). The probability
for capture accompanied by two (or more) holes
may be deduced in a similar way.

Once again we could have deduced this result by
noting that it is nothing more than p, —p,~, because
if there is not a hole in state J there must be a
particle in it. Compare Eq. (20) for example to
Eq. (17).

As for our multiple-hole production cross sec-
tions, we believe the result of Eq. (20) to be new.
Note that if one takes only the ~a~,a»~2 term in the
last sum, and approximates 1-+,.„,~aJ' by unity
when multiplying ~a~, ~', one will get the equation

N

p', =la, ,I*+ +la„.l' ( —P la„l') .
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approximate Eq. (21) of the form ag,a»a~,.az, for
je1. These interference type terms contain the
elastic amplitude a» and thus may reasonably be
expected to be appreciable, compared to the terms
in Eq. (21).

VI. CONCLUSION AND DISCUSSION

We have extended the validity of the proof that
spectator electrons on the target may be ignored
in single hole production in the independent par-
ticle model to include charge transfer to the pro-
jectile as a possible mechanism. The probability
is that obtained by calculating all processes in
which the active electron is promoted to any state
not initially occupied on the target or projectile.
We have avoided the formal difficulties with the
long range nature of Coulomb forces by proposing
an adiabatic slowing to rest of the projectile and
target systems. We assert as physically reason- .

able that this will not materially affect most tran-
sitions of interest to the experimentalist. It may

therefore be left out of an actual calculation if de-
sired, i.e., the standard matrix elements' includ-
ing translation factors may be used in evaluating
charge "transfer to all but the most loosely bound
Rydberg states.

We have also demonstrated that the spectator
electrons do play a role in more complicated pro-
cesses such as two-hole production and this effect
must be taken into account.

The actual importance of. these results to real
processes is yet to be determined. Amplitudes
are needed for transitions between all initially oc-
cupied states of the system. These are fortunately
available with the U-matrix approach' already de-
veloped and we hope to present some comparisons
with experiment shortly.
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