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Photoionization cross section and resonance structure of Cli
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The photoionization cross sections for the 3p and 3s subshells of the ground state of atomic chlorine have
been calculated using many-body perturbation theory. We find significant electron-electron correlation
effects for both cross sections. Resonances due to the 3p'nd, 3p'ns, and 3s3p'np configurations, and
relaxation effects in the 3p subshell cross sections were also calculated.

I. INTRODUCTION

Accurate calculations of the photoionization
cross section for an atom test the atomic phys-
icist's ability to identify and understand physically
important correlation effects. Calculations have
recently been carried out on open-shell systems,
which theorists find particularly challenging, by
using methods such as the many-body perturbation
theory (MBPT) of Brueckner' and Goldstone, ' the
R matrix, ' ' and the random-phase approximation
with exchange (RPAE). 6'7

In this paper we present results for the photo-
ionization cross sections o(»d) of the 3s and 3P
subshells of neutral chlorine in an energy range
extending from the 3P"P threshold to 45 eV. At
present the only experimental data are ratios of
partial cross sections at one energy. ' However,
o(»d) for chlorine is interesting because there
have been several conflicting calculations' "all
of which include correlations. In addition, Har-
tree-Pock ealeulations have been reported. "

Our work is based on MBPT as applied to atoms"
using I.S-coupled states to separately calculate
the cross section for each final L,S-coupled chan-
nel. " Details of the theory are discussed in Sec.
II, with emphasis on new features of the calcula-
tion. These include a coupled-integral-equations
technique used to evaluate certain classes of elec-
tron-electron correlations to all orders.

In Sec. III we present numerical results for the
total o(»d) in both the resonant and nonresonant
regions and for the g(~) of selected I.S-coupled

»

channels. Comparison is made with results of
previous calculations. We also discuss relaxa-
tion effects and compare the ratios of our partial
cross sections at 21.2 eV with recent experiment-
al results. ' Conclusions and a summary follow
in Sec. IV.

II. THEORY

A. Perturbation expansion

We base our calculation on the electric dipole
approximation; spin-orbit coupling and other

relativistic effects are omitted. The prescription
for g(»d) is"

v(»d) = (4»»/c)ur Imo. (»d),

where Imn(»d) is the imaginary part of the fre-
quency-dependent dipole polar izability. " Atomic
units are used throughout, except where other-
wise noted.

The expansion for»». (»d) is developed for an
atom described by the Hamiltonian

H =Ho+H

where

and

Hp ', Q»t. i Z r, + V
i=I

H, = vi) — V xi (4)

V,„(r,t)

=Ecosoc&t

gz»

to H, . This term leads to an expression for
lm»». (»d) in terms of dipole matrix elements. .The
dipole length matrix elements are expressed as

&(t - t ) = &61+~» 14) (6)

where P, and P& are exact many-particle ground
and excited (continuum) states, respectively, and

Pz represents the excitation of the ground-state
electron P to the excited state k. Dipole velocity
matrix elements are formed when the right-hand
side of Eq. (6) is replaced by

The term v, &
represents the Coulomb interaction

between pairs of electrons, and the single-par-
ticle potential V(r, )accounts .for the average in-
teraction of the ith electron with the remaining
pf —1 electrons.

In the dipole approximation there is a perturbing
external electric field Jl z cos(a&t) which adds the
term
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Here Eo and E& are exact energy eigenvalues cor-
responding to P, and P&, respectively. Continuum
orbitals are normalized according to

I,(r) =re, (r)
=cos[kr+(q jk) In(2kr) ——,'m(/ —1)+&,], (8)

where V(r) q-/r as r ~; the cross section then
becomes

v(ar) =N" (Sm(o/ck) iz(P- k) i', (9)
Ilwhere & is a normalization correction" usually

close to unity, k =[2(&u I)]"'-, and I is the ioniza-
tion energy.

Our basis set consists of linear combinations of
determinants containing Pf different single-particle
states which are solutions of

(g)

k q

(e)

(h)

(12)

[--,'V' —(Z/r) + V(r)]y„=e„y„. (10)

The Russell-Saunders LSM~M~ coupling scheme
has been used throughout the calculation. Although
we refer to the MBPT series of diagrams, it
should be understood that the virtual and excited
states are LS-coupled wave functions and that there
is, in general, a different diagrammatic series
for each L,s-coupled channel "

The matrix element Z(P- k) in Eq. (9) is evalua-
ted by summing the series of open diagrams con-
taining one dipole interaction and any number of
perturbations of the form 8,.""Figure 1 illus-
trates typical terms in the perturbation expansion.
Exchange interactions have always been included.
The time ordering of the interactions proceeds
from the bottom to the top of the diagrams, and the
order of the correlation refers to'the number of
perturbations II,. When the dipole interaction
occurs first, the diagram contributes to the final-
state correlations (FSC), as in Fig. 1(b), and has
an energy denominator of the form

¹

D =
Cp

—Cy +4) ~ (11)

where e~, and e~, are the single-particle energies
of a hole-particle pair, and N is the number of
pairs excited. If the denominator in Eq. (11)
vanishes, it is evaluated according to

»m(D + Ai)-' = P(D-') —i~a(D),

where P indicates principal-value integration.
When the perturbation precedes the dipole inter-
action, the diagram contributes to the ground-
state correlations (GSC), as in Fig. 1(c), and has
an energy denominator of the form

ar'

D =Q(e~ —e, ). (13)

k

& f( y)ke

(i) (j)
FIG. 1. Diagrams that contribute to the matrix ele-

ment Z(p k). Dashed line ending with isolated solid
dot indicates matrix element of z. The cross indicates
interaction with the potential V(y). Other dashed lines
represent Coulomb interactions. Exchange diagrams are
also included.

Although our single-particle states were cal-
culated in a Hartree-Fock (HF) V" ' potential "
the diagrams of Figs. 1(b), l(d), and l(e) do not
necessar'ily cancel one another (as they do in the
closed-shell case"), even if P and q belong to
the same subshell, and k and k' have the same
orbital angular momentum. This happens be-
cause P and q may represent electrons which cor-
respond to different ionic cores. These electrons
are excited to different channels k and k', each
with excited states calculated in V" ' potentials
corresponding the L,S coupling of the channel. The
diagrams of Figs. 1(b), 1(d), and 1(e) were evalua-
ted by the coupled-integral-equations technique
(described in Sec. IIC). Diagrams represented in
Figs. 1(f) and 1(g) were evaluated by the differen-
tial-equ3tion technique. No normalization terms"
were included in this calculation. In Ar they re-
sulted in a 2.3% decrease in the final cross sec-
tion, "and a similar small decrease can be ex-
pected in Cl.

We ensured orthogonality of the excited-state
wave functions with the ground-state orbitals of
the same angular momentum by including projec-
tion operators in the potential. " Typical values
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TABLE I. Resonance configurations and the final channels in which they occur.

Resonant configuration Final channels of occurrence

Dns D
~Dnd2D
'Dnd'P
'Snd'D
~Sns 2$
3P np 2D

Pnp P
P@p $
Pnp D
Pnp P
'I np'S

3P kd2D
3P kd2D
3P kd~P,
~D kd2D,

Pkd D,
3P kd2P,
1D kd2$
3P kd2D,
Pkd P,

'D kd'S,

3Pks 2P
~Dks~D, 3Pkd~D

Dkd D, Skd D Dks D
iDkd2P, 3Pks P

s2
Dkd D Skd D Dks D, Pkp D
Dkd P 3Pks P, Pkp P

~S ks 2$ 3P kp 2S

for the overlap between the ground- and excited-
state orbitals were 10 ' or better. .

Throughout the calculation we used experimental
3s and 3P removal energies from Moore's tables. "
Although the MBPT prescription calls for single-
particle energies, by using the available experi-
mental values at the outset we semiempirically
include the summation of certain classes of dia-
grams which shift the single-particle energies
towards their experimental values. "

B. Resonances

The energy denominator of a final-state correla-
tion (FSC) diagram may vanish when the bound
intermediate configuration is degenerate with the
continuum. When this happens, the bound con-
figuration contributes to resonances. Table I
lists the resonant configurations. which were in-
cluded in this work.

In previous many-body calculations" ""the
resonance structure has been evaluated by using
one of two techniques. In the first, the isolated-
resonance formulation, ""each resonance is
treated as though it were independent of all others
in the series. Figures 2(a) and 2(b) are split at
the virtual q-n state, and diagram segments such
as those. in Figs, 2(c) and 2(d) are inserted to
form a geometric series. [The horizontal line in

Figs. 2(b), 2(c), and 2(e) indicates an imaginary
contribution. ] In the second method, """an in-
teracting resonance series is formed by adding
diagram segments such as those in Fig. 2(e) to
the top of the diagrams in Figs. 2(a) and 2(b).

Most of the resonance structure for Cl was cal-
culated via the coupled-integral-equations tech-
nique (described below). The isolated-resonance
te chnique was used for cases where the inter chan-
nel coupling was estimated to be weak and where
there was sufficient separation in energy from
other resonant series that one would expect little
interaction between them.

C. Coupled integral equations

q I' 'f n

p)r Ik'

(a) (b)

(c)

FIG. 2. Diagrams and diagram segments associated
with resonances. Horizontal line indicates that the de-
nominator should be treated .according to —i'(D).

The 'I' ground state of Cl has a 3s'3P' configura-
tion. When a 3P electron is photoionized (3P- Ad

or 3P-ks), three core couplings ('S, 'D, 'P) and
three final couplings ('S, 'P, 'D) combine to give
nine possible channels. For each of these nine
channels sets of excited-state bound and continuum
orbitals were calculated in the unique V" ' poten-
tia1."appropriate to the I.S coupling of the channel.
If one then evaluates a first-order FSC diagram
such as Fig. 1(b), where P and q refer to the
same ionic cores, and k and k' represent states
calculated in the same potential, the two-electron
(Coulomb) interactions are cancelled by interac-
tions with the potential. " (We refer to these FSC
diagrams as being diagonal. ) However, when P
and q in Fig. 1(b) refer to different ionic cores,
and states 4 and 0 have the same angular momenta,
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P(

FIG. 3. Symbolic representation of the coupled equa-
tions for three-channel coupling. The double bar line
represents the correlated dipole matrix element.

the interaction with the potential vanishes. The
remaining Fig. 1(b) contributions (we refer to
these FSC diagrams as being nondiagonal) can be
comparable in magnitude to the contributions from
the lowest-order dipole matrix elements corres-
ponding to each outgoing channel. Therefore to
improve accuracy of the perturbation expansion,
the effects of these nondiagonal terms are calcula-
ted to infinite order. Core states appropriate to
a given final coupling are mixed by solving a set
of coupled integral equations for the unknown cor-
related dipole matrix elements corresponding to
each core.

The coupled equations are shown schematically
in Fig. 3 for the case of three-channel coupling.
The first line of Fig. 3 represents the equation

(„) g V, ,(k„k')D,(k')
( )

s~p n ~s ~a'+~

where D, (D,) is the correlated (uncorrelated)
dipole matrix element for channel s, and V~, is
the correlation-interaction (Coulomb) matrix ele-
ment between channels P and s. The sum over
high-lying intermediate bound states, usually
accounted for with the n ' rule, "is handled in
Eq. (14) by a back-extrapolation of the continuum
matrix elements into the region between the last
explicitly calculated bound state and k' =O. By
then making discrete the integral over intermediate
continuum states 4', the coupled equations of Fig.
3 become a matrix equation easily solved by
standard techniques. As applied to Cl, the labels
P, q, and r of Fig. 3 could represent, for example,
the three channels 'D jhow'D, SPY'D, and 'Skd'D
Any number of channels can be coupled but only if

the total I. and $ is the same in all cases. We note
that the coupled equations of Fig. 3 actually solve
for the K matrix. ""This procedure is also
equivalent to that of a close-coupling calculation
on the continuum orbitals. "

In practice, the lowest-order dipole matrix
elements were replaced by "effective lowest-order"
dipole matrix elements, consisting of the sum of
the lowest-order dipole matrix elements and all
first-order GSC diagrams as shown in Figs. 1(a)
and 1(c). These results then differ from a K ma-
trix or close-coupling calculation by including
ground-state correlations. This change enables
one to include terms from Fig. 1(j) and was found
to bring the length and velocity cross sections a
few percent closer than they were when these
terms were included perturbatively. The sum of
Figs. 1(h) and 1(i) when k and k' represent dif-
ferent sets of kd states was included in the coupled-
equations program by adding the appropriate
Coulomb matrix elements to the first-order
Coulomb matrix elements indicated in Fig. 3. The
portions of Figs. 1(h) and 1(i) for which k and k'

represent the same sets of kd states were evalua-
ted later, using fully correlated dipole matrix
elements generated from the code.
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FIG. 4. Total 3p kd, ks lowest-order HF o.{u) vs
photon energy past the ~$ edge. HFLR (HFVR) indicates
length (velocity) form of cr(cu) when relaxation effects are
included. HFL (HFV) indicates length (velocity) form of
0(cu) when relaxation effects are not included. SA indi-
cates the Starace and Armstrong (Ref. 6) RPAE cr(~).

III. RESULTS

A. 3p~kd, ks channels

Cross sections for each of the 3P- kd channels
were calculated twice, first using frozen-core
orbitals (of the neutral atom) which excluded re-
laxation effects, then approximating these effects
by calculating the excited-state orbitals in the
field of fully self-consistent ionic-core orbitals
('S, 'D, sP couplings). In Fig. 4 we have labeled
our lowest-order HF 3P- kd, ks o (&u) curves which
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TABLE II. Percent difference between length and velocity cross sections including corre-
lations for the kd2P, D channels at 16.62 eV {near the ~S edge).

Channel Unrelaxed difference (%) H,elaxed differ ence (%)

Pkd P
'Dkd'D

3P kd 2D

1.4
6

26
22

9

22
11
26
23

8

Includes correlations from coupled-equations method.
In all cases length results are greater than velocity.

include relaxation effects HFLR (length), and
HFVR (velocity); our o(&o) curves which exclude
these effects are labeled HFL (length) and HFV
(velocity). In Fig. 4 we compare these results to
those of Starace and Armstrong' (labeled SA)
in the region past the '$ edge. Our frozen-core
HF results indicate that at the '$ edge the 'P kg'D
channel contributes approximately 34% of the total
cross section as compared to 'D kd'P (16%),
'PAd'P (13%), 'Dkd'S (8%), 'D kd'D (12%), and
'SAd'D (11%). (After relaxation effects are in-
cluded the percent contribution of the individual
channels changes by less than 2%, but the HFL is
decreased by 7% and the HFV curve by 15%.) In
this energy range the 3p- ks channels contribute
a total of less than 3 Mb or 6% of the total o(~).
Our values for the contributions from each indivi-
dual 3p- kd, ks channel are similar to the HF
values presented in Tables II-IV of Starace and
Armstrong. ' In the frozen-core approximation,
the lowest-order Cooper minima" for the 'P kd
channels occur at about 46 eV, for the 'D kd chan-
nels at about 41 eV, and for the '$ks channel at
about 37 eV. The minima were within about 5 eV
of those values when relaxation effects were in-

eluded.
In the kd' channels, the largest diagrams are of

the form of Fig. 1(b), where P and q correspond to
different ionic cores and where the intermediate
and final excited states have the same angular
momenta (I =2) but are calculated in potentials
corresponding to the different ionic cores (non-
diagonal contributions). We include these impor-
tant diagrams to infinite order using the coupled-
integral-equations technique explained in Sec. IIC,
in which we also include the nondiagonal portions
of Figs. 1(h) and 1(i) (where P and q refer to differ-
ent ionic cores)'for all six kd channels. [The re-
maining portions of Figs. 1(h) and 1(i) were in-
cluded separately. ] Figures 1(h) and l(i) were
evaluated for s=3P, k =k"d, q=3P, and k =kd,
and also for s=3s, k =3P, q=3P, and k =kd.

The geometric means" of our final length and
velocity results (relaxed and unrelaxed) for the
five individual 'I' and 'D channels past the '$ edge
are presented in Figs. 5 and 6. Table II shows the
percent difference between the length and velocity
cross sections for all kd'P, 'D channels near the
'$ edge.

There is only one kd'$ channel, namely 'D kd'$.

TABLE III. Sum of the 3p kd, ks cross sections at various energies (jn 10 ~8 cm2).

Photon
energy (eV)

With relaxation effects
Lowest-order HF Correlated

Length Velocity Length Velocity

Without relaxation effects
Lowest-order HF Correlated

Length Velocity Length Velocity

16.62
18
20
21.2
23
25
27
30
32
35
40
45

56.14
51.66
42.60
37.22
29.98
23.17
17.51
11.03
7.75
4.45
1.61
0.57

37.05
88.80
26.41
22.46
17.82
12.71
9.11
5.80
3.54
1.89
0.70
0.36

35.91
36.13
35.38
34.32
32.06
28.45
24.17
17.40
13.01
7.87
2.88
0.88

34.00
34.71
31.62
30.10
29.57
23.34
21.46
12.89
10.94
5.16
2.19
0.68

60,40
51.10
38.79
32.48
24.33
16.97
11.31
5.87
3.64
1.69
0.68
0.42

43.06
35.60
25.92
21.11
15.17
10.13
6.49
3.18
1.95
0.92
0.50
0.45

. 39.40
40.10
89.38
37.81
33.94
27.52
20.33
11.52
7.17
3.19
0.93
0.38-

35.99
36.86
35.49
34.02
30.55
24.87
18.38
10.37
6.44
2.85
0.85
0.38

Includes correlations from coupled-equations method.
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TABLE IV. Batios of partial cross sections for Cl at 21.2 e&.

Final state ~
With

relaxatio nb

Without
relaxatlo n

Starace-
Arm. strong'

Geometric
ratio ~

Geometric
ratio e Experiment ~

Sp
~D length
~D ve1ocity
~S length
~S velocity

1.50o (1.5oo)
0.743 (0.702)
0.790 (0.834)
O.12S (O.176)
O.144 (O.X95)

1.500 (1.500)
0.685 (0.453)
O.71S (O.585)
0.106 (0.109)
0.124 (0.132)

1.50
0.57

1.500

0.833

0.167

1.500

0.802

0.159

0.81

0.16

~Multiplet of Cl'(3p)4.
Includes correlations from coupled-equations method. Lowest-order result in parentheses.

'BPAE calculation by Starace and Armstrong, Bef. 6.
d Simple geometric ratio.
'Improved geometric ratio, Berkowitz and Goodman, Bef. 32.

Photoelectron experiment by Kimura et al. , Bef. 8.

Hence, Fig. 1(b) with P, q =3P and k, k' ='D kd'S
and its exchanges cancels with Figs. 1(d) and 1(e).
The 3s3P"9 intermediate state contributes only to
correlations in the 'D kd'S channel; the dominant
first-order. correlation in the 'D kd'S channel is
Fig. 1(b) with q =3s and k =3p. When this correc-
tion is evaluated with the energy level of the 3s3P'
state taken to be the Cowan and Hadziemski" value
of -0.309378 a.u. , it has the same sign as the
lowest-order dipole matrix element and is slightly
larger in magnitude. Figure 1(b) is responsible
for the huge change shown in Fig. 7 between the
geometric mean'4 of the length and velocity forms
of the lowest-order HF o(~) for this channel
(labeled GHF and GHFR for unrelaxed and relaxed,
respectively) and the o(u&) including first-order
corrections (labeled GF).

Since the 3s-3p correction is so important,
the coupled equations were used to correlate the

3P - 'D kd 'S and 3s-3P dipole matrix elements to
infinite order, which resulted in a shift of the HF
curve by approximately 7.5 eV to the right. Based
on the Cowan and Radziemski" calculation, we
made an approximation of the energy shifts not in-
cluded by the coupled-equations technique. The
correction amounts to -0.022 901 a.u. and was
added to the AZ, c„, F» 3s'3p' —E»3s3p', to ob-
tain the energy actually used in the calculation.

The geometric mean'4 of the length and velocity
results of our total g(&u) for the 'D kd'S channel
is also shown in Fig. 7 for both the relaxed (GTR)
and unrelaxed (GT) calculations. The dipole length
and velocity results for each set of curves pre-
sented in Fig. 7 differ by less than 25% at the 'D
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FIG. 5. Geometric mean of the length and velocity
forms of our most fully correlated individual kd P cross
sections vs photon energy past the S edge. GPPR
(GDPR) indicates relaxation effects are included in the
P kd P ( Dkd P) channel calculations. GPP (GDP) indi-
cates relaxation effects are not included in the P kd P
( Dkd P}channel cal.culations.

FIG. 6. Geometric mean of the length and velocity
forms of our most fully correlated kd D cross sections
vs photon energy past the S edge. GPDB, GDDR, and
GSDR indicate relaxation effects are included in the
P dk D, Dkd D, and Skd D channels, respectively.
GPD, GDD, and GSD indicate relaxation effects are not
included in the Pkd D, Dkd D, and Skd D channels,
respectively.
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edge. Since the ks channels contributed so little
to the total o(&u), only first-order corrections
were included and only frozen-core ks states
were calculated.

Figure 8 compares the length and velocity
forms of the total 3P-ks, kd cross sections in
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FIG. 7. Geometric mean of the length and velocity
forms of cr{~)vs photon energy for the Dkd $ channel.
GHRF {GHF) represent HF values when relaxation ef-
fects are (are not) included. GTR (GT), represent our
most fully correlated values for 0(~) when relaxation
effects are (are not) included. GF represents the o(w)
after first-order corrections have been included (relax-
ation effects not included).

both the relaxed and unrelaxed forms. Figure 8
also shows the geometric mean'4 of the length and
velocity forms of o(v) for the HF calculation and
of o(e) after the first-order corrections were
evaluated. Near the '8 edge the final unrelaxed
results show a decrease in o(a&) by approximately
35% from the lowest order (HF) values and by
approximately 50% from the first-order values.
Beyond 26 eV, the total results (excluding relaxa-
tion effects) for o(e} tail into the first-order
values; the total o(a&} when relaxation effects are
included are considerably higher than our other
results in this energy range.

%hen photon energies are relatively low, the
kinetic energy of the photonionized electron is
correspondingly low and the photoionization pro-
cess takes longer than it does at higher photon
energies. Hence, at low photon energies the atom
has time to rearrange (relax), and one would ex-
pect the relaxed calculation to be more accurate
than the unrelaxed. At high photon energies the
unrelaxe d calculation is expected to be the mor e
accurate. Table III gives the values of our lowest-
order HF and total cross sections for both the
relaxed and unrelaxed cases.

B. 3s~kp, kf channels

The sum of the lowest-order (unrelaxed) HF
cross sections for the six Ss- kP channels is pre-
sented in Fig. 9 along with the sum of these cross
sections obtained when corre™lations are included.
First-order GSC diagrams were evaluated, and
ro-dependent (correlated) SP- kd and Ss- SP dipole
matrix elements were used to evaluate the dia-
grams of Figs. 1(b), 1(h), and 1(i). All other first-
order FSC diagrams were evaluated with lowest-

~ 5 I I I I I l I ~ I I I
~ I I I

I
I I I I

I
I I I I3.

3
g 30—

20— TYR

5.0—
3'

2.5- '

10—
ls
I

I
)

I
}

I
/

I
f

I
J

I
(

I
)

I
)

t

15 17 19 21 23 25 27 29 31 33 35
PHOTON ENERGY (eV)

FIG. 8. Length and velocity forms of the sum of our
final 3p kd, ks cross sections when relaxation effects
are included (TLR, TVR, respectively) and when they
are not included (TL, TV), respectively). Geometric
mean of the length and velocity forms of the sum of the
3p kd, ks cross sections are shown for the unrelaxed
lowest-order Hartree-Fock calculation (GHF) and after
first-order corrections have been included (GF). Res-
onance structure is not included in this figure, but is
presented in subsequent figures.

~2.0-

1.5-
b

0,5-

I I I ~

HFV
I

I
I I I I I

I I I I I
~ I I I

I
I

25 30 35 40 45
PHOTON ENERGY (eV)

50

FIG. 9. Correlated 0 (cu) vs photon energy for the sum.
of the 3s kp transitions. Solid line is length calcula-
tion, dashed is velocity. Lowest-order values are la-
beled HFL and HFV and are shown for comparison.
Resonance structure is not included in this figure, but
is presented in subsequent figures.
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order dipole matrix elements.
A comparison between our correlated 3s- kP

o(&o) and the HF result is similar to that" "in
Ar, where correlations produced a sharp in-
crease in o(&u) at threshold, in good agreement
with experiment. " The total cr(cd) for the kP chan-
nels dips to a minimum at about 39 eV, an energy
in the same range as the Cooper minimum" in the
3P- kd dipole matrix elements. Length and veloc-
ity agree to within 2% in the 'PkP channels near
the 'P edge, and to within 10% in the 'P kP channels
near the 'P edge.

In the dipole approximation there is no lowest-
order contribution to the 3s- kf cross section.
However, when first-order correlations are in-
cluded, contributions to the 3s-kf cross section
exist. The first-order correlations were evalua-
ted and were found to contribute approximately
10 ' Mb. Figures l(b) and 1(g) where q = 3P and
k =kd'D were sizable, but tended to cancel one
another. The analogous 3P- kg cross section is
estimated to be very small and has therefore been
neglected.
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~ co
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FIG. 10. Sum of 3g and 3p (unrelaxed) subshell photo-
ionization cross sections vs photon energy for Clx. The:
P and P edges near 25 eV are due to 3s photoionization.
Solid (dashed) curve represents dipole length (velocity)
matrix elements; dash-dot curve is from the calculation
by Starace and Armstrong Q,ef.6); open circles: La-
moureux and Combet Farnoux (Ref. 5) (length); cross
marks: Conneely (Ref. 9) (length); triangles: Cherep-
kov and Chernysheva (Ref. 7). Resonance structure is
not included in this figure, but is presented in subse-
quent figures.

C. Total nonresonant cross section

Our length and velocity results for the total
o(cd), the sum of the 3P- kcf, ks (excluding relaxa-
tion effects) and 3s- kP, kf subcross sections,
are shown in Fig. 10, where they are compared
with other calculations. Resonance structure has
been omitted. At the 'S edge our length and
velocity results agree to within 12%, and repre-
sent about a 41% decrease in the length form from
the lowest-order HF values. The decrease is due
to strong coupling between core states appropriate

to a given final coupling (e.g. , 'P, 'D, 'S for 'D).
The open-shell BPAE calculation of Cherepkov

and Chernysheva' differs from that of Starace and
Armstrong' between the 'S threshold and about 22
eV. The BPAE calculation of Starace and Arm-
strong' omitted coupling between final ionic cores,
and we believe that this accounts for the disagree-
ment with the other calculations. Beyond 22 eV
the two BPAE calculations" are in close agree-
ment and lower than the present calculation. The
g-matrix calculation of I.amoreux and Combet
Farnoux' and the close-coupling calculation of
Conneely' are in good agreement with each other
and somewhat higher than the present calculation
at high energies. Near the 'S edge our results are
in close agreement with the length calculation of
Conneely. ' However, his velocity calculation'
(not shown) is almost a factor of 2 lower Pr.e
liminary work by Armstrong using a multicon-
figuration calculation" and the K matrix to couple
the different outgoing channels shows very promis-
ing results and excellent agreement between length
and velocity.

Kimura et a/. ' have measured the ratios of the
'D and '$ cross sections to the P cross section
at an energy of 21.2 eV. A comparison between
their values and our results is given in Table IV.
%'e also include the BPAE results of Starace and
Armstrong, ' and the geometric ratio of Berkowitz
and Goodman" in this table.

It was pointed out to us by Berkowitzs' that the
ratio of the 'D and '$ cross sections to the 'P
cross section could be predicted very accurately
for Cl and also quite well for Br and I by means
of an intermediate-coupling angular momentum
treatment combined with spectroscopic mixing
parameters. These results are shown in the sixth
column of Table IV. Stimulated by the success of
the calculation by Berkowitz and Goodman, ' we
calculated these ratios by simply evaluating the
squares of the angular factors of the dipole ma-
trix elements of Eq. (6) using LS coupling. Our
geometric ratios, are shown in the fifth column of
Table IV and are in good agreement with the ex-
perimental ratios, although not as good as the
ratios of Berkowitz and Goodman. " %e justify
the use of the angular dipole factors to estimate
the ratios of cross sections by noting that although
cr(v) is inversely proportional to k as shown in
Eq. (9), Z(P- k) is proportional to k'I' for small
k so the dependence on 0 can be neglected to a
first approximation.

Although the ratios of the 'D and '9 cross sec-
tions to the 'P are given remarkably well by these
geometric ratios, it is difficult to see how they
can be used to predict total cross sections over a
wide range of energies. For example, if we take
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TABLE V. Ratios of the ~D and ~S cross sections to 3P at various energies. ~

&D ratio ~

Photon
energy

(eV)

With relaxation effects
Lowest-order HF Correlated"

Length Velocity Length Velocity

Without relaxation effects
Lowest-order HF Correlated"

Length Velocity Length Velocity

18
19
20
21.2
22
23

18
19
20
21.2
22
23

0.82
0.67
0.55
0.45
0.40
0.35

0.24
0.18
0.14
0.11
0.09
0.08

0.97
0.82
0.70
0.58
0.53
0.47

0.25
0.20
0.16
0.13
0.12
0.10

0.66
0.66
0.67
0.68
0.70
0.72

0.11
0.11
0.11
0.11
0.11
0.11

0.69
0.68
0.70
0.72
0.74
0.76

~g ratio ~

0.14
0.13
0.13
0.12
0.12
0.12

1.1
0.95
0.83
0.70
0.63
0.55

0.32
0.27
0.22
0.18
0.15
0.13

1.2
1.1
0.96
0.83
0.76
0.68

0.31
0.28
0.24
0.20
0.17
0.15

0.79
0.77
0.75
0.74
0.74
0.74

0.15
0.14
0.14
0.13
0.12
0.12

0.85
0.82
0.80
0.79
0.79
0.78

0.18
0.16
0.16
0.14
0.14
0.13

Ratios shown are 1.5 times true ratio. This normalization is chosen to agree with that of Berkowitz and Goodman,
Ref. 32.

"Includes correlations from coupled-equations method.

the Hartree-Pock result for the 'P cross section
and use the ratios to predict D and '9, we obtain
results that differ noticeably from our higher-
order results, which we believe to be accurate to
approximately 10-15%. Since we are considering
ratios of cross sections, we note that the geo-
metric estimate indicates that these ratios should
be ~ independent. Our lowest-order ratios indi-
cated a rather large variation as a function of
energy, whereas our final results showed con-
siderably more stability (see Table V). We con-
clude that geometric ratios can only be used to
calculate the total. cross sections if one starts
with a well-correlated'P cross section.

D. Resonant regions

The resonant series listed in Table I were cal-
culated with either the coupled-equations or the
isolated-resonance technique. Specific methods
used for each series will be discussed since it is
important to understand how the correlations were
included in each channel. Frozen-core excited-
state orbitals were used throughout the resonance
calculations. All diagrams included in the non-
resonant regions were also included in the reso-
nant regions; if these diagrams were not explictly
included in the codes used to generate the reso-
nances, they were added to the resonant results
before o(ar) was evaluated. We consistently used
calculated rather than experimental bound energies
since not all of the latter are available. In Figs.
11-14only the first four resonances in each
series are explicitly shown, although each series
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cU oo
0 o-

tg
I&o

b oo
o-

6s 7s

6d 7d

)9s

oo
o-

%3.00 13.25 13.50 13.75 14.00 14.25 14.50 14.75
PHOTON ENERGY (ey)

FIG. 11. The sum of the Dnd and gs resonances in the
D and & channels of Clr- Resonances were truncated

at 60 Mb. Solid (dashed) curve indicates dipole length
(velocity) calculation. The narrow 8s and 9s resonances
are not well resolved in this figure.

extends to n =~.
Qur current coupled-equations code is limited

to coupling a maximum of four channels. Two
considerations determined our choice of channels
to be coupled during a single execution of the code:
%e tried to include those channels which are ex-
pected to interact most strongly, and we tried to
maximize the amount of resonance information.
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and $ channels summed with the nonresonant P chan-
nels of C1I. Solid (dashed) curve indicates dipole length
(velocity) calculation.

Insofar as possible, we order the following dis-
cussion around the information generated from
each set of input to the coupled-equations code.

We used the coupled-equations code with the
three @d'D channels coupled with the 'D ks'D
channel to generate the sum of the 'D ns'D and
'D nd'D resonances in the 'P )gal 'D channel. The
'D nd'P resonances in the 'P jhow'P channel were
calculated by coupling the two kd'I' channels.

00

00
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N 00
0 0

D
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00
0 1 I I

21.50 22. 00 22. 50 23.00 23. 50 24. 00 24. 50 25. 00

PHOTON ENERGY (ey)

FIG. 13. P gp resonances in the D, P, and $ chan-
nels. Solid (dashed) curve indicates dipole length (vel-
ocity) calculation.

+4.50 25.00 2S. SO 2G. OO 2G. SO 27. 00 27. 50 28. 00
PHOTON ENERGY (ey)

FIG. 14. P np resonances in the D, P, $ channels.
Solid (dashed) curve indicates dipole length (velocity)
calculation.

This same set of resonances in the 'Pks'P channel
was similarly calculated by coupling the three
kd, ks'P channels. The sum of the 'Dnd, ns reso-
nances in all of the 'P, 'D channels is presented in
Fig. 11. We note that the ns resonances are very
narrow and poorly resolved for the Ss and Qs
cases shown.

The coupling of the three 4f'D channels with
the 'D ks D was also used to calculate the 'Snd'D
resonances for each channel in which they occur.
Besides our results, the calculation by I.amoureux
and Combet Farnoux' is the only other to show the
first few resonances in the 'Snd'D series. The
resonance structure in Ref. 5 was computed twice
(calculations I and Ii) to show the effects of adding
additional pseudo-orbitals. The 3d resonance in
calculation I (II) is shifted approximately 0.1 eV
(0.21 eV) to the right of ours and is wider than
(approximately the same width as) ours. In both
calculations of Ref. 5 the resonance is stronger
than the one we calculate. The only other reson-
ances presented by I,amoureux and Combet Far-
noux' are from the 'Dnd 2P series, but they are
not shown for low values of n.

The '$ns'$ resonances in the 'D Ad'$ channel
were calculated by using the coupled equations to
mix 'D kd'9, 'PkP'$, 'Sks'S, and 3s3P"S. Fig-
ure 12 shows the sum of the '$ns'S and 'Snd'D
resonances in their respective '$ and 'D channels
with the nonresonant background provided by the
'P channels, The four 'S states were also coupled
to generate the Ss3P', 'PnP'$ resonances in the
'Sks'$ channel. We mixed 'D kd'$, 'pkp'$,
'Pkp'$, and 3s3p"$ to calculate the 'Pnp'$ and
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'PnP'5 resonances in the 'D kd'S channel and the
'P~P '$ resonances in the '& QP'$ channel.

The 'Pnp'P ('Pnp'P) resonances were calcula-
ted in the P kd'P and'D kd'P channels, again using
the coupled equations for the three channels in-
volved. All other resonant series listed in Table
I were calculated by the isolated-resonance
technique. Figure 13 shows the sum of the first
four 'PgP resonances in the 'D, 'P, and '$ chan-
nels, and Fig. 14 shows the sum of the first four
p~p resonances in the 'D, 'p', and '$ channels.

IV. SUMMARY AND CONCLUSIONS

We have presented the Sp- kd, ks and 3s- kp, kf
cross sections of chlorine, including correlations,
and have compared them with other calculations.
We find that the perturbations which arise from
configuration interaction between singly excited
states of the same angular momentum but differ-
ent ionic states of Cl'(Sp') are large. When these
corrections are evaluated to higher orders, they
form a series which converges slowly. The
series is summed by solving coupled integral
equations which correspond to calculating the K
matrix for an open-shell system. Our unrelaxed
results in the region just beyond the '$ edge are
in good agreement with the RPAE calculation by
Cherepkov and Chernysheva' and with the R-matrix
calculation by I.amoureux and Combet Farnoux. '

We calculated the effects of relaxation, which
appear to reduce the cross section by approxi-
mately 13% near the 'S edge. At photon energies
higher than 22 eV our cross section is somewhat
larger than the RPAE results' and is in good
agreement with the R-matrix calculation. ' At
photon energies beyond the onset of 3s- kP photo-
ionization, our cross section is lower than the R-
matrix' and close-coupling' results, but higher
than the RPAE' results.

We estimated relaxation effects in the 3P- jQ
cross section by calculating excited states in the
presence of Sp'(3P, 'D, 'S) states of Cl'. We found
that relaxation effects lowered the cross -sectio~
near the '5 edge but increased the cross section
at high photon energies. One expects that our
relaxed results will be less accurate than our
unrelaxed results at higher energies. It would be
desirable, but more difficult, to include relaxa-
tion effects by evaluating the appropriate dia-
grams. We plan to carry out such calculations
in the future.

The ratios of the 'D and '$ cross sections at
21.2 e7 to the 'P value at that energy were evalua-

ted, along with a simple geometric estimate of the
ratios based on angular factors. We compare all
of these results to the experimental work of
Kimura ef- gL' and to the more complete geometric
results of Berkowitz and Goodman, "who have
obtained the best agreement w.ith experiment.
Whereas our unrelaxed lowest-order results dis-
agree significantly with experiment, we find that
our relaxed lowest-order length and velocity re-
sults straddle experiment and that our simple
geometric ratios are very close to experimental
values. The geometric mean of our ratios in both
the correlated relaxed and unrelaxed calculations
is lower than experiment.

The 3s3P"$ intermediate state is the dominant
correlation to the 'D kd'8 channel. Although one
might expect the correction involving this inter-
mediate state to produce a large change in the
cross section, we find that after using the coupled
equations to correlate the 3P-'D kd'S and Ss-3P
matrix elements the resulting cross section is
similar in form to the lowest-order HF value,
but shifted approximately 7.5 eV to the right.

We calculated the 3s- 0P cross sections, in-
cluding correlations. The 3p-kd correlations in-
creased the value of the cross section near the
3s3P' "I' thresholds by approximately an order of
magnitude over the lowest-order HF value. This
qualitative change in the behavior of the cross sec-
tion is similar to the change noted in the ea1.cula-
tions on argon, where the correlated resul. ts are
in good agreement with experiment.

The first few resonances in each of the 3P
-nd, gs and 3s-nP series were evaluated and
comparison was made between our 'Dad'$ reso-
nance-structure calculation and that of I.amoureux
and Combet Farnoux. '

We find that correlation effects are significant
in chlori. ne, and that in open-shell atoms it will
often be necessary to.consider final-state correla-
tion effects which coup1e the various ionic cores.
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