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Interaction energy bet&i een two ground-state helium atoms using many-body perturbation
theory
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Diagrammatic many-body perturbation theory is applied to the calculation of potential-energy curves for
He, . Both model and shifted perturbative procedures are described. The shifted scheme produces a spurious
R dependence for the long-range interatomic potential in both second and third order. Variational-
perturbative upper-bound methods produce energies that approach an incorrect asymptotic limit at large
internuclear distances. In contrast, the model-perturbative scheme in both second and third order achieves a
proper distance dependence for the He, potential curve, Four basis sets are employed to illustrate basis-set
effects.

I. INTRODUCTION

The interaction between two ground-state helium
atams represents a relatively simple chemical
system. Each atom has a pair of electrons asso-
ciated with it, and the electronic problem is the
prototype for int'eractions between two nonbonded
.closed-shell systems. Nevertheless, the Hartree-
Fock independent-particle model is insufficient' '
for describing the small mutual attraction between
two helium atoms in the van der Waals region.
Thus, electron correlation effects must be taken
into account. The diagrammatic techniques of
nondegenerate many-body perturbation theory4 '
can be applied to this problem within the algebraic
approximation' where state functions are paramet-
rized by expansion in a finite set of basis func-
tions. This approach has been applied to several
atoms' 'and molecules. "" This paper reports
many-body perturbative calculations for the inter-
action energy between two ground-state helium
atoms over a wide range of internuclear separa-
tions.

A large number of calculations on He, have been
reported previously using, for example, matrix
Hartree-Fock methods, ""multiconfiguration
self-consistent-field approaches, "'"valence-bond
theory, "configuration-interaction techniques, ""
and perturbative treatments. "" The present work
is most closely similar to several previous cal-
culations'" "which use a similar algebraic
approximation involving a basis set of atomic
orbitals located at each He atom. Although the
most accurate of the present results may be more
accurate than some of the earlier calculations"
by=10 ' hartree, later calculations"'"'" "have
an improved accuracy of =10 ' hartree over the
present results.

The previous perturbative results are not compa-
rable to the present work. In one type of pertur-

bative treatment, " the zero-order Hamiltonian,
K, is taken to be that of two isolated He atoms so
that the interatomic potential is the perturbation

Here the matrix Hartree-Fock Hamiltonian
for the He, molecule is taken as 0, and &, con-
tains the remaining interactions corresponding to
the correlation energy. In another previous type
of perturbative treatment, '4 the perturbative
splitting of R is the same as that used here;how-
ever, the contributions to the total energy of He,
are split into intra- and interatomic correlation
portions as well as a Hartree-Fock portion.
Different wave functions are then used'4 for the
calculation of these separate portions of the prob-
lem. In the present work, four different atomic-
orbital basis sets are described; however, each
o5e is used separately for a given calculation
which includes all portions of the energy. In other
previous perturbative schemes, "'"the zero-order
wave function is constructed from wave functions
representing the separated atom species. Direct
perturbative calculations of long-range dispersion
coefficients have also been described. " Finally,
although the usage of a basis set is similar to the
present work, another previous perturbative treat-
ment" differs in its use of a random-phase ap-
proximation for summing selective diagrammatic
terms in the correlation-energy series.

In light of the previous calculations' ""on He»
the present work is not intended to compete in
accuracy with previous work nor to provide fur-
ther detail on the nature of the interatomic poten-
tial. Such objectives would require the use of very
large basis sets. Rather, the purpose of the pres-
ent work is to use the mell-known properties of the
He, system to assess the efficacy of the many-body
perturbative treatment using moderately small
basis sets. Of particular interest is the effect of
the basis set on various perturbative energy quan-
tities as a function of the internuclear separation.
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II. THEORETICAL AND COMPUTATIONAL ASPECTS

A. Method

The diagrammatic Rayleigh-Schrodinger pertur-
bation expansion4"' through third order in the
energy forms the basis of a noniterative and com-
putationally efficient algorithm" for electronic-
structure calculations on nondegenerate ground
states of atoms and molecules. Details of the
present formulation within the algebraic approxi-
mation have been given. '

Following previous work, ' ' ""two different
perturbation expansions are investigated corre-
sponding to two choices of the reference Hamil-
tonian, the "model" and "shifted" schemes. In the
model scheme, the Hartree-Fock operator is used
as a reference Hamiltonian. In the shifted expan-
sion, the reference operator is defined as follows:

Xo = K KX K K

where X is the total Hamiltonian and le) denotes
an N-electron determinant formed from the orbit-
als, both occupied and virtual, obtained from the
matrix Hartree-Fock calculation. For each of
these series, the 4th-order energy components
&„ are calculated to form the total energy through
third order. The total energy through k'th order
is designated .

g~ =g ~+ 60+ 6~+ ' '+ E, ~ y

where E„is the nuclear repulsion energy. The

(2)

The physical, properties that are useful in this
regard are the steepness of the repulsion at short
internuclear distances, the depth of the attractive
well in the van der Wa~&s region, and the asymp-
totic behavior at large separations. A number of
experimental measurements have been performed
that yield information'~ "on these characteristics
of the interatomic potential of He, .

Some theoretical aspects of the many-body per-
turbation theory are brieQy stated, and details of
the calculations are outlined in the next section.
The numerical results are presented in Sec. III
and discussed in Sec. IV; some concluding remarks
follow.

4~(y) =40+ye, (4)

and @0 and C~ pie the zero- and first-order contri-
bution to the perturbative wave function, respec-
tively. As in previous work, """an additional
variational parameter y is included with the first-
order wave function, and its optimal value is de-
termined; the corresponding energy bound is denoted
E„„(y„,). All two-body, three-body, and four-body
contributions that enter the energy expansion
through third order are included in the calcula-
tions. The use of the shifted-perturbative scheme
is indicated by appending a superscript 5 to the
corresponding energy term, e.g. , E~ represents
the total energy through 4th order in the shifted
scheme.

B. Basis sets

Four basis sets of real Slater orbitals are em-
ployed; these are specified in Table I. Basis setA
is the "double-zeta" basis of Roetti and Clementi";
the remaining basis sets contain additional P or s
and p functions. Even the largest of these basis
sets, D, is considered to be a relatively small
basis. The small size of these basis sets is dis-
advantageous since it limits the absolute accuracy
obtainable. However, small atomic basis sets
are inevitably advantageous for incorporation into
multicenter molecular basis sets, where the size
of a calculation can be as important as its accura-
cy.

Following the calculation of integrals" over the
Slater-type orbitals, a matrix Hartree-Fock (SCF)
calculation" and transformation" of integrals into
integrals over the SCF orbitals is performed for
each basis set. The latter integrals form the in-
put required to calculate" the third-order many-
body perturbative results. Since matrix Hartree-
Fock orbitals are used, only doubly excited config-

[2/1] Padd' approximants are constructed and
variational upper bounds E„are evaluated by in-
serting the perturbative wave function truncated
at first order, +I, into the Rayleigh quotient:

', (r) =(+,(y)l&l@,(y))~(@,(r)l+, (r)&,

where

TABLE I. Composition of plater-orbital basis sets for He.

Basis set Orbitals and exponents (bohr-L)

Aa
B
C
D

ls (1.453 63) + ls (2.91093)
ls + 1s' + 2p (2.4607)
ls+ ls'+ 2p' (2.461) +2s (1.75) + 2p" (0.917)
ls + Is' + 2p'+ 2s' (1.4) + 2s" (1.96) + 2p"

Double-zeta basis of C. Roetti and E. Clementi, Ref. 39.
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TABLE II. Calculated energies for the helium-atom ground state using the basis sets of
Table I (energy in hartree).

Basis set

EscF
s

Ev~~&orat~

Es
2

ES
3

s

Ev~h'~t~

E

EE2/13

-2.861 673

-2.875 411

-2.875 442

-2.875 442

-2.875 442

-2.875 411

-2.872 922

-2.874 981

-2.875 442

-2 861673

-2.895 237

-2.896 376

-2.895 415

-2.895 441

-2.895 231

-2.889 247

-2.894 301

-2.895 435

-2.861 673

-2.898 048

-2.898 646

-2.898 337

-2.898 339

-2.897 902

-2.891313

-2.896 888

-2.898 180

-2;861 673

-2.898 206

-2.898 133

-2.898 483

-2.898 487

-2.898 099

-2.891 487

-2.897 084

-2.898 378

urations enter the perturbative expansions through
third order.

C. He-atom energies

For comparison purposes, the basis sets of
Table I are used to calculate the energy of a
ground-state helium atom. The results are given
in Table II, including the matrix Hartree-Fock
energy Zsc„as well as E (pppt)p Z» Z„and Z&, ~, &

for the shifted- and model-perturbative schemes.
The accuracy of Es~„is -7 & 10 ' hartree compared
to the value of -2.861680 hartree given by G5zquez
and Silverstone. " The correlated total energies in
Table II have an accuracy of -10 ' hartree com-.

pared to the results of Frankowski and Pekeris:4'
-2.903 724 hartree.

III. He2 INTERACTION ENERGIES

The interaction energy for He„bE(R), as a
function of the internuclear separation R is defined
as follows:

ZZ(R) =E(He, ; R) —2-E(He),

where E(He, ;R) is the calculated energy of the He,
system at R and Z (He) is the calculated energy of
an isolated He atom. It is implicit that both
E(He„R) and E(He) in Eg. (5) correspond to pre-
cisely the. 'same computational approximation,
i.e., the same basis set and the same energy quan-
ity. If the energy quantity has a proper depen-
dence' on N, the number of electrons in the sys-
tem, then b,Z(R) should approach zero in the
asymptotic limit of large R; that is,

lim Z(He„.R) = 2E(He) . (5)
gazoo

This property has been referred" "to as "size
consistency. "

A. Matrix Hartree-Fock results

Interaction energies at the matrix Hartree-Fock
level are given in Table III for the four basis sets
of Table I. The asymptotic energy 2E~c„(He) is
essentially the same for each basis set since the
additional s functions in the larger basis sets do
not have a significant effect on the energy, and the

p functions have an improper symmetry to enter
the Hartree-Fock wave function for the isolated
He atom.

At small R, there is a major improvement in
the energy between basis sets A and D; a lowering
of 158 mhartree is achieved at R=1 bohr. Over
the range of small R, 1-3 bohr, basis sets C and

D are in close agreement. In the intermediate
range of R, 3-7 bohr, all the basis sets are in
close agreement; however, they show an incorrect
qualitative behavior since the van der Waals at-
traction cannot be described at the Hartree-Fock
level. ' At large R, &7 bohr, the He, energies
approach the correct 2He energy. The negative
signs for basis sets C and D over the range 8-25
bohr indicate that the corresponding He, energies
are less than the 2He energy by an amount less
than a p,hartree. This is a manifestation of the
inclusion of p functions in the basis set. These
functions are symmetry restricted from entering
the atomic He system but are available to the
diatomic He, and therefore give rise to the sub-p,
ha, rtree imbalance seen in Table III.

The results, using basis sets C and D, are in
mutual agreement to within three significant digits
over the range of R, shown in Table III. In addi-
tion, these results also agree to within three
significant digits over the range of R with the SCF
results reported by Kestner. ' Similar agreement
is found with the AE,c~curves reported by
others """
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TABLE III. Matrix Hartree-Pock interaction energies AEs~z for He& as a function of in-
ternuclear distance. 8, relative to the corresponding asymptotic energy of two He atoms.

Basis A Basis B Basis C Basis D

1.0
2.0
2.5
3.0
3..5
4.0
4.5
5.0
5.2
5.4
5.6
5.8
6.0
6.2
6.4
7.0
8.0
9.0

10.0
15.0
20.0
25.0

E(2 He)

1090.435
131.837
43.916
14.273
4.532
1.408
0.429
0.129
0.079
0.049
0.030
0.018
0.011
0.007
0.004
0.001
0.000
0.000
0.000
0.000
0.000
0.000

-5.723 345

1061.479
128.125
42.894
13.989
4.450
1.384
0.422
0.126
0.078
0.048
0.029
0.018
0.011
0.007
0.004
0.001
0.000
0.000
0.000
0.000
0.000
0.000

-5.723 345

932.346
121.710
41.372
13.612
4.354
1.359
0.414
0.123
0.075
0.046
0.028
0.017
0.010
0.006
0.003
0.000

-0.000
-0.000
-0.000
-0.000
-0.000
-0.000
-5.723 345

931.637
121.083
41.134
13.550
4.342
1.357
0.415
0.124
0.076
0.046
0.028
0.017
0.010
0.006
0.003
0.000

-0.000
-0.000
-0.000
-0.000
-0.000
-0.000
-5.723 345

~Interaction energy in hartree, distance in bohr.
Energy in hartree.

TABLE IV. Correlated interaction energies 4E for He2 as a function of internuclear dis-
tance B, relative to the corresponding asymptotic energy of bvo He atoms for basis set C.

S
+Evar (~opt) AE aE' +EL-2/

S

1.0
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.2
5.4
5.6
5.8
6.0
6.2
6.4
7.0
8.0
9.0

10.0
15.0
20.0
25.0

2E (He)"

920.098
119.353
40.852
13.733
4.686
1,784
0.898
0.648
0.613
0.594
0.586
0.583
0.583
0.585
0.588
0.598
0.609
0.616
0.620
0.627
0.630
0.633

-5.796 097

916.514
121.488
43.927
17.440
8.893
6.358
5.751
5.726
5.770
5.826
5.888
5.953
6.018
6.082
6.144
6.317
6.557
6.746
6.896
7.338
7.556
7.686

-5.797 292

918.540
118.797
40.405
13.351
4.356
1.497
0.648
0.429
0.405
0.398
0.400
0.407
0.417
0.429
0.441
0.477
0.526
0.564
0.593
0.680
0.724
0.751

-5.796 674

918.470
118.743
40.287
13.175
4.127
1.224
0.339
0.090
0.056
0.038
0.030
0.027
0.028
0.031
0.034
0.045
0.059
0.067
0.072
0.082
0.088
0.091

-5.796 679

Interaction energy in mhartree, distance in bohr.
Energy in hartree.
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TABLE V. Correlated interaction energies hE for He2 as a function of internuclear dis-
tance R, relative to the corresponding asymptotic energy of two He atoms for basis set D.

&~n&~~
$

1.0
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.2
5.4
5.6
5.8
6.0
6.2
6.4
7.0
8.0
9.0

10.0
15.0
20.0
25.0

gs@e) b

918.597
118.686
40.500
13.572
4.598
1.705
0.'829
0.579
0.544
0.527
0.520
0.519
0.521
0.525
0.530
0.545
0.562
0.572
0.578
0.589
0.595
0.598

-5.796 412

915.220
120.232
42.879
16.561
8.043
5.476
4.994
4.969
5.013
5.069
5.132
5.196
5.261
5.324
5.385
5.553
5.777
5.947
6.086
6.517
6.727
6.852

-5.796 266

916.883
118.179
40.105
13.247
4.326
1.474
0.658
0.443
0.422
0.417
0.422
0.432
0.445
0.459
0.474
0.516
0.570
0.610
0.641
0.735
0.782
0.810

-5.796 966

916.879
118.079
39.933
13.009
4.031
1.136
0.264
0.016

-0.018
-0.035
-0.041
-0.041
-0.038
-0.033
-0.028
-0.012

0.007
0.018
0.025
0.040
0.047
0.051

-5.796 973

interaction energy in mhartree, distance in bohr.
"Energy in hartree.

TABLE VI. Correlated interaction energies 4E for He2 as a function of internuclear dis-
tance R, relative to the corresponding asymptotic energy of two He atoms for basis set C. '

1.0
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.2
5.4
5.6
5.8
6.0
6.2
6.4
7.0
8.0
9.0

10.0
15.0
20.0
25.0

2E(He)

+@var ~Yopt~

920.107
119.238
40.746
13.634
4.59.7
1.703
0.821
0.572
0.537
0.519
0.510
0.507
0.507
0.509
0.512
0.521
0.530
0.535
0.538
0.539
0.539
0.539

-5.795 804

918.270
118.446
40.046
13.008
4.017
1.142
0.267
0.020

-0.014
-0.032
-0.040
-0.042
-0.041
-0.038
-0.035
-0.024
-0.011
-0.005
-0.002
-0.000
-0.000
-0.000
-5.782 625

DE3

918.188
118.467
40.100
13.043
4.030
1.146
0.269
0.023

-0.011
-0.029
-0.037
-0.039
-0.038
-0.035
-0.032
-0.022
-0.010
-0.005
-0.002
-0.000
-0.000
-0.000
-5.793 776

+@(2/t3

918.740
118.642
40.197
13.093
4.055
1.160
0.278
0.030

-0.005
-0.023
-0.031
-0.034
-0.034
-0.031
-0.029
-0.020
-0.009
-0.004
-0.002
-0.000
-0.000
-0.00.0
-5.796 360

~Interaction energy in mhartree, distance in bohr.
~ Energy in hartree.
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TABLE VII. Correlated interaction energies 4E for He2 as a function of internuclear dis-
tance 8, relative to.-the corresponding asymptotic energy of two He atoms for basis -set D, .

~

+Evar ~Yopt~ AE3 AE)2] ) g

1.0
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.2
5.4
5.6
5.8
6.0
6.2
6.4
7.0
8.0
9.0

10.0
15.0
20.0
25.0

28(He)"

918.460
118.616
40.460
13.538
4.567
1.684
0.801
0.553
0.519
0.502
0.495
0.494
0.496
0.499
0.504
0.516
0.530
0.537
0.539
0.541
0.541
0.541

-5.796 198

916.740
117.843
39.766
12.905
3.974
1.108
0.233

-0.011
-0.044
-0.059
-0.064
-0.064
-0.060
-0.055
-0.049
-0.033
-0.015
-0.006
-0.002
-0.000
-0.000
-0.000-
-5.782 974

916.487
117.855
39.815
12.943
3.994
1.120
0.241

-0.003
-0.036
-0.051
-0.057
-0.057
-0.054
-0.049
-0.044
-0.029
-0.013
-0.005
-0.002
-0.000
-0.000
-0.000
-5.794 169

916.997
118.023
39.911
12.996
4.024
1.139
0.256
0.008

-0.025
-0.042
-0.049
-0.049
-0.047
-0.043
-0.039
-0.026
-0.011
-0.005
-0.002
-0.000
-0.000
-0.000
-5.796 756

~Interaction energy in mhartree, distance in bohr.
b Energy in hartree.

B. Correlated results using the shifted perturbative scheme

Interaction energies derived from the shifted
perturbative scheme are given in. Tables IV and

V for basis sets C and D of Table I. Over the
range of small R, 1-3 bohr, the results using
basis sets C and D are in reasonably close agree-
ment. In the range R &3 bohr, all of the results
show incorrect behavior. The Pade results
AE ~2 j& ] for basis set D exhibit an attractive well;
however, even in this case, the behavior at large
R is incorrect.

C. Correlated results using the model-perturbative scheme

Interaction energies derived from the model-
perturbative scheme are given in Tables VI and

VII for basis sets C and g) of Table I. The inter-
action energy from the variational procedure,
bZ„(y,~, ), exhibits an incorrect dependence on
R and approaches an incorrect asymptotic limit
similar to the situation found with the shifted
scheme. However, the quantities AE„AE„and

t'2/y ) in the model scheme each approach the
correct asymptotic limit at large R and -exhibit
reasonable behavior as a function of R as the
basis sets are improved. Basis setA contains
only s orbitals, and it is not capable of producing
a van der Waals minimum. Basis set B, with an

additional p function per atom, shows only a
slight improvement in this respect. Basis sets
C and D, however, appear to have enough flex-
ibility to produce proper R dependencies in the
model-perturbative energy quantities. In addition,

3p and gE „&~ for basis sets C and D are
in good mutual agreement with one another in the
repulsive region, R ~ 4.5 bohr.

IU. DISCUSSION

A. Uariational-perturbative upper bounds

Although the variational energies, E in Eq. (3),
represent rigorous upper bounds to the true energy
eigenvalue over the entire potential curve, the
interaction energies EZ „are defined to be energy
differences and do not represent rigorous upper
bounds. The' unavoidable loss of the upper-bound
property in forming ~E„ is itself not an imped-
iment to its usefulness. However, hE does have
an undesirable property, namely, that aE~ ap-
proaches a wrong asymptotic limit at large R for
both the shifted- and model-perturbative schemes
as seen in Tables IV-VII. This behavior is due to
the unlinked-cluster effect.

Inserting the perturbative wave function truncated
at first order, 4', of Eg. (4) with y chosen to be
unity, the Rayleigh quotient of Eg. (3) has the form
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aE (y =1)=Es~+ (c,+e',)/(1+S„),
where 8» is the self-overlap'of the first-order
contribution to the perturbative wave function:

The various perturbative terms have the asymptot-
ic values

lim e, (He, ) = 2e„(He),

lim S„(He,) = 2S„(He) .
(9)

(12)

Using. Eqs. (9) and (10}, the asymptotic value of

pt for He, differs from y,pt for He as follows:

limy, „(He,) -y, (He)

= -S„(He)/(8g') +Of S'„(He)/g'j . (13)

Thus bE „(y) in Eq. (11) has an asymptotic error
again of fourth order involving the unlinked-cluster
factor c,S„as the leading term.

The magnitude of the fourth-order unlinked-
cluster problem in He, is of the order of -0.5
mhartree as seen in Tables DIt-VII. For the He,
potential curve, this is a serious error. For other
chemical systems, the importance of this effect
would need to be determined since (a) the error
would have a value characteristic of the species
involved, and (b) the degree of accuracy required
for any given system is also species dependent.
Nevertheless, since the error is present formally,
there must be numerical errors in the asymptotic
behavior of all interaction potentials calculated
using LF„.Moreover, since the rigorous upper-
bound quality of E„ is lost upon forming LE„„,
the perturbative upper-bound energies are not
totally satisfactory for describing the behavior of
an entire interaction-energy curve.

The asymptotic value for 8», although correct,
causes EE„ in Eq. (7} to have a wrong asymp-
totic value. Using Eqs. (9) and (10) and expand-
ing the denominator in Eq. (7) shows that
iIm„„L E„,(H e) is the correct through third

order but has higher-order errors beginning with
the fourth-order unlinked-cluster' factor &,Spy.

The variational parameter y in the perturbative
wave function of Eq. (4) gives added flexibility:

(2y y')~,-+ y'~,E sr(~) EscF +r &„

@SCF 4pt 2 y

where the variationally optimal value of y is given
by

B. Perturbative results for large R

The shifted-perturbative results, LZ„EE„and
AE&, /» in Tables IV and V, exhibit a remarkable
property, namely, that the behavior of these inter-
action energies for large R is incorrect. Com-
pared to the error present in ~~ (y,~,), the errors
for AE„~E„and ~Z[2/J) are, respectively, an
order of magnitude greater than, comparable to,
and an order of magnitude less than the error
found in aE~ (y,~, ). In contrast, the interaction
energies AE„~E„and AE „~» derived from the
model-perturbative scheme do not share this del-
eterious feature.

Of the shifted-perturbative results, perhaps the
most reasonable is obtained from basis set D in
Table V since ~E„~„for basis set D displays
proper behavior in the short-range and
van der Waals regions. Thus basis set D is chosen
for a more detailed analysis, and comparison be-
tween the shifted- and model-perturbative
schemes, in particular, over the range of
R ~ 6 bohr where an R dependence on the order of-aR ' should dominate the total energies.

The R dependence of E gp cp& and &y fox'basis
set D is shown in Fig. 1. The E~ curve is, of
course, simply proportional to R ' and has a vari-
ation of —0.27 hartree over the interval from
6-10 bohr. By comparison, e, varies only -30
p, hartree over this interval. However, ~, is pro-
portional to -R in this interval and has a var-
iation comparable but opposite in sign to E„. Thus,
the sum of these three terms, Esc„, has only a
slight R dependence with a variation of -10
phartree over the 6-10 bohr interval. The second-

tD
0)

0

Ul
I
fD

IJJ 2

EN

~ ~ 1—~ t

E'o

ESCF E~ + 'O+ '~

-6 I I I I

2 4 6 8

~~~aaaeaaa Cp

Em~m~~~~~~ $CF
I l

10 OO

Internuclear distance (bohrj

FIG. 1. Perturbative energy contributions for He& as a
function of internuclear distance using basis set D of
Table I: E~ is the nuclear repulsion energy; ~0 and ~, are
the zero- and first-order perturbative terms. The
curves are extrapolated to the points on the right corre.—

sponding to energies for 2He.
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and third-order energies are shown in Fig. 2.
To give some indication of the B dependence of

various curves in Figs. 1 and 2, over the range
6-10 bohr, a fitting of the curves to the three-
parameter function

y=y, ~C„R " (14)

has been performed using energy values at 6, 8,
and 10 bohr. As a check on the fitting procedure,
it has also been applied to the potential curve of
Siska et al."(which they denote as ESMSV) which
has the explicit analytical form

V (R) = Cg '+ C,R + C,OR ', (15)

with C6= —1.45 hartree bohr', C, = —14.0
hartree bohr', and Cyo 180 hartree bohr' . Fit-
ting Eq. (15) to the simpler form of Eq. (14) over
the range 6-10 bohr gives C„-4.09 hartreebohr"
and n =6.41. It is clear that this fitting scheme is
crude; nevertheless, it should be useful for iden-
tifying the proper range of the exponent of R for
potential curves of widely separated R dependen-
cies. Results are given in Table VIII where ~„and
E» are defined in Eq. (2).

Although E„and Ey b.oth are of the form R ', their
coefficients C„are approximately equal but of op-
posite sign. Hence, the R ' dependence is largely
canceled; the effect of the residual R dependence
can be seen by comparing n for e, + e, with n for
E, in Table VIII.

The second-order energy &, has the form

TABLE VIII. Approximate fit of the potential curves
for basis set D to the form y= yp + C+ " using the cal-
culated energy values at 6, 8, and 10 bohr. ~

Energy Cn

~p+~t

E'2

E'2 + E'3

&3 (diagonal)

&3 (diagonal-PP)

&3 (diagonal-HP)

&3 (diagonal-HH)

~S
2

~s
8

+ E'

ES

Evar (%apt)

Evm Aopt)
s

0.000 000

-4.1Q3 116

-5.723 345

-0.059 629

-0.011195

-0.070 823

-5.794 169

-0.005 378

+0.003 329

-0.013930

+0.005 223

4.00 1.00

1.00-4.00

-4.00

-9.29

1.00

6.58

. 7.494.20

6.51-7.47

-3.44 6.17

-0.0082 0.90

0.0042 0.92

-0.0176 0.94

0.0053 1.02

(-0.065 610) -0.0128 1.Q2

(-o.oo735o) 0.0080 0.82

(-0.072 816) -0.0064 1.59

(-5.796 110) -0.0040 1.26

(-5.795 657) -2.49 6.10

(-5.795 814) -0.0087 2.64

yp and C„are in hartree.
yp is taken to be 2E(He) corresponding to E(He2) ex-

cept for the shifted terms and E„„where yp (in paren-
theses) corresponds to a "best fit" to Eq. (14).

e, = (ij[[ah)(a&[[ij)/D(ij a&),
i j a b

where i, j denote occupied and a, b denote unoccu-

~ S
3

pied matrix Hartree-Fock spin orbitals y~ and

(pq))rq)= jqq, fqj (q1)q (2)

&«,.'[q „(1)y,(2) -q, (1)y,(2)] .

The denominators
I

D(Pqrs) =e»te, —e„-e,

(17)

(1S)

-80—
I

2

S
2

g2+g3

S+~ S
2 3

I I I

6 8 10

eeaae aa+e
Qt ~ Jyy

depend on the orbital energies e~. The occupied

-0,8

nI
Ol

09
tO

-1.0—
C

LLI

Internuclear distance (bohrj

FIG. 2. Perturbative energy contributions for He2 as a
function of internuclear distance using basis set D of
Table I: e2 and e3 are model energies; e2 and e3 are
shifted energies. The curves are extrayolated to the
points on the right corresponding to energies for 2He.

-1.1 I

2
I I I

6 8 10

Internuclear distance (bohrj

FIG. 3. Occupied orbital energies for He2 using basis
set D, extrapolated to the corresponding 1S orbital ener-
gy of He.
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e,- are shown in Fig. 3 and the unoccupied e, are
shown in Fig. 4. The overall-R ~' dependence
must arise from a balance between the R depen-
dencies of the D(ij ab) and the corresponding
(ij) l ab) integrals.

The shifted second-order energy &, is similar
to Etl. (16) except that the denominators are
shifted:

D'(ijab) =D(ijab) -b, '(ijab),

where

b ~(ijab) =(ab))ab) +(ij)) ij) +(ai))ia&

+ (bi)) ib&+(aj I Ij a&+ &bj) )jb) . (20)

e, = e, + e,(diagonal) + e, (diagonal) + ~ ~ ~,

where the third-order diagonal terxns are as
follows:

(2l)

If the denominator D' (ijab) is expanded in e'„ then

e,(diagonal} = e,(particle-diag) + e,(ring-diag) + e, (hole diag),

&,(particle-diag) = g (ij) ) ab) (ab) ) ab) (ab) ) ij&/ID(ijab)]
«~at

e,(ring-diag) =gg&ijl)ab& ((aillia& +(bi))ib& + (aj I)ja& + (bjlljb)) &ab)lij&/I D(ijab)],

(22)

(23)

(24)

e,(hole-diag) =p g(ijl)ab) (ijl lij) (abl lij) /[D( ijab)] (25)

~,(nondiagonal) = e, —c,(diagonal) (26)

These djagonal terms are shown in Fig. 5, and
their R dependence is-R "to R "from Table
VIII. Inclusion of these and higher-order diagonal
terms in e, by means of the denominator shift
gives rise to the-R ' dependence for ~,'.

Since e., (diagonal) has an -R "dependence
and ~, has-R ", it follows that the nondiagonal
contributions

I

must also have an R dependence of -R ", but of
opposite sign to e, (diagonal), so that a cancellation
can occur on adding these two components to form
q with its observed -R "residual.

The shifted third-order energy e, consists of
e, (nondiag), having an R dependence of -R ",plus
higher-order contributions that arise from the
shifted denominator. The net result for c, is to
produce an-R "dependence. The sum of shifted
energies through third order has the form

3.1
I

14.4

14.3
(0)

3.0—

2.9—

(b)

..8 —)

14.0—

0.6—

tn

0.5—

a 0.4—
C

UJ

0.3—
-~=—— -2$
~ae ~~~~%~1P

Ql
Ol

v 27—

C7&

e 2.6—
C

UJ

2.5—

2.4—

2.3—
«0 ==:=a3$

2

1'
02 I I I I I I

I I I I

0 2 4 6 8 10 4 6 8 10
Internuclear distance (bohr) Internuclear distance (bohr)

FIG. 4. (a) and (b): Unoccupied orbital energies for He& using basis set D, extrapolated to corresponding orbital
energies of He.
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-3

c3 (particle-diag. }
Ol
tD

5
~~
E

CD

0)
C

UJ
7

e3 (hole-diag. )~
6

' ~

e3 (ring-diag;} ~

~ ~
~ ~ ~r~ ~

~s& ~ e+

63 (diagonal }

-8
0 2 4 6 8 10

internuclear distance (bohr}

FlG. 5. Diagonal contributions to the third-order en-
ergy defined in Eqs. (22)-{25)using basis set D. The
curves are extrapolated to the points on the right corre-
sponding to energies for 2He.

e2 +f3 C2+t=3+' ' 'q

where the ~ represents higher-order diagonal-
type terms. Since the shifted sum ~, + ~, goes
as-R "while the model sum e, +-, goes as-R ",
the higher-order terms included in the shifted sum
exert an important (although deleterious) influence
on the shifted energy.

In passing, the same fitting procedure can of
course be applied to E„(y,~,). The result is given
in Table VIII and shows that although the asymp-
totic value to which the model E„„(y,~,}approaches
is incorrect, the dependence on R over the range
6-10 bohr is of the right order, -R ". In con-
trast, the shifted E„(y,„}has a dependence of
-R "which is less than desirable.

C. Perturbative results for R & 7 bohr

The model-perturbative energies ~E2, AE„and
+@[2 y] are well behaved in the region of large R.
Therefore it is of interest to examine their char-
acteristics at shorter range, especially for basis
sets C and D. Therefore, the data in Tables VI
and VII have been fit to the following forms":

(28)

(2~)f(x)= ]
A exp[- n(x —1)], 1 ~E ~ 8

exp[ —2P (x —1)] —2exp[ —P (x —1)],
4.5 &8 &6.4. (80)

The resulting parameters are given in Table IX
along with some previous determinations" of these
parameters for other He, potential curves.

The basis sets C and D are both x elatively small
and consequently somewhat incomplete. The effect
of this incompleteness is manifest in the variations
seen for the parameters in Table IX on going from
basis C to 8 and by comparison with the previous
results. Nevertheless, for each parameter deter-
mined, there is a monotonic progression along the
sequence 6&» AE» 4E„,».

Potential curves are drawn for 4E, for basis
sets C and D in Fig. 6. The short-range repulsive
nature of the two curves appears to be quite simi-
lar, whereas the attractive well appears to be sub-
stantially different along the two curves. However,
this view of the relative behavior of the two poten-
tials could be misleading. In absolute terms, as
is evident from Tables VI and VII, there is more
deviation at short R between the energies calcu-
lated with the two basis sets than there is in the

TABLE IX. Parameters for He& interatomic potentials corresponding to Eqs. {28)-(30).

Potential e (ph) B~(bohr)

Basis set C

AE2
4E3
+EL2/1&

Basis set D
AE2
AE3

&En(g)
Previous results

expt a

ESMSV
NSV
MCSCF
CI

11.92
11.93
12.00

11.69
11.72
11.80

15.058
12.53

1.120
1.198
1.281

, 0.929
1.003 .

1.078

0.343
0.684

-5.87
5.97
6.09

5.56
5.69
5.82

6.475
6.58
6.2

42.6
39.4
34.6

65.4
58.2
60.1

33.5
37.8
52.7
36.0
38.0

5.79
5.79
5.83

6.66
5.68
5.72

5.61
6.59
5.'48

5.60
5.6

Experimental results of Burgmans, Farrar, and Lee, Ref. 37.
Potential curves described by Siska et ul. , Ref. 32.

'Bertoncini and Vfahl, Ref. 15.
~Schaefer et a/. , Ref. 19.
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FIG. 6. Third-order interaction potentials for He 2

using the model-perturbative scheme. A linear scale is
used for energies below 10 hartree and a logarithmic
scale for energies above 10 4 hartree.

region of the well.
By comparison with the previous results in Table

IX, the depth of the well ~ obtained with basis set
D appears to be overestimated. Basis set D is
apparently more adequate for the He, molecule
than it is for the isolated He atoms. To some
extent, basis set ~ is better balanced in this regard.
The use of much larger basis sets can reduce this
problem by approaching "completeness" in the
basis for both the separ ated atoms and the molecule. "
Other schemes have also been discussed. "

V. CONCLUSIONS

The present calculations shed some light on the
differences between the model- and shifted-pertur-
bative schemes. For He„where it is mandatory
to take account of electron correlation effects, it
appears that proper distance dependence can be
achieved in an interatomic potential curve obtained
with the model scheme in both second and third
order. - In contrast, the shifted scheme produces
interatomic potentials with a, spurious long-range
R dependence( -R ') in both second and third order.
It is particularly disappointing that the shifted-
perturbative scheme displays this difficulty for
the He, system since this is an application of
nondegenerate perturbation theory to a strictly
nondegenerate problem. The difficulty in the
shifted scheme arises because the shifted denomi-
nators have the effect of including only the diagonal
portions of higher-order terms in a low-order

calculation. This upsets a necessary balance be-
tween diagonal and nondiagonal contributions to
the perturbative energy series. These observations
certainly argue heavily in favor of the model-
perturbative scheme.

As is well known, the variational-perturbative
upper-bound procedure introduces certain unlinked-
cluster terms in the energy expression. This leads
to an incorrect asymptotic energy for the He,
system on the order of-0.5 mhartree. To avoid
this difficulty, a linked-cluster approach such as
the model-perturbative scheme is again recom-
mended.

The size and content of a basis set exert a strong
influence on the results of electronic-structure
calculations. In principle, basis-set effects can
be eliminated and high accuracy achieved through
the use of a "complete" set of basis functions. In
the absence of a genuine complete set, one alter-
native would be to use a, large well-distributed set
of atomic orbitals such as that described recently
as a universal basis set." Nevertheless, even in
circumstances which approach basis set complete-
ness, the fundamental difficulties of the shifted-
perturbative scheme and the variational-perturba-
tive upper bound are expected to remain.

It is interesting that the problems of asymptotic
separated-atom limits and long-range internucle-
ar-distance dependence are truly "molecular
problems" that do not occur in an isolated atomic
problem. Although the unlinked-cluster effect on
DE „was anticipated in advance of these calcu-
lations, the g-dependence problem arising in the
shifted-perturbative scheme is an unanticipated
result of numerical explorations.

Malrieu and Spiegelmann" have recentl. y de-
scribed a similar occurrence of an artifactual
g dependence in the long-range portion of a di-
atomic potential curve using the shifted-pertur-
bative scheme with canonical matrix Bar tree -Foek
orbitals as the occupied set. A transformation to
localized molecular orbitals eliminates the spuri-
ous g dependence in the shifted-perturbative
scheme. The model- or unshifted-pertur bative
scheme does not exhibit spurious g dependence
and is invariant to a transformation to localized
occupied orbitals.
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