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Parity-violating electric-dipole transitions in helium
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We study the parity-violating electric-dipole transitions y + 2 S1~2 So and y + 2'Po —+2'P, in He in order
to gain some insight into the reliability of approximate calculations which have been carried out for similar
transitions in many-electron atoms, The contributions of the nearest-lying states are computed with a
variety of wave functions, including very simple product wave functions, Hartree-Fock functions, and
Hylleraas-type wave functions with up to eighty-four parameters. We find that the values for the matrix
elements of the parity-violating interaction which are given by the fairly simple wave functions can differ
considerably from the values obtained from the very good wave functions, even when these simple wave
functions give accurate values for energies and dipole matrix elements. An identity derived in a previous
paper, which converts a delta-function matrix element to that of a global operator, is used to obtain
alternative values for the matrix elements in question, It is found that use of this identity can substantially
improve the results obtained with less accurate wave functions. We discuss the implications of our results
for calculations of parity mixing in many-electron atoms.

I. INTRODUCTION

The investigation of parity-violating effects in
many-electron atoms continues to be of consi-
derable interest. ' From a theoretical point of
view, the reliable calculation of such effects is
made difficult by several factors. The first is of
course that accurate many-electron bound-state
wave functions P = ((r„.. . , rz) are not readily
available. The second is that the parity-violating
interactions are of very short range, involving
operators proportional to 6(r, ) or 5(r,. —rj), and
this would seem to require special accuracy of the
g's in parts of configuration space where wave
functions which have been obtained by a variational
principle cannot be expected to be particularly
reliable. The third is the fact that, depending on
circumstances, the contributions from many in-
termediate states, including those in the con-
tinuum, may have to be taken into account. Final-
ly, for large Z relativistic effects are important
and must be treated carefully.

Because of these factors, the calculations in
cases of practical interest have been carried out
only with the use of approximations whose ac-
curacy is difficult to assess. The only case in
which essentially exact calculations can be carried
out is that of the hydrogen atom. In the present
paper we study the problem of parity mixing for
the next simplest case, that of helium. Because
relatively good wave functions are available, one

g (+, I i Ã r, + i E 1@r„2)(4'„I H., I y,.)
W, —8'„

Here

with

(1.4)

may hope to be able to make fairly accurate cal-
culations. In particular, we have chosen to study
parity-violating E1 transitions between the n =2
levels in He:

y+2 S -2'S,
y+2 Po-2'I'a ~

Such transitions are unlikely to be observed in the
near future. However, one can use the theoretical
results to test various approximations which have
been made for the heavy atoms and thus get some
insight into their reliability. Since Z is small,
the relativistic effects that are important in heavy
atoms are negligible, and one can examine the
influence of the other factors mentioned above
separately.

In the dipole approximation and in the non-
relativistic limit, the matrix element for a tran-
sition such as (1.1) is given by -eM&,./(2&v)'~2,

where + = k = Wf - W, is the photon energy and'
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a„=Q (p', /2m —Zu/r, )+.o./r„,

a,„=ga, „(f),
i=1

with

(1.6a)

ff„(i)= G„—,((r, .p, 6(r, )+5(r,) cr, ~ p, )/2m,

and, for 4He,

G„,=-4(G~/~2 sin'8~

(1.6b)

and H„ is the nonrelativistic (nr) form of the
parity-violating interaction. Although the elec-
tron-electron neutral current effects may be im-
portant in He, we do not consider them here be-
cause our purpose is comparison with the heavy
atoms calculation where only the electron-nu-
cleon weak interaction has been taken into ac-
count. Thus we take

in the Weinberg-Salam model, with g~ the Wein-
berg angle.

In a recent paper, ' we have exhibited several
identities which transform the expectation value
of 5-function operators between eigenfunctions of
a Hamiltonian B into the expectation value of
"distributed operators" which get contributions
from all parts of configuration space. It was
argued there that the transformed form ought to
give more accurate values when only approxi-
mate wave functions are available. In support of
this idea it was shown that the use of these iden-
tities leads to an increase in percent accuracy by
an order of magnitude in the evaluation of some
of the relativistic corrections to the ground state
of helium with Hylleraas-type wave functions.
These techniques have also been generalized to
include scattering states with encouraging re-
sults. ' As was shown in Ref. 3, for any two
eigenfunctions e, and @, of (1.3), one has

&4, I o, p, 5( r, )+ 5(r, )o; p, I
4„&/2m = (i/4v)(w, —w~)&4',

I
cr, r, /r,' I4~&

+ (i/4mm)[&p~4
I

" o, xi /z&
I @&& &(o, x I,/ri)C'

I pi I +~&] . (1.6)

On substituting (1.8) into (1.3), we get an al-
ternative expression M~,. for Mz,. [see Eci. (2.11)
of Sec. II]. If we replace the wave functions in

M«and M&i by approximate ones, we will obtain
approximate values M&,. and I&,- which will in
general not coincide,

M~,. 4 M~f, ,

and the comparison of these different values may
give some insight into the reliability of either
value. If these values differ substantially, it
suggests that neither should be regarded as reli-
able.

In Sec. II, we specialize the formulas for Mfi
and Mz,. to the case of the transitions (1.1) and

(1.2). In Sec. III, we compute the relevant matrix
elements for a variety of approximate wave func-
tions P ranging from simple product functions to
84-parameter Hylleraas-type wave functions. In

the final Sec. IV we summarize the results and

discuss the implications for calculations ofparity
mixing in more complicated atoms.

We write the final state as
0+g=ttyxo, (2.1)

My(=4 "' Z &Xofo; IX',&&'Tgf, (2 3a)
O~ 8=&~ V» &

where

~t&4 ~f ~V&4~ +~4&

where ~)& = gz(r» r, ) is the spatial wave function,
symmetric in r, and r„and p, is the spin wave'
function for total spin equal to zero. Similarly,
we write

4'; =0;x'... (2.2)

with g,. antisymmetric and X'. a spin-1 wave
function. The intermediate states 4'„ in the tran-
sition matrix element Mz,. (1.3) may be separated
into states that are spatially symmetric, A@X',, and
states that are spatially antisymmetric, P„x„' . On

S
use of the orthogonality of X' and X one finds
readily that I&,. may be written in the form

II. E1 TRANSITIONS BETW'EEN 2S STATES AND
BETWEEN 2I' STATES: PRELIMINARIES

A. 2S states
with

&0 ~f+~C)&g~f, ~0,&

n

t, =[p,6(r, )+6(r,)p, ]/2 (i=1,2).

(2.3b)

(2.3c)
Consider the transition (1.1),

&+2 S~ 2 So ~

Since the initial and final spatial states are spheri-
cally symmetric, we may write
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8 P BT (2.4a)

thr eg

fi fi '

With this simplification, (2.3a) becomes

Mg) -—4(&dG ff/m) &}(()
~

6 '
V~

~

}&' . ) Tg( .

(2.4b)

(2.5)

As mentioned in Sec. I, the identity (1.8) which
relates the matrix element of o, tg to the matrix
element of a global operator can be used to obtain
an alternative expression for M«and hence for
Tfi. It is convenient to use a shorthand notation
by introducing a formal operator D, (i =1,2)
defined indirectly by

&4,
~
D,.

~ 4 /& = (i/47r )[—( p,e,
~

x 1,/r,
~
ed &

-&(1,./r, '.)4,
~

xp,. ~y, &], (2.6a)

and, consistent with (2.6a),

&e,
(
o,. D,.[e,)= (i/4» )[(pp,

~

o,. x 1,./r', .
)
e, )

-((o,. x 1,/~', ).4
( p,.[4', &].

(2.6b)

Using the definition (2.6b), we see that (1.8) may
be rewritten as

«.P, t, [~,&=f(m/4v)(&. -g X4'. P, (r, /r', ))~ &

+&0, (o, D, [+,&. (2.7)

The substitution of (2.7) into the original expres-
sion (1.3) for i'&,. yields

where

4
~G.«g((+, I o, D, l +„&&@„Iie r I

+~,. &

T2P+ Tram
fi fi fi (2.13a)

I

over states. Vfe make their special status ex-
plicit by writing

(4 lit r, l 4'„)(4„~lrr, 'D, IIV, ))O'; —5"„ + Tlrem2P
fi fi fi (2.13b)

(2.9)

It is understood that the sum on n in all formulas
excludes n=i and n=f Since t.he matrix elements
vanish for these values of n, the sum in (2.8) can
be extended to inc]ude them. Using completeness
of the O„and the fact that

[cr, ( r, /x', ),ie r, ]= 0,
we see that the sum on n in &2.8) has the value
zero and therefore

where "rem" stands for the remainder. Here Tf,.
denotes the contribution to Tf,. from the 2P states

, , where m, is the component of K= 1,+ 1,

along the z axi:s and Tf',-~ is similarly defined.
Qnly m, = 0 states can give nonzero contributions
to Tf'i, so that

(2.14)
k)f,.=k)f'i . (2.10)

(2.11a)

'The form of Alf',- allows it to be reduced in the
same manner as Alf,. to

,i'&,i=((4u „G,/m)( }~t.eoo(x, (y' &r~, ,

An analogous expression holds for Tf',.' with ty

replaced by D', .
One should note that in general Tf,. and Tf',. are

not equal. On use of the identity (2.7), we have

where

(2.11b)

T2P Tt2Pfi fi .
+

T181Q T &'1 em
fi fi

where

6=m[(gz~ (iz, /4m', )
( g,~,)(g,~,

~

iz, [ p,.)

(2.15a)

(2.15b)

From (2.5), (2.11a), and (2.10), we infer that

(2.12)

Because of the energy denominators present
in (2.3b) and (2.11b), the near-lying 2P states are
expected to make a large contribution to the sum

(2.16)

Therefore when approximate wave functions are
used one should compare T&~ with Tf',. + A. How-
ever, because there is no energy denominator in
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O. -&&2~.o~~.
~

&2s&

P, =—($2p o
~

it',
~

P', ~ ).,

(2.17)

(2.18)

(2.19)

q, =-m(W', —W', )(q', ,~z, /47rr', ~P ). (2.20)

Then (2.14) takes the form

(2.16), & is small compared to either Tt2P. or
Tf', , as we shall see.

For the purpose of later comparison of different
wave functions it is convenient to introduce sep-
arate symbols for the matrix elements entering
the calculation of Tf, , Tf, , etc. 'Thus, we
define, for P, = g, z and gz= g;z,

with

2P n

1 &8 ..~i~~ t:.&&0:.~t;~4. ..)
2P n

(2.29a)

(2.29b)

1 &4". ..~t', ~4'~..XP ..~i~, ~4, . )
2P

(2.29d)

representing the contributions of intermediate
S states and [r,'= —(x,+ iy, )/W2, etc.]

(42P, O I 1 I )(P„~,Imari I (,P. o&
2 29w' w2P

P.*O 0*P
f f gr+ ~ +

2$ 2P 2S 2P

and Tf.', is given by

P'*0 O*P'

From (2.7) it follows that

P, =P,'+ Q,

(2.21)

(2.22)

(2.23)

those of P states and D states. %'e may write,
in analogy with (2.13a},

ct 2$+ gXem
fk ff', ff

where &f', denotes the total contribution of the
2S states and 7't',. the remainder. From (2.28) and
the definitions (2.17) and (2.18), we have

+f4 ( 1 ff 2: 1f)

and (2.16) takes the form

0 0*@

~'2S —@"2P &2S —~'2P
(2.24)

y+2 Pp 2 Py

involves essentially the same matrix elements
which occur in the amplitude for y+ 2'$y 2 $p,
although different combinations of these matrix
elements appear. %e shall therefore give only
a brief discussion. The initial and final atomic
state may be written in the form

1 Q( —1) "P,~„X
m= 1

(2.25)

(2.26)~~ = 4~,.„x.'.
on substitution of (2.25) and (2.26) into (1.3), we
find that the analog of (2.25) is

)VI~, = (4mG„,/m}(-1)"t"e „7'~;,
where a, =v(e„xi&,)/&2 and 6,=a, are the spheri-
cal components of a. Here ff,. is defined by

(2.27)

V'~, = —Q [3,7'~~+,&~~+ 2V'~~i+ (V'15/2) V'f ],
(2.28)

B. 2P states

In the approximation in which only the 2S states
are kept as intermediate states, the amplitude
for

-1 3P 0* Og*
)

&3 W~ —W, ~ W,~ —Wf~

It follows that when only the nearest states are
included the calculation of the E1 transition be-
tween the 2P states involves basically the same
quantities encountered in the calculation for 2S
states.

III. WAVE FUNCTIONS AND NUMERICAL RESULTS

A. Simple-product wave functions

The general form of appropriately symmetrized
product spatial wave functions for the 1s2s con-
figuration is

P,= (&,/~) [4'.,(,)0;,(r.)
+ 0'..(r.)0'„(r,)], (3.1a)

e now turn to a study of the values O„P„and
P,' obtained by substituting a variety of approxi-
mate wave functions P for the exact ones entering
the definitions (2.17)-(2.19). We shall consider
five types of wave functions: (i) Simple product
wave functions with effective charges determined
by the variational principle, (ii) similar wave
functions which are corrected for correlation by
the inclusion of dipole distortion ("polarized
orbitals"), (iii) Hartree-Fock wave functions,
(iv) wave functions obtained from effective cen-
tral potentials with adjustable parameters and,
finally, (v) Hylleraas-type variational wave func-
tions with up to eighty-four linear parameters.
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with g;e and g, e corresponding to the 2 'S, and
2 Sj states, re spec tive ly . The orbital s have the
form

Q'„,(r) =R'„,(x)/(4v)'~' (n= 1,2), (3.1b)

and the N, are normalization factors defined by

X~=(1+&RO~R',o) )
' (3.1c)

For the 1s2p configuration we write, when J,=0,
= (I/W) [P'„,(r, )y,",(r, )

+ 0;,,.(r, )4,':(r,)],
with g» and g;P associated with the 2 'P, and 2'P,
states, respectively, and Q», (r, ) an l=1 orbital
with m, = 0. Thus we write

(3.2a)

y;, ,(r) =R;, (~)Y,'( )i, y,';(r) =~it„(r)/(4w)'~',

+R, (0) &6t;, iR',,)], (3.4)

(3.2b)

with Y,'(i) = (3/4ii)'~' cosa. We have used another
symbol for the "core wave function" Q,",(r) entering
(3.2) because it may differ from the analogous
function Q'„(r) in (3.1).

When (3.1) and (3.2) are used to approximate
the g's in Eqs. (2.17)-(2.19) one finds, after
carrying out the angular integrations, that the

corresponding approximate values of the matrix
elements are given by

e, =(r, /2~S (&R,, t~~R„)&e;,tR„)
+&R'„ir iR'„)&6l;,

~

R'„)), (3.3)

where Zp and Z',. denote the effective charges seen
by the outer and inner electrons, respectively,
in the 1s2p configuration, as determined by the
variational principle. For the 2S states we write

R2O(~) = Z', 'e o""(c',+c', Zy"),

Rf, (r) = 2 (Z', )'~ ' e
(3 7)

For the 2 'S, state, the effective charges have
been determined by Eckart' with the c& fixed at
the values corresponding to a purely hydrogenic-
type orbital R,,(x), i.e., with c,=1, c, =-0.5.
For the 2 'S, we have taken the effective charges
Zp and 8

~
to be those determined b y Hylle raas

and Undheim' with a Hylleraas-type wave function
involving six linear parameters. With these
choices for the S-state effective charges we de-
termined the linear parameters c', and c', in (3.7)
by applying the variational principle and choosing
the higher root of the secular determinant in the
case of the g» wave function.

The eff ective charges and associated energies
are given in Tab&e I. 'The linear parameters for
the 2S states mere found to be

c', = 0.794, c', = -0.464, cp= 0.734, cj 0 452.

(3.8)

Note that the ratios c,/c', = -0.58 and c,/c,
= -0.62 both differ appreciably from the hydrogenic
value of -0.50. With the forms (3.7) and (3.8) for
the radial wave functions, the quantities appearing
on the right-hand sides in Eqs. (3.3)-(3.5) may be
evaluated analytically. The numerical results
obtained for O„(P„and ip,'+ Q, are shown in the
first row of Table II. The quantity Q, is very small
compared to P,' of order 10 ' 6",, so that we do
not tabulate it separately.

~&R'„~ —,—tR;, )&6l;, tR;, )], (3.5)

with a similar equation for Q, obtained from (2.20).
The notation has so far been sufficiently general

to be applicable to any kind of product wave

functions, including Hartree-Fock functions to
be studied in Sec. IIIC. Here we specialize to
the simplest kind of exponential forms for the

radial function which are consistent with the nature
of the configurations and, in the case of the 2 'S,
state, with the requirement of orthogonality to the
1'S, ground state.

For the 2P states we use the radial functions
determined by Eckart, ' i.e. , purely hydrogenic-
type orbitals (atomic units are used henceforth)

R'„(r) = [(Z,")'"/v24] e eo " '(Z,"r),
61'„(r)=2(Z,". )'~'e-e' ", (3.8)

B. Polarized orbitals

As an alternative to the simple-product wave
functions considered above which still allows

Wave-function
symbol

Effective charge
inner outer

Energy
(a.u. )

2~$p Z~+ =2.08 Zp+ =1.21 -2.1377

2 3S( Zg =2.01 Zp =1.53 -2.1698

Z;'+ =2.00 Z()+=0.97 -2.1225

2 3Pp Z,'- =1.99 Zp =1.09 -2.1310

TABLE I. Effective charges and variational energy
values for the simple-product functions defined by Eqs.
(3.1), (3.2), (3.6), and (3.7) of the text. All numbers,
except for the S-state energies are from beefs. 5 and 6.
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TABLE II. Values of matrix elements defined by Eqs. (2.17)-(2.20) of the text, obtained
from a variety of approximate wave functions for the 2S and 2P states of helium.

Type of wave
function J, (&O') J,'+q™,(io') 0™ S (10') P'+q™ (10')

Simple product
Polarized orbital
Ha rtree-Pock
Parametric potential
84-parameter Hylleraa s

-1.41
-1.45
-1.14
-1.40
-1.46

-1.11
-1.49
-1.68
-2.80
-1.35

-1.19

-1.56
-2.91
-1.35

-1.16
-1.54
-1.28
-1.23

1027

-0.684
+0.540
-0.721
-0.809
-1.04

-0.819

-0.827
-0.880
-1.06

Then

[e(r, —-r, )/v'2v r,']r, (l+ ~,) e '"2i, r, .
(3.10)

+ 42to~(r ) 0 "'(r i r )]

I

(3.11)

Taking
vol a + po1~

42$ @200 ti 4P @210

we get the values for 0', etc. , shown in the sec-
ond row of Table II.

It is instructive to compare, enPassant, the
values of the matrix elements obtained from the
4 y $

whi ch contain sc reening only ve r y crude ly,
with the values from the 4,","and from the wave
functions of the preceding section. %e find 0.
= -1.45, 0 =-1.55 which are close to the values
given in the second line of Table II, .but

(3.12)

calculations in closed form but includes some
effect of electron-electron correlation (beyond
that provided by the Pauli principle) we consider
wave functions obtained by the method of polarized
orbitals. ' In this method, a product wave function
is modified by the inclusion of distortion of the
inner electron wave function by the adiabatic elec-
trostatic field provided by the outer electron. If
for simplicity we assume that the outer electron
sees a unit charge (full screening by the inner
electron) the wave functions describing a (1s, nl)
configuration are

4'„„,= (N'/~[&]&„,=„'(r,)Q„='(r,) a (r, r,)l. (3.9)

The polarized-orbital C„","associated with (3.9)
is constructed by replacing P„(r,) by a function
P'„"(r» r, ) obtained by solving the Schrodinger
equation for electron "2" moving in the potential
V 2/2 + xj2p with r, fixed. In the dipole approxi-
mation, one finds that, with distortion neglected

7for x, &x»

y,' (r,; r, )=y,' (r, )

'Thus the rough inclusion of correlation via
adiabatic dipole distortion of these very crude
wave functions has an appreciable (but not favor-
able) effect on the matrix elements P, and P .'

C. Hartree-Fock wave functions

The problem of obtaining Hartree-Fock(HF)
wave functions for the low-lying excited state of
He (and two-electron ions) has been discussed
extensively by Cohen and Kelly. ' These authors
stress the importance of assuring that the HF
wave function associated with the 2'S, state be
orthogonal to the HF wave function for the ground
state in obtaining a reasonable result for the
energy of the 2 '8, state. In the "frozen-core
approximation" the ~-state and p-state wave
functions are written in the form

4 ~
= (N'/v 2 ) [R~ (x,)R, (r,)

~ R,'(r, )R, (r,)](1/4~),

4~= (1/v 2) [Rp(r, ) Y,(r,)R, (r,")

+R '(x,)Y,(f,)R,(v,)] (1/~4v ), (3.15)

with the core wave function R, (~) fixed to be that
of the ground state of the He' ion,

R, (r) =R'„='(r}= 4&2e-". (3.16)

0.= (N. /2~3)(&R.', I~IR»&+ &R:pl~lR.)I.), (3.1V)

The HF equation for R~ (r) is then solved for the
lowest two eigenvalues e ~, e~ and the associated
orbitals R~(r) and R»(r) Althoug. h &R»lR~) W 0,
the associated two-particle wave functions g',~ and

g,'~ axe orthogonal. For the 23S„2'P„and
2'P, states it suffices to find the lowest eigen-
value eggy E'2gp and ~,'~ and the associated orbi-
tals A~, B,~, and A~, respectively. Because
there is only one core wave function, the formu-
las (3.3), (3.4), and (3.5) simplify to

p, = -1.29 x 10-', p =+ 0.32 x10-'. (3.13) P, = (-W3/16v)N, » [R»(0)zR, (0)I,], (3.16).
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I, =,"~((2;,—', —,"-2„').(2„—', „' 2.)Z, '~,

(3.19)

or more of the lowest-lying states. It is instruc-
tive to see how this works in the case of He. Fol-
lowing Ref. 9, we use the Tietz potential (a.u.):

where

I.-=&R.IR' ) (3.20a)

-1 &Z —1
V (r; rl) = —

~
—,+ 1) .«(1+or)' (3.26)

is the overlap of the core with the 2s orbitals,
and

X, = (1+I') (3.20b)

I, =0.0818, I = 5&& 10 (3.21)

After numerical computation of the radial orbi-
tals we find that -1 1

V, =V(r;q, )=—,+1,(1+q „r)' (3.27a)

Because the outer electron in low-lying singlet
states sees rather a different potential than in
triplet states, it is not feasible to use a single
potential as in the case of Cs. Rather we write,
for Z=2,

and

(R 2lrlR@ = —3.98,
(3.22)

(R;,lrlR@ =-4.45, «;,lriR.) =0.333,
(3.27b)

with V, (r) and V (r) the effective potentials for
the singlet and triplet states, respectively. We
then require that

(--', V2+ V, )R'(r) = e,'~'(r),

dR22(0)/Cr = 0.392, R2~(0) = 0.788,

dR~(0)/dr = 0.201, R, (20) = 1.042 .
(3.23)

where e~ = —0.146 and ~~ = —0.175 are the binding
energies of the 2'S and 2'S states, respectively,
with R'(r) an orbital with one node. We find

On use of Eqs. (3.21)-(3.23) in Eqs. (3.17)-(3.19)
we get the values of O„etc., shown in the third
line of Table II.

It should be noted that the value of I has no
direct physical significance because 4 & is in-
variant under a change

R2 —N(RN + PR,), (3.24)

where E is a normalization constant. Corres-
pondingly, to any solution Rz of the HF equation
obtained from 4& there can always be added a
piece proportional to R, . Thus, one can require
that

(R„-lR,) =0. (3.25)

An alternative scheme to the HF approach in
the many-body case has been used, e.g. , by Neuf-
fer and Commins, " to generate wave functions
for one-electron excitation states in Cs and Tl.
In this approach, one-electron wave functions are
determined by solving a Dirac equation with a
potential V(r) which has the right asymptotic be-
havior for r-~ (V- 1/r), and for r 0(V--Z/r-),
and which involves some adjustable parameters.
These are fixed by requiring agreement with ex-
perimentally observed binding energies for one

The small value of I [Eq. (3.21)] is just a re-
flection of this requirement; i.e., I is zero with-
in the errors associated with numerical solutions.
[As a check, note that if we make the replace-
ment (3.24) inside the square brackets in (3.18)
and in Eq. (3.20) the result for P, is unchanged. ]

D. Wave functions from parametric central-field potentials

q, = 2.595, q = 0.975. (3.27c)

The values of the e's for the 2'P and 2'P states
then turn out to be

e~ = —0.129, C~~ = —0.146, (3.28)

within 10' or better of the correct values e~
=-0.124 and ~,~= -0.133. The values O„P„
and P', + Q, obtained from the wave functions gen-
erated in this way are shown in the fourth line
of Table II.

E. Many-parameter Hylleraas-type functions

As is well known, for the low-lying bound states
of helium it is feasible to obtain accurate two-
electron wave functions by using Hylleraas-type
expansions. We denote a wave function with N
linear parameters by g", and write

y22 =gN (r„r„r„)+ gN (r„r„r„),
(3.29)

42p fN (rl r2 r»)cos~, ~fN(r2, r„r»)cose. ,

with

gN (r„r2, r») =e " e '" QB;,2(N)rj'r2r~2,

f„'(r„r„r»)= e &'"&e ""'g C,';„(N)r',r',r».
(3.30)

We restrict i, j, and k to be non-negative integers
and require that, for r, small, f 'N-r„so that
C~,.&

= 0. We will consider only choices of N cor-
responding to "Pekeris shells, " so that all multi-
nomials r', ~',r» of the same degree ~ =i+j+k
occur, if any one of degree co occurs. For ~
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=1, 2, . . . , 6 this gives N=4, 10, 20, 35, 56, and
84. For N = 4 and 10 we use the variational
principle for fixed starting values of the nonlinear
parameters n„P„.. . , &, (for some of these we
used the effective charges of Sec. IIIA) to deter-
mine the linear parameters B;,I, and C;,&, and
then vary the nonlinear parameters to lower the
energy still further. A quick improvement ean
be obtained by rescaling, r- kv. For N&10, we
have used the nonlinear parameters found for
N= 10. It 'should be noted that for large enough

N, the result for the energy will not be sensitive
to the choice of the nonlinear parameters. The
final values" used were, for N= 4,

n+ = 0.59, P+ = 2.01, y+ = 0.60, 6+ = 2.00,
(3.31)

n =0 73, P =1 8V, y =0 55, 6 =2 02,

and, for N=10,

n, =0.61, P+ =2.08, y+=0.60, 5, =2.00,

n =O.VO, P =1.80, y =0.70, 5 =2.00.
(3.32)

The energies are shown in Table III. The cor-
responding wave functions were used to compute
approximate values of O„etc., with the results
sh.own in Table IV.

Examination of Table IV shows that the varia-
tion of these values for large N is small. The
values obtained for N = 84 are probably within a
few percent of the exact values and we shall use
them as a standard for comparisons. The large
error in the values of P, and P found for N=4
is rather disturbing. Even for N = 10, the value
of P, is still in error by 30%%up. This shows that
even wave functions which take correlation into
account to a considerable extent may give rise
to large errors in matrix elements sensitive to
special regions in coordinate space, such as the
origin. It should be noted that the values of P&
converge more rapidly to the final values than
do the P„which provides encouragement for
the use of the identity (1.8) in future calculations.

w,'~ pr) 8', I, (N)

4
10
20
35
56
84

-2.143 35
-2.144 96
-2.145 65
-2.145 85
-2.145 92
-2.145 96

20173 22
-2.175 20
-2.17523
-2.17523
-2.17523
-2.17523

-2.12308
-2.123 59
-2.123 76
-2.123 81
-2.123 83
-2.123 84

-2.13178
-2.13302
-2.13311
-2.13316
-2.13316
-2.13317

TABLE III. Variational energy values from N-term
Hylleraas-type wave functions for the 2$ and 2P states of
helium, described by Eqs. (3.29) and (3.30) of the text.

F. Results for the Tf,.

From Tables II and III we can readily compute
the values of Tf; and E&;, the contributions of the
near-lying states to the invariants T&& and V&;

defined by Eqs. (2.5) and (2.2V), for the transitions
(1.1) and (1.2), respectively. Using Eqs. (2.21),
(2.22), and (2.31), and its analog for V'&;, obtained
by replacing P, by P'„ in (2.31), we find the re-
sults shown in Table V. We have used the best-
known theoretical values for the energies &,'z
and W,'~ in the energy denominators appearing
in the definitions of Tf;, &f';, etc. , viz. ,"

+as = —2.1459733 r +2s = —2 1~52294
&

M 2~
= —2.123 843 1, M ~p

= —2.133 164 2 .

These numbers give energy differences which,
for practical purposes, coincide with the experi-
mental values. An alternative calculation of the

Tf, would utilize the energies associated with the
wave functions used in computing the matrix ele-
ments in the numerators. However, we wished
to follow as much as possible the many-body cal-
culations, in which experimental energy differ-
ences are used whenever possible.

A discussion of the results exhibited in Tables
II, IV, and V is given in the following section.

IV. DISCUSSION

A. Analysis of numerical results

As can be seen from Table IV, the matrix ele-
ments 0, and P, obtained from the N-term Hyller-
aas-type wave function. s converge towards stable
values for large ¹ The N= 84 values can thus be
taken as standards for measuring the accuracy ob-
tained with other wave functions. Since the Har-
tree-Fock (HF) and parametric-potential (pp)
type of wave functions have been used in the cal-
culations for many-electron atoms, we focus on
these. Examination of Table II shows that the di-
pole matrix elements 0, given by wave functions
without correlation are for the most part within
10% or so of the correct values. It may be worth
noting that the HF value for 0, is in. error by more
than 20% while the pp values for both 0, and 0
are within 51' of the correct values. However,
neither the HF nor the pp type of wave functions
gives good results for the weak-interaction matrix
elements P, and P . The very large error in the

pp value for P, is probably associated with the
fact that the "real" potential seen by the P-wave
electron in the 2'P state is not as attractive as '

that given by using the value of p determined from
the 2 'S state; in fact a much better value for P
would be obtained if for the 2'P state one used
g =, i.e., full screening by the inner electron.
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TABLE 1V. Values of matrix elements defined by Eqs, (2.17)-(2.20) of the text, obtained
from N-term Hylleraas-type wave functions for the 2S and 2P states of helium.

0+ (]02) (&++ Q4(&o') 0 & {10') (&'-+ 9-)(1o')

4
10
20
35
56
84

-1.361
-1.455
-1.459
-1.459
-1.458
-1.456

+Q.28
-0.92
-1.32

1 0 3 7
-1.34
-1.35

-0.28
-1.17

1433
-1.35
-1.35
-1.35

le211
-1.263
-1.266
-1.266
-1.266
-3..266

-0.39
-0.89
-0.96
-0.99
-1.03
-1.04

-0.66
-0.94
-1.01
-1.04
-1.05
-1.06

TA]3LE V. Contributions Tp and ff of the n«r-
lying P states and S states to the invariant amplitudes
describing transitions between the 2$ states and be-
tween the 2P states of He, respectively, for a variety
of wave functions. The primed quantities are obtained
by use of the identity (1.8).

Type of wave
function ZgP Z i2P q 2S

fi fi fi q'e'4 S

Simple product
Polarized orbital
Hartree-Fock
Parametric potential
N-term Hylleraas:
N=4

1Q

20
35
56
84

0.82 0 ~ 85
1.94
1.52 1.38
2.45 2.53

-0.37
0.66
1.03
1.07
1.03
1.04

0.09
0.89
1.03
1.04
1.04
1,03

0.438
1.254
0.552
1.434

-0.331
0.225
0.458
0.479
0.441
0.442

0.436

0.445
1.474

-0.098
0.367
0,444
0.444
0.439
0.434

Of course, such a procedure would not be in the
spirit of a parametric-potential approach. It may
be that the low-lying states of He are relatively
unsuitable for this approach because of the im-
portance of exchange effects.

Returning to Table IV, we note that, as already
remarked in Sec. III, inclusion of correlation in
the wave function does not guarantee that the re-
sulting matrix elements will be accurate, especial-
ly for P, and P . Thus, although the ten-term
Hylleraas-type wave functions give very good
values for 0, and 0, the value for P is in error
by 15%%uo and that for P, by more than 30%. In fact,
the value for P, given by the simple product wave
functions is more accurate than that given by the
ten-term Hylleraas-type wave function. Further-
more, the values of P, and P for N= 4 are quite
bad, with P, even having the wrong sign. Although
these aspe cts of the results given by the corre-
lated wave functions with ~~ 10 may well be nu-
merical accidents, not characteristic of the gen-
eral situation, it should give one pause in assess-
ing the reliability of calculations which have been
carried out for atoms with many electrons.

With regard to the use of the identity (1.8),
Table IV shows that the P,' values converge more
rapidly towards their final values than do the P,
values. (Recall that Q, is very small. ) For ex-
ample, when K=10 the error in P,' is only 13%,
not 30%%uo, and P,' for N = 4 has at least the right
sign. For large N, the primed and unprimed val-
ues become closely equal, as they eventually must
if the wave functions are converging to the exact
solutions. Table II shows that the primed values
are also more accurate for other types of wave
fun. ctions, ' the only exception is the value of P,'
for the parametric-potential case, where both P,
and P,' are in error by more than a factor. of 2.
Clearly, the identity cannot perform miracles:
Although its use may yield a good result from fair
wave functions, it cannot produce a good one from
poor wave functions.

The approximate equality of P, and P,' is not in
itself a sufficient condition for assuring that one
is close to the correct value of P,. To some ex-
tent this may be understood by considering the
case where the approximate wave functions 4 em-
ployed happen to be eigenfunetions, with eigenval-
ues 8', of an operator of the form

H =E~+K2+ U, + U2, (4.1)

where U, and U, are local potentials. For such
wave functions the left- and right-hand sides of
(1.8) are bound to give the same numerical results
when the exact 4's are replaced by 4's, and
W —S'~ by W, —8'~. In this respect the identity
(1.8) is weaker than analogous identities for parity-
conserving delta functions, in which the interac-
tion potential enters explicitly. " Although the
symmetrized product wave functions are not
eigenfunctions of a Hamiltonian of the type (4.1),
the unsymmetrized products from which they are
constructed often are, as in the case of the simple
product and pp type of wave functions.

The contributions of the near-lying states to the
invariant transition amplitudes Tf,. and V«de-
scribing the processes (1.1) and (1.2) are shown
in Table V. Since the quantities Tfa~ and ~f'i~ are
calculated directly from the matrix elements 0,
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and P, shomn in Tables II and IV, the errors in
these quantities, with the values obtained from the
84-term Hylleraas-type wave functions taken as a
standard, largely refle ct the errors in-0, and P,.
In particular, me see from Table V that the HF
value for Tzs is in error by 50'%%uo, that for &&~ by
25%, and that the pp values are off by more than a
factor of 2. It is ironic that the best values for
noncorrelated wave functions are given by the
simple-product wave functions, based on effective
charges. However this is certainly accidental be-
cause the matrix elements 0, and P, obtained from
these functions have appreciable errors, as Table
II shows. .The values shown for the Hylleraas-
type wave functions again show more rapid con-
vergence for the primed values and attest to the
utility of the identity (1.8).

It would be interesting to know the contributions

T&i and V&',. of the remaining states to T«and V&„
respectively. A rough estimate of the contribu-
tion T&, of singly excited states has been made.
With hydrogenic-type product wave functions used
to approximate the (ls, ns) states (n ~ 3) one finds,
on use of a Green's-function technique to carry
out the sum over both bound and continuum states,
that Tp, is. less than 1'%%up of T&, .'~ However, a sim-
ilar calculation for the contribution of the (fs,'ns)
states (n 0 2) to the 2'P, - 2'P, transition yields'4

~~]- -0.21,
which is almost 50'%%uo of &&~=0.44 and of opposite
sign. Thus it appears that for some transitions in
He where there are near-lying states of opposite
parity, signif icant contributions can come from
states which are not particularly close in energy
to either the initial or the final state.

8. Concluding remarks

In some of the calculations of parity mixing in
many-electron atoms an additional check or con-
straint on the approximate wave functions mas ob-
tained by computing the part of the hyperfine split-
ting arising from the Fermi contact interaction

N

&H'F"' = (const) g o,. S„„,& (r,),
i,=j

which tests the accuracy of the electron spin den-
sity at the origin. If we consider the case of 'He
we may carry out such a calculation for, e.g. , the
2'S, state or the. 2'P, state. Unfortunately, be-
cause we are then dealing with an unfilled inner
shell, the splitting, which is proportional to
(g ~5(r,) ~g) is then dominated by the contribution
from the 1s electron. For example, the probabil-
ity density for a 1s electron moving in a Coulomb

field with Z = 2 to be at the origin is 32/8m= 1.27.
This may be compared with, e.g., the value of
(5 (r~)) = 1.32 computed from the 84-term Hylleraas-
type wave function for the 2'S, state defined in
Sec. III. Indeed, most of the uncorrelated wave
functions mhich me have considered in this paper
give good results for the hyperfine splitting so that
this splitting is not a useful diagnostic tool for the
case at hand.

The substantial disagreement betmeen accurate
values for parity mixing matrix elements in helium
and the results of Hartree-Fock or parametric-
potential calculations suggest that similar calcu-
lations in heavy atoms may also be less accurate
than supposed. While some quantities involving
inner electrons can be expected to be calculated
more accurately in heavy atoms than in helium by
HF or pp methods, there is not much evidence that
this is the case for quantities involving valence
electrons, which are relevant to parity mixing.

As we have seen, the HF and pp wave functions
in He give relatively inaccurate results for the
contribution of the near-lying states to the transi-
tion amplitudes. It is plausible that similar inac-
curacies will occur when such wave functions are
used for heavy atoms. In heavy atoms there are
usually appreciable contributions from states
other than the nearest-lying ones, so that it is con-
ceivable that the summation over states mill alle-
viate these inaccuracies. However, we do not see
any reason for this to occur. In that connection it
is worth noting that estimates which have been
made of T&', , the contribution to T&,. of singly ex-
cited states with n ~ 3, were found to be quite sen-
sitive to small changes in the form of the n = 2
S-state mave functions. '4 A similar sensitivity of
these contributions to the initial and final wave
functions may occur for heavy atoms.

We also note that the main inaccuracy in the
matrix elements calculated mith approximate mave
functions in He occurs for the parity-mixing op-
erator & rather than for the El operator. This
is relevant to calculations in which the matrix
elements of H„are calculated approximately,
while the E1 matrix elements are taken as far as
possible, from experiment. A calculation pro-
cedure which gives accurate values for the hyper-
fine structure splittings in various states does not
necessarily give equally accurate answers for
parity-mixing matrix elements. The latter also
involve derivatives of p-state wave functions at
the origin, which do not enter into the hyperfine
matrix elements. We know of no way of obtaining
independent experimental information about these
p-wave derivatives.

In conclusion, we believe that it remains to be
shown that the methods that have. been used to cal-
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culate parity mixing in heavy atoms are as accu-
rate as has been suggested in the literature. "
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