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Ordering of cross sections for electron capture from He-like targets by fast projectiles
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The continuum-distorted-wave (COW) method is used to determine total electron-capture cross sections

Q = X„fcr[nl] for proton and a-particle projectiles incident on Li+ in energy ranges of 100&E &3000 keV
and 100&E &10000 keV, respectively. A configuration-interaction (CI) wave function is used to describe
the Li+ electrons; for comparison, capture cross sections for H and He are examined. For each system the
percentage change in Q, 6(HF~CI), is given for progression from a Hartree-Fock (HF) to a CI description
of the target electrons, The main emphasis in this work is devoted to a rationalization of the trends
observed in the ordering of Q for these three targets. This was achieved by an analysis of the CD&
expression for an individual capture cross section o.[nl, n'l'], where nl and n'l' are the states of the
"active" (captured) and "passive" electrons, . respectively.

I. INTRODUCTION

For a helium target the cross sections for elec.-
tron capture by fast protons are adequately des-
cribed by the continuum-distorted-wave (CDW)
method (see, for example, Salin' and Belkic and
Gayet'). Banyard'and Szuster' examined the sen-
sitivity of such cross sections with respect to
improvements in the He wave function up to and
beyond the Hartree-Fock (HF) description; a
similar study was made by Moore and Banyard4
for H . The CD% method is used here to evaluate
the total cross sections Q =Z„,o[nl] for the fol-
lowing reactions:

H'+Ls'(is' )-H{I n)) +Li"(1s),.

He" +Li'(1s') —He'{g 1) +Li'(1s)

in the energy ranges 100-3000 and 100-10000
keV, respectively. For each reaction we cal-
culated the cross sections o[nl] for the capture
states nl =1s, 2s, and 2l), and Q was then deter-
mined by using the n ' rule (see, for example,
Salin'). Besides examining, in brief, the sensi-
tivity of Q with respect to changes in the Li'(1s')
wave function, we also analyze the CDW expres-
sion for a general capture cross section o [nl, n'l'],
where nl and n'I' are the states of the "active"
(captured) and "passive" electrons, respectively,
in order to rationalize the trends observed when
comparing the cross sections for capture from
H, He, and Li'.

II. RESULTS AND DISCUSSION

The capture cross section o[nl] for a given
projectile energy F, may be written as

sfni] = 2f i]s (5)] db„, '

(in units of ma„with a, as the atomic unit of
length), where a„,(b) is the prior form of the CDW
transition amplitude and b is the impact parame-
ter. In Table I we report the total cross sections
Q for reactions (1) and (2), and for comparison
we tabulate the corresponding results for He and
H; in each case the target electrons are des-
cribed by the 35-term configuration-interaction
(CI) wave function of Weiss. ' To assess the in-
fluence of elect-ron correlation we also quote for
each energy F. the percentage change b (HF-CI)
in Q when going from the HF to the CI descrip-
tion of the target electrons. The HF wave func-
tions for He and Li' were those of Clementi and
Hoetti, ' 2nd for H the fitted functions of Curl and
Coulson' were used. The 4(HF-CI) values are
seen to reflect a rapid decrease in the importance
of correlation as we progress from H to Li'.
For a given target it was noted that at a common
projectile velocity the proton and n-particle reac-
tions possessed similar n(HF-CI) values, the
magnitude being almost identical at high veloci-
ties.

%hen E&100 keg, Table I shows that the order-
ing in Q for each projectile is Q(Li') &Q(He) &Q(H ).
As E becomes larger the difference between the
cross sections for the three systems increases;
for example, for protons at 200 keV, Q(Li')
= 9Q(H ), whereas at 3000 keV we have Q(Li')
= 150Q(H ).

In attempting to account. for the above ordering
in Q, we note first that the three systems differ
in the size of the distortion acting on the cap-

. tured or active electron in the exit channel.
Since in the present form of the CDW method the
distortion is a function of the net charge on the
residual target (see Belkic and Janev') and thus
opposes electron capture, its effect should be to
produce an ordering of Q which is the reverse of
that observed. Second, although the energy de-
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TABLE I. Total electron-capture cross sections Q, in units of ~ao2, for targets H-, He, and Li' for both proton and
a.-particle projectiles. Each system is described by the 35-term configuration-interaction (CI) function of Weiss, and
in square brackets we give the percentage change [b(HF. CI)] in goirg from the Hartree-Fock (HF) to the CI descrip-
tion for the target electrons; 6{HF CI) is defined as [(Qc~ —QHp)/QHp] x 100%.

(keV)
H

g (HF —CI)]

Protons
He~

[~(HF —CI)]
Li'

g (HF -CI)] (keV)

G, particles
H He~

[6(HF CI)] g (HF CI)]

L-q b

g (HF -CI)]

100

200

500

800

1000

2000

3000

6.681
[—19.8%]

3.922
[-17.1 lp]

5.585-5

[-15.9%]

5.200
[-15.9 lp]

1.622+
[-16.0 lp]

3.864~
[-16.2%]

4.083
[-16.3%]

3.482 ~

[-4.0%]

3.477
[-3.8%]

8.456+
[-4.2%]

9.912-'
[—4.3%]

3.418 ~

[-4.3%]

1.064~
[-4.4lp]

1.270
[-4.4%]

1.394 ~

[—4.5%]

3.683
[-2.2%]

2.118+
[-1.3%]

3.275~
[—1.4%]

1.254+
[-1.4%]

4.995
[-1.6 lp]

6.633
[-1.7 lp]

100

500

1 000

2 000

4000

6 000

10000

1.630+i

[—16.4%]

1.700
[-16.9%]

1.268 2

[-16.6 lp]

6.619"
[—16.4%]

2.460 ~

[-16.0 lp]

3.138~
[-16.1%]

2.104
[-16.3 lp]

5 196+

[—4.7%]

[-3.8%]

1.661 ~

[-4 1%]

1.203
[-4.1%]

5.947+
[-4.4%]

8.794-'
[-4.5 lp]

6.932
[-4.5%]

4.695'
[—5.8%]

2.084'
[-1.9%]

3.446 ~

[-1.4%]

3.624
[—1 3%]

2.396"3
[-1.5%]

4.052-'
[-1.6 lp]

3.664-'
[-1.7%]

~The results for He supersede those reported by Banyard and Szuster (Ref. 3), which contained a small computing er-
ror.

Total capture cross section Q was obtained from the "Oppenheimer n+ rule": Q= 0.[1s]+ 1.616(o.[2s] + o.[2p]).' Superscript denotes the power of 10 by which each entry should be multiplied.

(3)

crement d«(defined as the difference in energy
between the initial and final atomic states and de-
termined here from the theoretical values) is
different for each of the three systems, the cross
sections are found to become insensitive to && in
the limit of high projectile velocities. Therefore
it would appear that the observed trends in Q
must be dominated by the differences in the tar-
get wave functions.

We now proceed by analysis of the individual
CDW cross section o[nl, n'1'] to account for the
trends in Q for the more general reaction

Z„+(Z, e„e,)-(Z„,e,)„,+(Z, e,),,

when the target electrons are described by an
HF wave function

C (1,2) =pc y, (l)gc,y, (2),

where each member of the basis set (y) is norm-
alized and the coefficients c~ and c, are the usual
variation constants. The CDW cross section
c[nl, n'l'] for a relative impact velocity v corres-
ponding to an energy 8, when the capture state
wave function is 4„,(1), can be expressed as

~ 2 2

o[nl, n'1'] =N f icy, (2)~n'l' pc~ f,(q, v, y~(1), &&)g,(q, v, y~(1),@„,(1),v„v„n&) dq,
0 p

(4)

where N is a constant and I(Z, c,y, (2)
~

n'l') is an
overlap integral between the initial and final
states which describe the passive electron e,. The
integration over q is a result of performing a
Fourier transform of the transition amplitude
from position space to a two-dimensional vector
space q (see Belkie and Janev'), and the functions

v, and v, arise from the distortions due to Cou-
lomb interactions acting in the enhance and exit
channels, respectively, and are defined as v,
=Z„/v and v, =(Ze —1)/v. We note that f, and g,
are both functions of y (1), and hence the strong
dependence of the ordering in the cross sections
on C (1,2) is still not apparent. However, since.
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=XI' E, g, v, c~y~ 1,&&

~
~
G, (q, v, 4'„, , v„&c)~'dq. (5)

Except for the presence of the energy decrement
&&, the functional form of G, is independent of
the target parameters. At high projectile velo-
cities, G, is found to be insensitive to &a, and
thus for a particular capture state (nl) the func-
tion G, becomes identical for our three examples
of a two-electron target (Ze, e„e,). When the
basis set(y) is represented, for example, by
Slater-type orbitals (STO's), the function F, takes
the form

Ei = cp -1 esp,
s(sg, -l)

sg"'-" [g,'+vp+(v/2+a'/v)']'

where s~, ~~, and N(s, $ ) are the principal quan-
tum number, orbital exponent, and normaliza-
tion constant, respectively, of the basis function

Analysis of E', shows that it represents the
probability density of finding the active electron
e, with a z component of momentum equal to
~v/2+~&/v~ or, conversely, of finding e, with
a total momentum P ~

~

v/2+~&/v~, and there-
fore E', can be interpreted as a two-dimensional
momentum density. %e note that the z component
of momentum is not unique, and its definition is
simply a consequence of choosing our coordinate

the occurrence of the distortion in the exit channel
inhibits capture, we can, without prejudice, pro-
ceed with our analysis by setting v, =0 for the
general reaction (3). As a consequence of this,
the y'(1) dependence ing, is now removed and the
expression for o[nl, n'l'] when v, =0 becomes

g[nl, n'l']„.

system such that q. v =0, with v—= (0, 0, v,).
Let us now particularize reaction (3) by choos-

ing Z„ to be a proton and by setting nl =n'l' =1s
for the targets H, He, and Li'. In Fig. 1 for
each system we plot E', and G', as a function of p
for @[is,1s]„,at E =500, 1000, and 2000 keV.
For subsequent discussion and ease of compari-
son Table II contains cr[ls, ls] and o[ls, ls]„,at
a few selected 8; R (as defined later) is a ratio
of the cross sections for different targets when

v, =0. Throughout Fig. 1 and Table II each tar-
get was described by the HF wave function; for

we note that o[1s, ls] =[1s,1s]„,. As antici-
pated, Fig. 1 shows that the g', functions for each
target are very similar, particularly at large E
values. Therefore the ordering of the cross sec-
tions in Table II is a direct consequence of the
differences in the electron densities in momentum
space as represented by E', . %hen the projectile
velocity is increased, the active electron is cap-
tured from regions of increasingly higher mo-
mentum within the target atom; thus the cross
sections reflect the characteristics of the target
wave functions near the origin. Indeed, in the
limit as v-~ the function F, may be expressed
as

and hence

~, sup(l)
sx (q'+ —'v')' '

P l, xl-"p 4

o[nl, n'l']„„„.=, NP gc
Bx~

1

x
0

where x, is the position vector of the active elec-
tron with respect to the target nucleus. The q
and v dependence in Eq. (8) occurs only in the new
function G„and in the limit we note that this
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FIG. 1. Plots at three selected impact energies E of E& and G& against q for each of the targets H", He, and Li' cor-
responding to a[is, lp]„0 in Eq. (5). The projectiles are protons and the target electrons are described by the Hartree-
Fock wave functions st@ted in text. Curves for G~ are long-dashed H, short-dashed He, and dotted Li'.
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TABLE II. Cross sections 0[1s,1s] and o.[1s,ls]& 0, in units' of ~ao at selected E for elec-
tron capture by protons from the targets H, He, and Li'. Since the distortion in the exit
channel due to the Coulomb interaction is zera for H (i.e., v&

——0), we note that 0[1s,1s]
= 0[is, 1s]& 0. We also tabulate values of R= (0~[1s,ls]/0&[ls, 1s])„&&for (i) a —= He and b —= H

and (ii) a = Li' and b =—He. In each instance the target electrons are described by Hartree-
Fock wave functions.

(keV)

500
1 000
3 000
5 000

10 000

4.760-"
1.427+
3.665"
2.077-"
4 042 ~~

He

6.880+
2.833~
1.068 ~

6.766"9

1.434-"

Li+

1.718
1.025+
5.484 7

3.880+
9.181-~o

He
(v&= 0)

8.239+
3.621&
1.420 7

9.063+
1.944

R(i)

17.3
25.4
38.7
43.6
48.1

Li+

(&&=0)

1.986+
1.382+
8.465
6.137~
1.483"

R(ii)

2.4
3.8
6.0
6.8
7.6

~Superscript denotes the power of 10 by which each entry should be multiplied.

function is also independent of &&. Therefore, if
we examine the ratio A[nl, n'I'] of the cross sec-
tions for two targets a and b when the distortion in
the exit channel is removed, we obtain

(9)

where 8 is the slope or gradient of the HF wave
function for the active electron at the origin (x,
=0) and, as before, I is the passive overlap inte-
gral. In Table II we present the ratios R[ls, ls]

for (i) a —= He and b -=H and (ii) a —= Li' and b -=He.
As E increases, these ratios are seen to. approach
the values of 52.8 for (i) and 8.86 for (ii) pre-
dicted by Eg. (9), which again illustrates how the
ordering of the cross sections is dictated by the
relative behavior of the target wave functions.
In passing, we note that when H, He, and Li' are
described by HF wave functions the passive over-
lap integral for n'E' =Is is 0.922, 0.984, and 0.993,
respectively; thus, the limiting ratios in this in-
stance are governed essentially by the relative
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FIG. 2. Plots of C&I.I'& vs g, defined in Eq. (10), corresponding to jth natural configuration within natural expansion
formulation of 0 [ls, ls]» 0 for a proton impact energy of 1000 keV. (a) H for j= 1, 2, and 6, (b) He for j=1, 3, and 6,
and (c) Li' for j=1, 3, and 6. Each target was described by the natural expansion of 35-term CI wave function of
Weiss, and the j values quoted represent natural configurations constructed from orbitals of radial symmetry.
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values of S.
If 4(1,2) is a correlated wave function, it is of

interest to examine the form of the function, say
F', which replacesI E2', in Eq. (5). For a discus-
sion of electron correlation, a particularly con-
venient form for any CI wave function is to ex-
press it as a natural expansion (see, for example,
Lowdin'). Thus F' can then be written as

(10)

where for the Weiss' function the basis set(q),
which is used to describe 4 (1,2), consists of
normalized STO's. The coefficients b&& and bk&,

together with (cp]., define the natural orbitals
which are given by the summations over i and k;
the summation of all the natural configurations j,
each weighted by the coefficient C~, represents the
total CI wave function. When j&1, each natural
configuration in the summation corresponds to
the addition of a correlation term composed of
y's with either radial or angular symmetry; when

j =1 only, we recover the PE', term in Eq. (5).
Thus, by using the natural expansion and by set-
ting v, =0, the nature of the influence of the cor-
relation terms on the CDW cross section be-
comes transparent and we see that the reLative
importance of each natural orbital is determined
solely by its occupation coefficient C& and its
passive overlap integral I&. As a consequence,
when improving the target wave functionup to a CI
description, any change in the cross section at
large v will be independent of the projectile charge

Z„but may be strongly influenced by the final
state of the Passive electron. When n'L' =Is, I&

is nonzero only for those natural orbitals of
radial symmetry; therefore, only radial correla-
tion terms in 4 (1,2) contribute to the cross sec-
tions in the present CDW calculations. M Fig. 2
we show, for o[1s,ls]„, „C&I&F& vs q for j =1, 2,
and 6 for He and Li' and j =1, 2, and 6 for H at
F. =1000 keV. The curves not only indicate the
dominance of the j =1 term but also show that as
we go from H to Li' the higher natural orbitals
become rapidly less important; it is noted that at
q =0 for H, C,I+,-' C,I,E„-while for Li' at q =0,
C3 3 3-3—OCiIz+i ~

III. SUMMARY

The rationalization of the trends in the present
CD% cross sections became tractable by setting
v, =0. Hence we have shown that, as the projec-
tile velocity increases, the active electron is
captured from regions of increasingly higher
momentum within the target atom and that in this
region it is the characteristics of the wave func-
tion which govern the trends in Q when comparing
different targets. The nature of the distortion
acting on the captured electron in the exit channel
(i.e. , when v, v0) is such that it reduces the size
of each cross section, and this effect will in-
crease as Z~ increases. Thus, when considering
two-electron targets of large nuclear charge, it
would be interesting to see if the final distortion
could ever dominate the wave function in its in-
fluence on Q and so produce trends which are the
reverse of those examined here.
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