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We show that the existing and widely used results for an approximation to eikonal exchange amplitudes,
which contain an indeterminate phase, are not valid. We derive a new analytic result, containing a well-

defined phase, which can be used unambiguously with direct amplitudes to calculate full differential cross
sections. The modulus of our result also differs from that of the previous formulations. Comparisons are
made with the earlier e -H approximate exchange calculations and with exact eikonal exchange
calculations.

I. INTRODUCTION

Recently, considerable effort has been given to
the calculation of the exchange amplitudes for
collisions of electrons with atoms or ions by means
of the eikonal approximation or some variant
thereof. ' ' These amplitudes are of particular
interest because they complement the direct amp-
litudes obtained by means of often-used Glauber
and eikonal approximations. Together with the
direct amplitudes they allow for the calculation
of self-consistent full amplitudes for indistinguish-
able particles.

The most widely used method for calculating
eikonal exchange amplitudes has been to adapt
to the eikonal amplitude atechnigue used earlier"'4
for approximating the Born exchange amplitude.
The formulation for e -H collisions was first pre-
sented in 1972.' This approximate eikonal ex-
change amplitude, originally expressed as a one-
dimensional integral, was subsequently reduced
to closed form. 3 5

The techniques and results of these calculations' '
have also been used by others for calculating a
variety of cross sections. 6 8 All these calcula-
tions' yield approximate eikonal exchange amp-
litudes which contain an indeterminate phase
which leads to serious ambiguities when attempts
are made to combine the amplitudes with direct
amplitudes.

In Sec. II we present a critique of the formula, -
tion that was first presented ' for obtaining this
approximate eikonal exchange amplitude and de-
monstrate that the mathematical treatment lead-
ing to the indeterminate phase is not valid. In
Sec. III we develop an appropriate mathematical
treatment which yields not only a well-defined
unambiguous phase, but a modulus for the analytic
approximate eikonal exchange amplitude which
differs from that of Refs. 2-5. In Sec. IV we
compare our results for e -H elastic scattering
with exact eikonal calculations obtained from a

numerical evaluation of a two-dimensional inte-
gral and, for completeness, with the earlier cal-
culations. 3

II. CRITIQUE OF PREVIOUS FORMULATION

T«(k, ,k&)=f dr&drge' & d&(Y&)''
&~ +z &b'

jk ~ r) y ( )
(~'( 1) '(2

(r12 ~(2) b1

where r(2 ——ri-r2, b)2 ——bg-b2, zg2
——zg-z2, and

q, =1/0, . (We use atomic units m, =I=e=1
throughout. } The factor in large parentheses is
the eikonal phase contribution to the scattered
wave. We may write the amplitude (1) as a sum
of two terms,

(2)'f'g = «'[ri21 + t'[r2]

where t'[r f2] and t'[r2] are the terms in E(l. (1)
corresponding to the 1/r, 2 and -1/r2 parts of the
potential, respectively. After a simple change of
variables and some straightforward algebra
t'[rq, ] may be recast in the form

In this section we investigate the formulation
of the approximate eikonal exchange amplitude
that is currently used in electron-atom or elec-
tron-ion collisions. For definiteness we shall
consider electron-hydrogen atom (e -H) collisions
and use the notation of Ref. 2.

I et r& and r2 be the position vectors of the inci-
dent and target electrons, respectively, and let
rj ——z,. +bz be the usual cylindrical coordinate de-
compo'sition of r~. The "exact" eikonal exchange
T matrix for e -H collisions in which k, and k&

are the initial and final ~omenta of the free elec-
tron, respectively, and the target makes a transi-
tion from initial state Q, to final state Qz, is given,
in the post interaction, by
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ei&i'&12
t'I »tl =fd retd rte"'»dt (rtr + rI)de(rr)
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Ir]2+ r2 I- (e12+ e2)

where q =k,. —k& is the momentum transfer.
To obtain the leading term in the expansion of

. t'[2'12] and of t'[2"2] in inverse powers of k, or k,
the terms f'[r]2] and t'[r2] are approximated by

t (»l t Ir=r] '(4=et-kt) f dr e' "'&
d(tr }~d(»0),

5' p

[2 12] = t& [212] =mk d r2e"' @&(r2d) d r12e 125(r12)4 y (r12 r2)
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In effect, the replacements

e-iky~r2 4~-—e '"&'25(r )
2 f

e"i'&2 4m-„2 e'"&'125(r]2),
ki

have been made for the r2 integration in t'[r2] and
the r12 integration in t'[r, 2], respectively. (These
replacements will be discussed in detail in Sec.
III.) The second term in the approximate T ma-
trix, t„'[r2], is higher order in inverse powers of
k;, k& than is the first term f„'[r12], and thus is ne-
glected i.n the approximation. ' We therefore
concentrate on t„' [r12]; it is, in fact, this term
which leads to the indeterminate phase. Con-
tinuing the reasoning of Ref. 2, we proceed to per-
form the r&2 integration on the right-hand- side of
Eq. (4b) which seemingly yields

p*(r2)(r2 —z2) '"+ lim e'"+'"""
0

e

2

the last factor of which is the indeterminate phase
usually written as lim, „oe'"'"'. The result thus
obtained is

t„'[r„]= r
—time"'"f dr, e"'rd, (rt)
5k 6-0

0,"( 2)(22- 2) '". ()
As shown in Refs. 3-5, the integral in Eq. (6) can
be performed in closed form for arbitrary bound
final states in the hydrogen spectrum, yielding
finally a simple analytic approximation for the
eikonal exchange amplitude.

The fallacy in the above procedure'can be seen
as. follows. If, apart from the 5 function, the inte-
grand in the r„ integral in Eq. (4b) were well be-
haved at the origin, there would be no question
about evaluating it at the origin. However, the
integrand contains the factor (r12 —z]2)'"' which
is not well defined at the origin, and it is wholly
inappropriate to "evaluate" it at the origin, even
as an indeterminate phase. The reason for this
is that the 5-function integral

d =fd r tt (r)(r —e) '"

I

is undefined in a deeper sense, due to the infinite
oscillatory nature of (r —z)'"' at the origin. To
help us see this let us write out Eq. (7) in rec-
tangular coordinates,

f f dxdrdet}(x)tt(r)t}(e)

x[(„'+ '+ ')'~' &]'

Let us now, for sake of argument, integrate over
y and z first, yielding

f= dx 5(x)(x )
"

~ OO

(9)

which may be thought of as a one-dimensional in-
tegral exhibiting the nature of the indeterminate
three-dimensional integral of Eq. (7). Indeed,
following the procedure of Ref. 2, Eq. (9) would

yield

f= lim e'"""'.
6

(10)

sin(x/6)
5 x =11m

d -0 7l'X

~ [1- cos(x/e) ]5 x =lim
6-0 FX

(1la)

(lib)

5(x) =lim
6-0 71(E + X j

2/62

5(x) =lim
6-0 &&77

(1lc)

(ll.d)

For each of the cases (lla)-(lid), we obtained
for the 5-function integral, Eq. (9), an indeter-
minate phase factor multiplied by a term whose
modulus is different from unity. Furthermore,
the nonunity modulus terms were different for
each case. The results we obtained for f in Eq.

The fact that Eq. (10) is not a valid result can
be shown by replacing 5(x) in Eq. (9) by a defining
sequence of functions and seeing what the formal
limit of the thusly defined sequence of integrals
yields. This limit, of course, is the precise de-
finition of the 5-function integral. VYe have carried
out this procedure with four well-known sequences
for 5(x):
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(9), corresponding to Eqs. (11a)-(111),are

,„,„, I'(I+ iz},) sinh(-,'vzI, )
e -0 1 - zzl, —,)zq,

f= lim e'"'"/cosh(-, ')zz},),

(12a)

(12c)

hence the simple replacement given by Eq. (5b) is
not valid. Instead, let us note that for our case
we may write

H(r) = G(r)g(r),

where

G(r) = (t)P(r + rz) [~ r + rz
(
- (z + z,) j '", (16a)

f= lim e'"'"'I'(-,' + ,'iq—.)/Wm.
6 '0

(12d)

Note that in all cases the limit g, -0 yields the
same well-defined value of f= 1. However, at
any finite value of zl, the results (12a)-(12d) gen-
erally all differ in both magnitude and phase.
Other results can of course be obtained for other
representations of the 5 function and for other
choices of order of integration in Eqs. (7) or (8).
The important point is to recognize that it is not
sufficient to merely extract (r z)'"-' from the 5-
function integral as an indeterminate phase factor.
Instead, a careful examination of the origin of
the 5 function is necessary for a meaningful ap-
proximation for the r» integral in Eq. (3) for
t'[r&z]. This shall be made in the next section.

III. APPROXIMATION FOR EIKONAL EXCHANGE
AMPLITUDE

(13}

We have seen that the 5-function r&2 integral of
Eq. (4b) is not well defined. As remarked earlier,
the origin of the 5 function is the replacement
given by Eq. (5b). Let us investigate the justifi-
cation of this replacement. Although the formal
justification of this replacement is best made via
a momentum-space analysis, it suffices for the
moment to note that the r&2 coordinate-space inte-
gral of Eq. (3) is of the form

iki~r
h= Hrdr,

g(r) =(r-z)'" . (16b) .

Since G(r) is bounded and is smooth at the origin
we may still use the same reasoning for large k,
as before, and again noting that the contributions
to the integral will be very small except near the
origin we obtain, again for «&1,

eiki r eiki~l'
h= dr t" rgr = dr Grgrr r« r

eiki r
=('(0) f dr g(r) =G(0)

OO 1

h = G(0)2)z dh dx e'"z""z z'"'(1 —x) '".
0 -1

21+if)+

=2zzG(0) + . dr r""'e '~z"zF&(1;2+ iz}„'2ik,.r)
+ p

G(0)(-,')'z;) '"'I'(1+ iz},)e'" i4n

i
(18)

Using this result in Eq. (3}we obtain, instead of
Eq. (6),

T';=t'[~zzl= z (-'V) '" r(1+zn.)e'""4m

eiki r
x dr (r-z)'" .

al 1r r

This last integral is completely well defined and
can be evaluated, for example, in spherical coor-
dinates to give

e'ki' 47t
=H(0) d r = H(0)

aiir
(14)

which is of course equivalent to the replacement
given by Eq. (5b). In our case, the H(r) of the
rzz integral in Eq. (3) is not smooth at the origin
because of the infinite oscillations of (r —z)'"',

where H(r) is bounded. For k, very large, so
that the exponential term has many. oscillations
over regions where H(r)/z varies relatively
slowly, the contributions to the integral will be
very small except in the neighborhood of the 1/r
singularity, i.e., at the origin. If H were smooth
at the origin we would then have, for «& f,

h= dr Hr =HO dr
r&6 r r

-x dr2e 2 . r2 f r2

x(z'z z,)-' ~ . (19a)

Here the T matrix is completely well defined, with
no ambiguous phase. The modulus of this T ma-
trix is that of Eq. (6) multiplied by the factor

(2zzq, /[1 exp(-2vz)-, ) JP
".

This corresponds, for example, to a factor of
-3.3 in the squared modulus at 54 eV.

The same analysis may be made for the prior
form of the T matrix. Furthermore, since the
integral in Eq. (19) can be performed analyti-
cally, ' ' our final result is also analytic and, for
example, for the case in which the initial state is
the ground state, may be written as
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y6 3q |I'q~/2
T' =

k,""~sinhg g,
xD -[p + i(q+ X) z] '"

[p + (q+ x) ]'"

(19b)

where )7
——1/ki and D(if is a, differential operator

such that

yqr(r)y (r) D ~ ( (Br+ik-r)i (19c)

Here k, =k, and k =kg.
It is worth pointing out that for elastic scatter-

ing (k, = k&) from ns states there is no post-prior
"discrepancy" since for the post case the appro-
priate choice of z is z = k,. and for the prior case
the appropriate choice is z = k~. Thus q ~ z(post)
= —q ~ z(prior) and therefore our approximations
for T«are identical. '

The entire analysis leading to both the indeter-
minate phase of Ref. 2 and our result can be per-
haps even more clearly understood in momentum
space. The basic integral to be performed is
again, before any approximation, of the form

~jkj r
k(k, ) =f dr G(r)g(r) .r

We define the Fourier transforms

(20)

G(q) =f e "'G(r)dr, (2la)

g(q) =f e "g(r)d r . ' (21b)

Then via the faltung theorem,

g(q)=.(ke) f dkg(k)G(q-k). (22)

If the faltung theorem is used again in Eq. (20) we
obtain

where D» is a differential operator such that

(24c)

An examination of Eqs. (24a) and (24b) reveals that
g(q) falls off as q

' for Pqi
- and G(q) falls off at

least that rapidly. Thus for large kj the major
contribution to Eq. (23) comes from q «k,. and

k «kj. If we therefore ignore both q and k in the
denominator of Eq. (23b) the resulting integrals
can be formally performed to yield

k(k, ) =(4w/k;)g(r=0)G(r=0) . (as)

The right-hand side, of course, does not exist for
our case because g(r) is undefined at the origin.
If we express g(r =0) as a limiting expression as
r-0 we in fact reproduce the result Eq. (6), which
is that of Ref. 2 with its attendant ambiguities.
The problem from the momentum-space point of
view is that J g(k)dk is logarithmically divergent
for large k. It therefore is not legitimate to re-
move the k dependence in the denominator of Eq.
(23b) since that dependence is necessary for con-
vergence of the k integration. Put another way,
while the major contribution to the exact integral
comes from k «k j, removing k from the denomin-
ator term causes a slow but steady accumulation
of an infinite spurious contribution for large k.
On the other hand no such problem arises for the

q integration. The reason for this is that when

C(q) falls off only as q for large q, the oscilla-
tory e"'2 term guarantees the convergence of

J C(q)dq. Thus, if instead of setting both q and
k to zero in the denominator of Eq. (23b) we set
only q =0, we obtain the well-defined approxima-
tion

k(k) =
2 3 G(r=0) dk
4w - g(k)

2w

4w g(k) G(q —k)
(aw)' " ik +qi'

4w - y(k)G(q)
(2 )6 q igi+q+ki2

(23a)

(23b)

&jkjqr
=G(r=0) (r-z}'" dr,

which is precisely our present result, Eq. (17).

(26)

Using the defining equations for g and G, Eqs. (16),
we can explicitly evaluate the Fourier transforms
g(k) and C(q) since they are of the same general
form as the integral in Eq. (19a), and we find

g(q) =4wl (1+i@,)2'"'

xlim — — [(y'+ q') '"" '(y+ iq z) '" ], (24a)
yp By

(G'(q) = e"'24wl (1 —i)7,)2 '"'

x~»[p'+(~-q)']'" '[p-i(~-q) '] '" l; 0,

(24b)

IV. RESULTS FOR e=H ELASTIC SCATTERING
AND CONCLUSION

From Eq. (19b) the exchange amplitude g«
-T;,/aw, for the —case of elastic scattering of

electrons by hydrogen, is given by

6wqe "" (2- iq'/ak) '" '
k""sinhwq (4+ ~')' '"

x [-ill(4+ q ) + 4(ill —1)(2 —iq'/ak)1, (27)

where k = 1/q = k, and 8 is the scattering angle.
We have evaluated this amplitude and in Tables I,
II, and III have compared its squared modulus to
the earlier results2 3 and to the "exact" numeri-
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TABLE I. Squared modulus 'of e -H elastic scattering
exchange amplitude (in units of ap /sr) vs scattering angle

0 for 200-eV incident electrons.
0

0

0
10

0

(deg) This work Ref. 3
Exact eikonal
post (Ref. 9)

2

3
5
7

10
15

-20
40
60
80

100
120

3.37xlp 2

3.29xlp 2

3.05x 10 2

2. 74 x 10"~

2. 19xlp 2

1.32xlp 2

7.05x 10 3

3.73 x 10-4
2.31 x 10-5

2. 71 x10
6.20x10 i

2.30xlp ~

1.66xlp 2

1.62xlp 2

1.50 x 10-'
1.35 x 10

1.08x 10 2

6.48xlp 3

3.47xlp 3

1.83xlp 4

1.13x 10-'
1.33 x 1 0
3.05x 10 7

1,13xlp

3.71 xl 0 ~

3.62xlp ~

3.34x 10 ~

2. 97 x 10"~

2. 33xlp 2

1.34x 10-2
6.68xlp 3

1.87 x 10-4
9.20xlp 6

1.27xlP 5

1.23x 10-'
1.06xlp ~

cally obtained eikonal results at the energies
(200, 100, and 50 eV) for which they are available.
Since the "post" and "prior" results differ in the
exact eikonal case we show both results at the two
energies (100 and 50 eV) for which they are avail-
able. In Fig. 1 we compare ~g', , ~' at II=2' ob-
tained from Eq. (27) to the corresponding result
of Ref. 3 over a, wide range of incident energies.
%e also show the exact eikonal results of Ref. 9
at the three energies for which they are available.
(As can be seen from the tables, the post and

prior exact eikonal results differ negligibly at
8=2'. Hence we have plotted the points for
~g', only. ) Furthermore, to guide the eye we
have connected these three exact points by using
a three-term interpolation formula involving in-
verse powers of k. As can be seen, the good
agreement between the exact results and the
earlier results of Ref. 3 at 50 eV is wholly acci-
dental, and while the results of the three different
calculations converge to each other at extremely

O
D
I

CL

8z
Z

0

O0

-2
10

-3
10

-4
10

10
10

2
10 10 10

4

INCIDENT ELECTRON ENERGY (eV)

FlG. 1. Squared modulus ig,'&i, of eikonal exchange
amplitude for elastic e —H scattering at a scattering
angle of 2 as a function of incident electron kinetic en-
ergy. The solid curve is the present calculation [Eq.
(27)]. The dashed curve is the earlier results of Ref.
3. The three solid dots are the exact eikonal post re-
sults of Ref. 9. The long-dashed curve is a simple in-
terpolation of the three exact results.

high energy, the present result, as expected, is
the better high-energy approximation to the eikonal
exchange amplitudes.

In conclusion we see that the widely used ap-
proximation method for calculating eikonal ex-

TABLE II. Squared modulus of e -H elastic scattering exchange amplitude (in units of ap /sr)
vs scattering angle 0 for 100-eV incident electrons.

(deg)

2
3
5
7

10
15
20
40
60
80

100
120

This work

1.57x 10"
1.55xlp-'
1.49x 10
1.41 xlp
1.24xlp i

9.33 x 10-2
6.39x 10 2

8.35x 10 ~

8. 75xlp
1.24x 10 4

2. 93 x 10 ~

1.10x 10 5

Ref. 3

6. 12 x 10"2

6. 04 x 10-'
5. 81 x10-2
5.47xlp 2

4. 84 x10-'
3.63x 10
2.49xlp ~

3.25xlp 3

3.40x 10 4

4. 82xlp 5

1.14xlp 5

4. 28x 10 6

Exact eikonal
post (Ref. 9)

1.05x lp-'
1.03x 10
9.86x10
9.24xlP 2

8. P7 x 10-2
5.85x10 2

3.81x10-'
3.02xlp 3

2. 2p x lp-'
7.69 x10. ~

l.40 x10
1.51 x10 4

Exact eikonal
prior (Ref. 9)

1, 05x 10"
1.03x 10"
9.97x 10 2

9.44xlp 2

8.43x 1P-2

6.47xlp 2

4. 60x10 2

8.47 x 10 3

1.83 x 10 3

4. 13x10 4

2. 55x 10 4

4. 75x 10 4



EIKONAL EXCHANGE AMPLITUDES l l23

TABLE III. Squared modulus of e"-H elastic scattering exchange amplitude (in units of ao /sr)
vs scattering angle 8 for 50-eV incident electrons.

(deg)

2
3
5
7

10
15
20
40
60
80

100
120

This work

7. 09x10
7. 04x10 ~

6.89x10
6.66 x10-'
6.22 x10 "i

5.27 x 10
4. 21 x1O-'
l. 11x 10"i

2. 04x10 2

3.93x10 3

1.04x 10"3
4. 09x10 4

Bef. 3

2. 08x10 '
2. 07x10
2. 02 x10
1.96x10"'
1.83x10"i
1.55x10
1.24 x1O-'
3.25 x 10"2

5.99x10 3

1.15x10 3

3, 06x10 4

1.20x10 4

Exact eikonal
post (Ref. 9)

2.39x10 ~

2.37x1O-'
2.30x10
2.21 x10
2. 02 x10
1.63x10 i

1'.2l x10"
1.53x10 2

3.06 x10-5
2.40x10 3

3.76 x10 3

3.93x10 3

Exact eikonal
prior (Ref. 9)

2.39x10
2.38x10 i

2.33 x1O-'
2.26x 10
2. 11x1O-'
1.81x10
1.47x10 ~

4. 55x 10"2

1.42 x10-2
3.89x10 3

2. 28 x10 "3

7. 76x10 "3

change amplitudes, introduced in Refs. 1-5,
which has 'led to the well-known indeterminate
phase has been misformulated. The basic prem-
ises leading to that formulation have been recast
in correct form in this work, leading to a new ap-
proximate eikonal exchange amplitude with a well-
defined phase and a different modulus. This new
exchange amplitude can now be unambiguously
combined with direct eikonal amplitudes to obtain
the total differential cross sections for collisions
involving indistinguishable particles. Despite our
reformulation, however, since the approximation
to the exact eikonal exchange amplitude is in-
herently a very high-energy one, its use is limited
by the fact that the contribution from the exchange
amplitude is most significant at low energies.
Nonetheless the simple analytic form of the ap-
proximation is appealing and we anticipate it will
be useful in the energy region above -100 eV for
e -H scattering. Furthermore, the approximation
can be extended to more complex atoms and should
be of use in corresponding energy regions for such

systems. We intend to combine our new exchange
amplitudes with corresponding direct amplitudes
both in the post and prior cases and for the Glau-
ber case (q ~ z =0) and to make detailed compari-
sons with experiment for a number of systems.
It is difficult to extend the. approximation to lower
energies. While the approximation stands on its
own merits, it may well not be the first tecum in a
convergent expansion leading to the exact eikonal
result. " Nevertheless corrections to the approxi-
mation to improve its accuracy and extend its
validity to lower energies are possible, and we
are currently working in that direction.
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