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Application of the Schwinger variational principle to electron-ion scattering
in the static-exchange approximation
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The authors present a method for applying the Schwinger variational principle to the scattering of low-

energy electrons by molecular ions. Numerical procedures for its application in the static-exchange
approxim'ation are specifically discussed. As examples, the s- and p-wave phase shifts for e-He are
obtained. The procedure also provides the electron continuum wave functions which can be used to obtain
photoionization cross sections. The resulting cross sections for photoionization of the ground and metastable
states of the He are seen to be accurate.

I. INTRODUCTION

In recent years several methods which employ
discrete basis sets have been successfully devel-
oped to study electron-molecule scattering and
photoionization processes in molecules. 'These
methods include the A-matrix method used by
Schneider' ' for e -H„N„and F, scattering; the
T-metrix. method introduced by Rescigno, Mc-
Curdy, and McKoy, "' and applied to e -H„&„and
CO, (Refs. 6-9); and the Stieltjes imaging techni-
que developed by Langhoff'"" 2nd applied to
photoionization cross sections of molecules in-
cluding N„CO, H, O, and H, CO.""

In the present work, we compute static-exchange
electron-ion scattering phase shifts by direct
evaluation of the Schwinger variational expression
for the E matrix. The Schwinger principle has
several distinct advantages over other variational
methods. In the Schwinger method the trial func-
tion is not required to satisfy any specific asym-
ptotic boundary condition. 'The method is also
not troubled by the spurious singularities that can
arise in the Kohn variational method. In the form
used here, a trial wave function is constructed
from a linear combination of Cartesian Gaussian
functions.

The Schwinger variational expression also yields
an approximate wave function expressed as a
linear combination of discrete basis functions.
With little additional computational effort, an
improved numerical wave function can be generat-
ed using the Lippmann-Schwinger equation in an
iterative fashion as suggested by Blatt and Jack-
son. " 'Thus the present application of the Sch-
winger principle also yields numerical wave func-
tions with asymptotic forms corresponding to the
variationally determined K matrix.

'This method is well suited to electron-molecular-
ion scattering. The expressions presented in this
paper are general for symmetric linear molecules.

II. THEORY

A. Electon-ion scattering

'The Schrodinger equation for potential scatter-
ing from a molecular ion of net charge Z is of the
form (in atomic units)

[-))'—2Z/r+ U'(r) —k'](I)f(r) = 0.
The potential U'(r) is an optical potential repre-
senting the short-range interactions between the
target and the scattered electron.

Instead of solving the Schrodinger equation
directly, the Lippmann-Schwinger equation for
the wave function is used. For electron-ion scat-
tering considered here, the Lippmann-Schwinger
equation is

where the Coulomb Green's function is
G""= (&'+ 2Z/r+k'+i@) '

(2)

and U'(r) = 2V'(r). The wave function (t)I ", is the
pure Coulomb scattering wave function which has
the partial-wave expansion given by

where E, (y; kr) is the regula. r Coulomb function
and

y= Z/0 and o, = arg-[I'(l+ i+iy)].
The partial-wave expansion" of the Coulomb
Green's function 6' ~ j.s

As a specific test case we have studied e -He'
scattering. In addition to calculating s- and p-wave
phase shifts, the scattering solutions have been
used to calculate photoionization cross sections
of the 1'S, 2 'S, and 2'S states of helium.

21 112



21 APPI ICATION OF THE SCH%INGER VARIATIOWAI . . .

6""(r,r') = -- gY, (r)1',* (r')r'r'-2
lm

x Eg(y; kr&)

x [G,(y; kr, ) +iIi, (y; kr )].
(s)

we have for the asymptotic form of the partial-
wave functions

(I'gg'„+g(r;kr)t)gg+, Gg (r. ;kr)ffg g.. (18)
'The T matrix is related to the E matrix by de-

fining the partial-wave expansion of the on-shell
T matrix as

The asymptotic form of the scattering solution is
then

y„-"'(r) -y„-'"'(r)+f„-'"(r)
(2 )„,

((It(t)
~

IPt(2;)
~

yc(2:)&

=-g i'-' Y,.„(+k')TFg.",) y',*„(k).
ll' m

where

exp [+i(kr —y ln2kr)]
r

Then T', ,", is given by

Ts(H 24 @l(el ~l)
r

Ts(+) Us + UsGc(+) Ts(+)

It then follows that

(8)

f& '(r) = -2v' &({:j!)IU'
~

Q"&.

We can define the T matrix due to the short-range
component of the potential, Us, by

„ &g, (r; kr) ~ (-) T,(„&g(r;kr) y (.)l'm lm

(18)

Now the T matrix can be obtained from the E ma-
trix using

T","=-—e'"'l "l'2
l' lm

and hence

f"){r)= -2)g'((I)'(!'
~

T"')
~

g' (10)

In actual calculations the principal-value func-
tion, defined by

~(g ) ~c(P) Gt(P)Uty(J )+

is used. We define the partial-wave expansion of
the principal-value Coulomb function, gi, by

—Qi)F (y'kr)Yg (r)Y'g {k). (12)
lm

This definition for the principal-value wave func-
tion is chosen so that $1

' is normalized to 6(k
—k'). The expansion of gm(

' in Eq. (12) is simi-
lar to that given for (I(" in Eq. (4), except that
the partial-wave radial functions have been made
real, i.e. , the factor e'"l has been dropped.

Defining the K' matrix by

K =-~gUs+ UsCc( )Es (13)

with the partial-wave E' matrix elements given by

22 F, (y;lrr)F
( ),F, .(y; ~) ()2)Fl'lm

& y+ l'm + lm

(14)

and the partial-wave expansion of P~ '(r) defined

[(1+iX~) ']g, g„„K'g

The relation between g„- and (I)„. is then given by

g(gg) (r) = e'"gg [(1+gXt) ']()„„(I)(g~g), (r)'. (20)

y ()=&
~

&=~...( -&.)'{y-&,)"
X (Z —g ))(e-(2(5-Xl

where A locates the basis function center and
N, „ is a normalization factor. Substitution of
this expression into the Lippmann-Schwinger
equation yields

(22)

&'=-- ZU'I &[f ']..&f IU'
2 (23)

where

'The approach taken here to solve the LippInann-
Schwinger equation for the K-matrix is to assume
a separable potential of the form

U' =g U'
~

o(&[d-.g] (P
~

U' (21)
ai, 8

where d () =(a
~

U' ~P&. We chose the expansion
functions to be Cartesian Gaussian functions of the
form

1/2 y
gt)gi '(r) =~ —

k Z i'(1)(gg)„(r)1'g (r)1'g' (k),kr gg..
(1s)

Adhikari and Sloan" have shown that a separable
potential of this form in the Lippmann-Schwinger
equation yields an expression for the K matrix
which is equivalent to the Schwinger variational
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expression with trial wave functions expanded in
the same bases, e.g. ,

(h + eoP" +j" +K" )u ' = e, (1+P" )u' .
In the triplet case Eq. (30) is equivalent to the
simpler equation

(h+Z" -K" )u'=e, s',

(30)

(31)
B. Staticwxchange potential for e -ion scattering

The potential, U'(r), used in the present work is
just the static-exchange potential. For a two-
electron system the electronic wave function is of
the form

q(1, 2) =u'(1)u'(2) +u'(2)u'(I), (24)

where the upper (lower) sign gives the singlet
(triplet) solution. The one-electron orbital u' is
taken to be a continuum orbital, and u' is fixed as
the bound orbital of the isolated one-electron ion.
'The electronic Hamiltonian for this two-particle
system„where the ion is an atomic, homonuclear
diatomic, or symmetric linear triatomic system
iS

H (1, 2) = h(1) h+(2) I+/r„,

where

Z 1 1h(t)=--,' ) — — „( .(+
~

-()
and Z, and Z„are the nuclear charges at the origin
and at X and -A, respectively.

With the orbital u' fixed, the solution of the
Schrodinger equation

(26)

reduces to the one-electron equation for u', ""
(h+Q" ve, P" +Z" +K" )u'=z, (1+P" )u', (27)

where the various operators are defined by

t)" (r)h'(r) =rd(r) fd'r'r' (r')h(r')3'ir')

U'(r) =2[N (r)+Z' + (K" +Q" )

+. (e, +-,'h' )P" ],
where

(32)

A Zc Z 1 1«()—— —« — ). (33)

Note that this potential is momentum dependent,
although all of the individual operators are in-
dependent of momentum. 'The corresponding po-
tential in the case where u' is an eigenfunction of
A, is

U'(r) =2[N (r)+J" +K++ (eo —2h')P" ].
In the triplet case the potential for the solution
which is constrained to be orthogonal to the bound
orbital is given by

U'(r) =2[N" (™r)+J" -K" ]. (36)

III. IMPLEMENTATION

A. Matrix elements

'There are three types of matrix elements needed
to evaluate the parital-wave K-matrix elements
by the Schwinger variational principle:

since the solutions to Eq. (30) are just an arbitrary
linear combination of u' and the solutions to Eq.
(31).'"" Thus the solutions to Eq. (3) are con-
strained to be orthogonal to the occupied bound
orbital, u', where the solutions of Eq. (30) have no
such orthogonality constraint imposed on them.

'The potential in the static-exchange approxi-
mation is then

h(r) r(r)frd'r'r' (r')rdtr'),

P" trhr'tr) =r'tr) fd'r'r" tr')3'(r'), (28)

s k i &r "r U'
a,g

„(3 (tt. , ( ; ) « („-)) (36)

and where

o= d'+u r& r or (29)

and Ej E Eo ~

When u' is an eigenfunction of h, Eq. (27) re-
duces to

f. =&(r ~U'~P) -&ct'[U'G""U'~P).

The elements of the type &n ~U' ~P) are available
from standard bound- state molecular integral
programs. 'The other two types of matrix ele-
ments

(37)

(r. (l/ '' «, (r))'rrd (n ~tt'6" tt')~3)

are evaluated directly by numerical integration.

where [f ] z is obtained by inverting the matrix
with elements
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(38)

These expansions are analytically known. " Then
we define the partial-wave expansion of the po-
tential by

U'(r)= '" I' (r).
m

(39)

The initial step in the numerical procedure is
to compute U (r)=(r~U'~o). This is done by first
partial-wave expanding the Cartesian Gaussian
functions with 0

u'(r) =+"' I'„(r) .lp (40)

Then the expansions of the operators J, K, and N
are

&2~+i ~~2

T( (y) —p (0) l (lk00 ~)'0)(1km0 ~Vm)
l'up ( + Xup

xPf, (r)V„(r), (41)

For the case where the occupied orbital I' is of
o(m =0) symmetry, it has the partial-wave ex-
pansion

In turn each operator which contributes to U' can
be similarly expanded. where

l

SsS 2X+

(00

+r' dr'u'*(r')u' (r')r'S S' (42)

K",„(r)= Q Q A'(l, I', m;s, s', X)uo (r)(.„„dr'u,'*(r')(t), , „(r')r'"

+r" dr'g *r', , r' r' " ' (43)

A'(I, I', m; s, s', X)=~, (sXOO
~

I'0)(s'Xoo
~

lo)(sXOm
~

I'm)(s'Rom
~

Im),
)' (2s+ 1)(2s'+ 1)

(44)

and

If 2&+ j
X',„-(r)= g j 2,

',", g (I OOI I 0)(f~mO II m)
p E + (45)

with

A"lr"" A &r
(r lr) )g (46)

(4&)

and

Qg
' (r) =(u'~k~&&u(„(r)

, d' l(I+1) r", l+(u icx) -gd + 2
—2Z~r 2r ]A

and A=Az. 'The quantities (j,j,m, m,
~ j,m, ) are

Clebsch- Gordan coefficients. The expansions for
the operators Q and P are

P"„' (r)= (
~

u) o(ur)

l

In general u'(r) is also a linear combination of
Cartesian Gaussian functions. Thus the integrals
(u'

~
&) and (u' ~k

~

o.') as well as the expansions u', „(r)
are evaluated analytically. The expanded potential
is then given by

U, (r) =2(N", "(r)+Z", "(r)
+[K", (r)+Q",„" (r)]

v (&, + ', k')P,"„(r)}.- (49)

The hybrid integrals are evaluated using

(n~U' ' ' Y', (r) =—„dr&,(y;kr)LP, „(r).F, (y; kr)

(50)

s-6, ,—z u', (r). (48)
Finally the matrix element (o.

~

U'G' 'U'~g in the
denominator of Eq. (36) is given by

1 r
(o.~U'G"~'U'~p) =-- g drP, " (r)~ G, (y;kr) dr'U, (r')F, (y;kr')

lm p p

+0', (y; ky)f dy' lkk„(y')(', (y; ky')).
r

(51)



116 ROBERT R. LUCCHESE AND VINCENT McKOY 2l

k

combined with Eq. (1), yields

(52)

=+—(I', (t)~)c~ ' ~' », (i)). (53)

In the present formulation the right-hand side of
Eq. (53) is approximated by

2ks(» ( )~»» (y sr)»
( ))

1r r

=- k V, .(r)Q']„,
Cy

These uncoupled ordinary differential equations
are easily solved using the Numerov method sub-
ject to the boundary conditions'

limp' ' (r) =0
r O

(55a)

B. Electron-ion scattering wave functions

Numerical wave functions are generated from
the K matrix using the method of Flif let and Mc-
Koy. The identity

The initial states in these calculations are of the
functional form

(58)

where S=&ns'lls). In the 1'S calculation, (P„,, and
(p„are the same and are equal to the Hartree-
Fock orbital of the ground state of helium in the
basis set used. For the two metastable states,
(P„ is constrained to be the same as in the ground
state T.he (t)„,, functions are then eigenfunctions
of the one-electron equation given in Eq. (27).

The final states used in the photoionization calcu-
lation are constructed from the solution of the
electron-ion scattering problem where the bound
orbital is fixed as the (P„of the ground state.
Hence the final orbital is the frozen core of the
target. %e measure all energies relative to the
experimental ionization potentials and in this way
compensate for some errors in the frozen-core
model. Thus the final states are of the form

(t)~ t;(1, 2) = (—,'k)'~'[(t)„(1)())' )(2)+ (()
' )(1)(p„(2)].

(59)

The differential dipole oscillator strength is then
computed in either the length or velocity. form as

(60)

(55b)

qt '(P& yc(P) + Gc(P)
psych

(P)
k k k

Thus the solution of Eqs. (53) and (54) is identical
to the solution of Eq. (56) with'the trial function
P'(P' being given by

k,

(56)

(57)

This prescription for generating numerical wave
functions is equivalent to the iterative use of the
Lippmann-Schwinger equation suggested by Blatt
and Jackson. " For a given trial wave function
ii)t (P' they suggested that it could be improved by
using

or

angl y,.lv„ ly, 1;& I',
V

where AE= —,'k'+ IP and

+(x+iy)/~g for p, =+1

for p=O

for )1=+1

8
for p, =0.

Bz

(62)

(63)

which is the trial wave function impled by the
Schwinger variational expression given in Eq.
(36) 18

C. Photoionization cross sections

In the present work, the electron-ion scattering
solutions are also~ used to calculate photoioniza-
tion cross sections. Photoionization from three
initial states of helium are considered. The states
are the ground state 1'S and two metastable states
2'S and 2'S.

The bound orbital (P (either (t)„or (P„,,) has the
partial-wave expansion

y(r) P Ptm( ) I» (r)
l tn

(65)

If p„stands for either r„or V„, then since all
bound orbitals are of gerade symmetry,

�

&0; Ip. Icy, x&

1/2

Is&(()„lp„ly(-»+ &y„„lp„lq(-»]. (64)
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2 ~/ (&)
(alp~ l(.,' ') = —. —E i'rp„(l)e "i E [((+()()-') E ~'" " (v))'„, „())p„~""'" (r)v, ~ ()')).

gm g 1 g Plg tlt~t

(66)

The integral on the right-hand side of Eq. (66) in the length form is
oo'"""(r)Y, „„(k)lr„ I

'"""(r)Y, „,„(f) = C(/", /", m, m, p) dr(()),*,„„(r)r)/),'~), „(r),r r 0

where

2)ra+1 yx/2
C(/" /"' m" m p) = ') (1/"00I/"0)(l/"'gml/"m").

y y 0 y 2)/1+1

In the velocity form the integral in Eq. (66) is given by'

(67)

(68)

/Ill(/III, + I) /tl (/)) + I)=C(/", /"', m", m, g) dr/~„„„(r) d
+

2
g&', '-„(r) .

0 dr 2r (69)

IV. RESULTS

A. e -He+ phase shifts

~g(g) 03 I -1 U3 (7l)

x&6IU'I@. (70)

A test of the accuracy of the approximation in Eq.
(70) is important since this procedure is particu-
larly attractive for molecular applications. The
Schwinger K matrix with this approximation is
then given by

The first application of the method presented
here is to e -He' scattering. The He+ target 1s
orbital is constructed from the Huzinaga hydrogen
10s basis set" with the exponents scaled up by a
factor of 2. This basis set gives an energy of
-1.999985 a.u. for He+.

We perform the scattering calculation using three
different methods. Besides the exact Schwinger
method, we also computed an approximate form of
the Schwinger expression as proposed by Watson
and McKoy, "where the denominator f„))is ap-
proximated

f' 8
= &o'I U'IP& —2 &o'

I U'lr&&r
I
G'"'I 6&

y, S

In these calculations the basis set inserted in
O'G" 'U' is the same set as is used in the rest of
the scattering calculation. The third method is
the uncorrected T-matrix method originally pro-
posed by Rescigno, McCurdy, and McKoy." In
this method the K matrix is calculated using

(72)

The basis sets used in the exact Schwinger
method and the approximate Schwinger method
with insertion are given in Table I. The basis sets
used in the 7'-matrix calculations with E(I. (72)
are given in Table II.

Results for 'S scattering, where the scattering
solution is constrained to be orthogonal to the
bound orbital, are presented in Table III. It is

TABLE II. Exponents for Cartesian Gaussian functions
used in uncorrected T-m.atrix calculations t.Eq. (72)].

58 and 5p
sets

3s
set

1p
set

100.0
21.1
4.47
0.946
0.200

100.0
4.47
0.200

0.500

TABLE I. Exponents for Cartesian Gaussian functions
used in Schwinger variational calculations.

10'

400.0
172.0
73.9
31.7
13.6
5.86
2.52
1.08
0.465
0.200

10p

200.0
92.8
43.1
20.0
9.28
4.31
2.00
0.928
0.431
0.200

537.0
328.0
200.0
122.0
74.6
'45.5
27.8
17.0
10.4
6.32

20@

3.86
2.36
1.44
0.879
0.537
0.328
0.200
0.122
0.0746
0.0455
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TABLE III. Phase shifts for triplet-s-wave scattering of helium ion.

Momentum
k

Schwinger
~(5s)

Schw inger
~(3s)

Approximate
Schwinger

~ (5s)
T matrix

~'(5s)
T matrix

6'(10s)
Numerical &

gN

0.1
0.3
0.491
0.779
1.076
1.353
1.897
2.198

0.919
0.910
0..893
0.855
0.802
0.747
0.642
0.591

0.889
0.880
0.865
0.828
0.780
0.731
0.637
0.590

0.920
0.913
0.903
0.883
0.851
0.803
0.673
0.603

0.933
0.918
0.894
0.855
0.827
0.812
0.759
0.703

0.921
0.910
0.893
0.861
0.816
0.758
0.646
0.611

(k=0, &"=0.920)
~ ~ ~

0.893
0.855
0.802
0.748
0.645
0.604

Phase shifts are for scattering solutions which are constrained to be orthogonal to the bound orbital, using the poten-
tial given by Eq. (35).

Exact Schwinger variational phase shifts [Eq. (23)], for 5s basis set given in Table I.
Exact Schwinger variational phase shifts for 3s basis set given in Table I.
Approximate Schwinger variational phase shifts, with insertion in the denominator [Eq. (71)], for 5s basis set given

in Table I.
Uncorrected T-matrix phase shifts [Eq. (72)] for 5s basis set given in Table I.
Uncorrected T-matrix phase shifts for 10s basis set given in Table II.

g Phase shifts of numerical solution of Schrodinger equation from Ref. 28.

well known ' that for triplet scattering this yields
the same phase shift as the solution in which or-
thogonality is not imposed. The 5s Schwinger re-
sults are in excellent agreement with the numeri-
cal results of Sloan.""The 3s Schwinger phase
shifts are within 3% of the correct values. The 3s
phase shifts also smoothly approach the accurate
phase shifts at higher momentum. The approxi-
mate Schwinger calculations with insertion in the
denominator give very good results at low momen-
tum but at higher momentum show discrepancies
of up to 7%. Naturally the results of the Schwinger
method in which the O'O' 'U' term is evaluated
approximately, i.e. , with insertion, can be im--

proved by using a larger basis set around G' '.
Uncorrected results using the T-matrix equation
[Eg. (72)] are presented for two basis sets. The

5s set which was also used in the two Schwinger
calculations yields generally poor uncorrected T-
matrix results except for energies around k= 0.6,
as can be seen in Fig. 1. The 10s basis set gives
much better T-matrix phase shifts, which differ
from the exact values by less than 2%.

The results for the 'S e -He' scattering calcula-
tions in which the scattering function is not con-
strained to be orthogonal to the bound orbital, are
given in Table IV. It can be seen that the 5s
Schwinger phase shifts are again in good agree-
ment with the numerical values, and they are al-
most identical to the phase shifts obtained from
the constrained '8 scattering solution. However,
the uncorrected T-matrix 10s results are dra-
matically worse than in the constrained calcula-
tion. A larger 20s basis set does yield T-matrix

TABLE IV. Phase sifts for triplet-s-wave scattering of helium ion.

Momentum
k

Schwinger
~(5s)

T matrix
~'(10s)

T matrix
15 (20s)

Numer ical
gE

0.1
0.3
0.491
0.779
1.076
1.353
1.897
2.198

0.918
0.909
0.893
0.855
0.802
0.747
0.641
0.590

0.930
0.911
0.964
1.334
1.332
0.998
0.750
0.910

0.920
0.916
0.907
0.854
0.809
0.750
0.645
0.605

(k=0, 6"=0.920)
~ ~

0.893
0.855
0.802
0.748
0.645
0.604

Phase shifts are for scattering solutions which are not constrained to be orthogonal to the
bound orbital, using the potential given by Eq. (32).

Numerical phase shifts from Ref, 28.
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TABLE V. Phase shifts for singlet-s-wave scattering
of. helium ion.

Momentum Schwinger T matrix
k &(5s) 6 (10s)

Numerical.
gN

0.900—

0.1
0.3
0.491
0.779
-1.076
1.353
1.897
2.198

0.386
0.378
0.366
0.341
'0.317
0.302
0.290
0.290

0.400
0.388
0.361
0.341
0.325
0.314
0.289
0.289

(k=o, 6"=0.387)

0.366
0.341
0.318
0.302
0.290
0.283

EO
C0~ 0.800—

LLI
CO
«t

~ 0.700-

Numerical phase shifts from Ref. 28.

phase shifts which are again in close agreement
with the accurate results.

The results for 'S scattering are presented in
Table V. In this case, the Schwinger 5s and 10s
T-matrix calculations both agree well with Sloan's
results. "'"

Phase shifts for 'P scattering are given in Table
VI. In this symmetry the exact Schwinger and the
approximate Schwinger (with insertion) expres-
sions both give results in close agreement with the
static-exchange phase shifts given by McGreevy
and Stewart. " Results for 'P scattering are given
in Table VII. Again the Schwinger 5p and uncor-
rected 10p T-matrix phase shifts are in close
agreement.

B. Photoionization cross sections

0.600—

0.5 1.0 1.5 2.0
INCIDENT ELECTRON MOMENTUM k (o.u. )

FIG. 1. Comparison of 3S phase shifts of helium ion,
where the scattering solution is constrained to be orthog-
onal to the bound orbital: solid line, exact Schwinger
variational phase shifts with 5s basis set given in Table
I; dashed line, exact Schwinger variational phase shifts
with 3s basis set given in Table I; long-dash-short-
dashed line, uncorrected T-matrix phase shifts with 5s
basis set given in Table I; 0, numerical phase shifts
given by Sloan (Ref. 28).

The initial state used in the ground-state photo-
ionization calculation of helium is constructed
from the 10s Gaussian set of Huzinaga" (also listed
in Table VIII), which has a Hartree-Fock energy
E = -2.861669 a.u. For the two metastable states
the 10s basis set is augmented by seven diffuse
basis functions given in Table VIII. The orbital

eigenvalues of the P„, orbitals, with the P„or-
bital taken as the Hartree-Fock orbital, are
-0.141 509 a.u. for the 2'8 state and -0.189 942
a.u. for the 2'S state. The more diffuse functions
included in this extended basis set are important
in describing the Rydberg-like metastable states.

TABLE VI. Phase shifts for singlet-p-wave scattering of helium ion.

Momentum

k

Schwinger
6(5p)

Approximate
Schw inger

~'(5p)
T matrix

&'(5p)
T matrix
~'(10p)

Numerical ~

gN

0.2
0 4.

0.6
0.8
1.0
1.2
1.4
1.6

-0.0742
-0.0765
-0.0788
-0.0797
-0.0780
-0.0733
-0.0656
-0.0551

-0.0739
-0.0761
-0.0783
-0.0792
-0.0777
-0.0732
-0.0658
—0.0555

-0.0711
-0.0755
-0.0782
-0.0761
—0.0700
-0.0633
-0.0579
—0.0524

-0.0740
—0.0759
-0.0742
-0.0701
-0.0685
-0.0690
-0.0646
—0.0508

-0.0745
-0.0765
-0.0788
-0.0796
-0.0778
-0.0727
-0.0646
—9.0540

' Numerical phase shifts from Ref. 29.
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PIG. 2. Photoionization
cross sections of 1~S He
in megabarns: L, static-
exchange dipole length;
V, static-exchange dipole
velocity; 0, selected ex-
perimental cross sections
from Samson (Ref. 30).
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Results of photoionization cross section calcula-
tions for the 1'8 state are presented in Table IX.
Cross sections computed using all three methods
employed in the scattering calculations are given.
The ionization potential is taken to be 0.9035
a.u. (24.59 eV) for the ground state. " The exact
Schwinger results and approximate Schwinger re-
sults, with insertion in the denominator, are vir-
tually identical. These results show that the total
cross section is fairly insensitive to the variations
in the accuracy of the continuum wave function
generated by these various methods. This point
is exemplified by the exact Schwinger 1p cross
sections presented in Table X. The difference be-
tween the 1P and 5p Schwinger cross sections is
less than 1/q. This result is put into perspective
by comparing it to the cross section obtained by

TABLE VIII. Exponents for Cartesian Gaussian func-
tions used in initial-state wave functions.

Huzinaga 10s
basis set

Additional
diffuse functions

for metastable states

using a pure Coulomb wave as the continuum func-
tions in the final state. The 1p results can be
seen to be an improvement over the pure Cou-
lomb result which contains no short-range scatter-
ing inf ormation.

In Fig. 2 the cross sections obtained from an
exact Schwinger variational calculation with the
5p basis given in Table I, are compared with ex-
perimental data given by Samson. " The difference

Momentum
k

Schwinger
~(5p)

T matrix
~ (10p)

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

0.179
0.186
0.196
0.205
0.212
0.216
0.217
0.216

0.179
0.189
0.204
0.217
0.220
0.218
0.219
0.223

TABLE VII. Phase shifts for triplet-p-wave scattering
of helium ion.

3293.694
488.894 1
108.772 3
30.1799
9.789 053
3.522 261
1.352 436
0.552 610
0.240 920
0.107 951

0.060 0
0.033 3
0.018 5
0.010 3
0.005 71
0.003 17
0.001 76

This is the basis set, from Ref. 25, used in the 1 $
(ls ) ground state of helium.

The wave functions of the 2 ~S and 2 3S (1s2s) metas-
table state of helium are constructed from the combined
17s basis set.
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TABLE IX. Photoionization cross sections of the ground state of helium, using the length
form of the dipole operator in megabarns (10 cm ).

&E (eV)
Schwinger

0 (5p)

Approximate
Schw inger

0'(5p)
T matrix

0 (5p)
T matrix

0~(10p)

24.75
26.6
30.6
34.6
38.6
42.6
46.6

7.59
6.98
5.76
4.74
3.93
3.26
2.73

7.59
6.98
5.76
4.75
3.93
3.26
2.73

7.61
7.07
5.91
4.85
3.95
3.23
2.66

7.54
7.01
5.83
4.76
3.89
3.22
2.71

The exact Schwinger photoionization cross section is computed using Eqs. (60), (64), (66),
and (67), with the partial-wave scattering solution, Q&zz~ (~), obtained from Eqs. (53) and (54)
as described in the text. The 5p basis set given in Table I is used.

The approximate Schwinger cross sections are obtained as in footnote (a) except that K'
in Eq. (53) is approximated by K given in Eq. (71).

The uncorrected T-matrix cross sections are obtained as in footnote (a) except that K' in
Eq. (53) is approximated by K '~ give in Eq. (72).

Same calculation as in (c) except the 10p set given in Table II is used.

between the two forms of the dipole cross section, .

the length and velocity forms, can be used as an
estimate of correlation effects. " In the photoioni-
zation of the ground stat'e of helium, the static-ex-
change velocity form yields cross sections closer
to the experimental results than does the length
form.

The photoionization cross sections of the two
metastable states of He, the 2'S and 2'S states,
are shown in Figs. 3 and 4, respectively. The

ionization potentials of these states are taken to
be 0.14595 a.u. (3.97 eV) for the 2'S state and
0.17524 a.u. (4.77 eV) for the 2'S state. The sta-
tic-exchange cross sections are compared to the
calculated values of Norcross. " The calculations
by Norcross used close-coupling final-state wave
functions with three states included in the expan-
sion. The initial states used by Norcross" were
slightly different from ours, in that he used a He'
1s hydrogenic function for the frozen P„orbital.

Io.o-

8.0-

b
6.0-

0
O
LLI
fl)

fn 40-(A

O
O

FIG, 3. Photoionization
cross sections of 2~8 He
in megabarns: L, static-
exchange dipole length; V,
static-exchange dipole ve-
locity; 0, numerical re-
sults of Norcross (Ref. 33).
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FIG. 4. Photoionization
cross sections of 23$ He
in megabarns: I, static-
exchange dipole length; V,
static-exchange dipole ve-
locity; 0, numerical re-
sults of Norcross (Ref. 33),
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The dipole length cross section gives better agree-
ment with Norcross results than does the velocity
form. In general neither the dipole-length nor
dipole-velocity form seems to give more reliable
static-exchange results.

V. CONCLUSIONS

We have presented a method for calculating sta-
tic-exchange electron-molecular-ion scattering
wave functions. The method should be directly ap-
plicable to molecular systems. In e -He' scatter-
ing, the numerical evaluation of the exact Schwin-
ger variational expression gives extremely accu

&E (eV)
Schwinger Schwinger Coulomb wave

~(5p) &(1p) 0

24.75
26.6
30.6
34.6
38.6
42.6
46.6

7.59
6.98
5.76
4.74
3.93
3.26
2.73

7.60
7.00
5.79
4.77
3.94
3.27
2.72

7.73
6.91

4.34
3.53
2.90
2.41

The Coulomb wave cross section is obtained by using
0'„'~(~) =~~g +~h'; &~) in Eqs. (60) (64) (66)»d (67).

TABLE X. Photoionization cross sections of the ground
state of helium using the length form of the dipole oper-
ator, in megabarns. Comparison of 5p and 1p exact
Schwinger cross sections with Coulomb wave results.

rate phase shifts with small basis sets. In molecu-
lar systems, the numerical integration of the ma-
trix elements, (n~U'G'~'U'~P) may become ex-
tremely length. In this case, the approximate
Schwinger expression with a large basis set in-
serted around G" ' may be a more economical
procedure. As presented here, the approximate
Schwinger method yields a single center expansion
of the scattering amplitude. This allows analytic
averaging over target orientation. Both the exact
Schwinger method and the approximate Schwinger
method, with insertion in the denominator, can be
used to compute accurate numerical scattering
wave functions. These wave functions correspond
to K matrices which are variationally stable.

Accurate static-exchange wave functions can be
utilized in various distorted-wave approximations.
h. ~he example presented in this paper, these wave
functions can be used in the calculation of the pho-
toionization cross section of helium, even when the
scattering basis set is of very modest size.
Another use for electron-ion scattering wave func-
tions is in the study of electron-impact ionization.

The application of the Schwinger variational
principle to molecular systems is in progress.

ACKNOWLEDGMENTS

This research was supported by Grant No.
CHE76-05157 from the National Science Founda-
tion and by an Institutional Grant from the U.S.
Department of Energy, No. EY-76-G-03-1305.



21 APPLICATION OF THE SCHWINGER VARIATIONAL. . .

We also acknowledge support by the National Re-
source for Computation in Chemistry under a grant
from the National Science Foundation and the V.S.
Department of Energy (Contract No. W-7405-ENG-

4S). One of us (R.R.L.) acknowledges partial sup-
port from the National Science Foundation. We
also thank Dr. A. %. Flif let and Dr. D. K. Watson
for many helpful and stimulating discussions.

*Contribution No. 5981.
~B. I. Schneider, Phys. Rev. A 11, 1957 (1975).
2B. I. Schneider and P. J. Hay, Phys. Rev. A 13, 2049

(1976).
3M. A. Morrison and B.I. Schneider, Phys. Rev. A 16,

1003 (1977).
4T. N. Rescigno, C. W. McCurdy, and V. McKoy, Chem.

Phys. Lett. 27, 401 (1974).
5T. N. Rescigno, C. W. McCurdy, and V. McKoy, Phys.

Rev. A 10, 2240 (1974).
6T. N. Rescigno, C. W. McCurdy, and V. McKoy, Phys.

Rev. A 11, 825 (1975).
7A. W. Fliflet, D. A. Levin, M. Ma, and V. McKoy,

Phys. Rev. A 17, 160 (1978).
A. W. Fliflet and V. McKoy, Phys. Rev. A 18, 2107
(1978).

9D. A. Levin, A. W. Fliflet and V. McKoy (unpublished).
~ P. W. Langhoff, C. T. Corcoran, J. S. Sims, F. Wein-

hold, and R. M. Glover, Phys. Rev. A 14, 1042 (1976).
~~C. T. Corcoran and P. W. Langhoff, J. Math. Phys. 18,

651 (1977).
T. N. Rescigno, C. F. Bender, B.V. McKoy, and
P. W. Langhoff, J. Chem. Phys. 68, 970 (1978).

~3N. Padial, G. Csanak, B.V. McKoy, and P. W.
Langhoff, J. Chem. Phys. 69, 2992 (1978).

~46. R. J. Williams and P. W. Langhoff, Chem. Phys.
Lett. 60, 201 (1979).

~~P. W. Langhoff, A. F. Orel, T. N. Rescigno, and B.V.
McKoy, J. Chem. Phys. 69, 4689 (1978).

~8J. M. Blatt and J. D. Jackson, Phys. Rev. 76, 18

(1949).
~~R. G. Newton, Scattering Theory of Waves and Particles

(McGraw-Hill, New York, 1966), p. 431.
~8S. K. Adhikari and I. H. Sloan, Phys. Rev. C 11, 1133

(1975); see also W. H. Miller, J. Chem. Phys. 50, 407
(1969).

~9M. E. Riley and D. G. Truhlar, J. Chem. Phys. 65, 792
(1976).

OM. Cohen and R. P. McEachran, Proc. Phys. Soc. 92,
37 (1967).

2~M. J. Seaton, Comments At. Mol. Phys. 1, 184 (1970).
2~T. N. Rescigno, J. Chem. Phys. 66, 5255 (1977).

A. W. Fliflet and V. McKoy, Phys. Rev. A 18, 1048
(1978).
M. Rotenberg, R. Biyins, N. Metropolis, and J. K.
Wootin, The 3-j and 6-j Symbols (MIT, Cambridge,
Mass. , 1959), p. 6.

2 S. Huzinaga, J. Chem. Phys. 42, 1293 (1965).
26D. K. Watson and V. McKoy, Phys. Rev. A (to be pub-

lished}.
2~I. H. Sloan, Proc. R. Soc. A 281, 151 (1964).

N. F. Mott and H. S. Massey, The Theory of Atomic
Collisions (Oxford, London, 1965), p. 559.

9E. McGreevy and A. L. Stewart, J. Phys. B 10, L527
(1977).

3 J. A. R. Samson, Adv. Mol. Phys. 2, 177 (1966).
3~H. P. Kelly, Chem. Phys. Lett. 20, 547 (1973).

M. Cohen and R. P. McEachran, Proc. Phys. Soc. 92,
37(1967); 92, 539 (1967}.

33D. W. Norcross, J. Phys. B 4, .652 (1971).


