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Qscillator strength and electron-impact excitation of the Schumann-Runge continuum of the
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By using the method of multiconfiguration self-consistent field, the electronic wave functions for the
X'Xg and B'X„states of 02 are determined for twelve values of internuclear distances. From the
appropriate electronic-vibrational functions, the oscillator strengths for the I'Xg ~B'X„absorption
(Schumann-Runge) continuum are calculated over the energy range of 7—9.5 eV. The results are in good
agreement with experiments except at the high-energy edge (above 9 eV) which corresponds to the very
steeply varying part of the potential curve. A calculation of the electron-impact excitation cross sections for
the B'X„state with the Born-Ochkur approximation is also reported for incident electron energy up to
1000 eV.

I. INTRODUCTION

The Schumann-Runge system of 0, has received
a great deal of attention in molecular spectros-
copy. ' The role it plays in producing metastable
oxygen atoms ('D) in the upper atmosphere is of
much importance in aeronomy. ' The potential
curve for the upper state (B sZ„) has a shallow
minimum at an internuclear distance considerably
larger than the equilibrium distance of the X'Z,
ground state. As a result the X'Z~ -8 'Z„ab-
sorption is composed of mainly a continuum over
a few eV (with a set of very weak bands at the
low-fretluency end), i e , th.e .Schumann-Runge
continuum. The oscillator strengths of the
Schumann-Runge continuum over the absorption
energy range of 7-10 eV have been measured in
several laboratories. ' ' The problem of theo-
retical calculation of these oscillator strengths
is important from the standpoint of electronic
structure of the 02 molecule. Because of the
open-shell structure of the lowest electronic con-
figuration, the ground electronic state (also the
lower excited states) exhibits strong configuration
interaction. This. renders the use of single-con-
figuration self-consistent-field (SCF) wave func-
tions inadequate. Calculations of the X 'Z,
-B 'Z„ transition moment for several internuclear
distances have been reported"; indeed the effect
of configuration mixing was found to be quite im-
portant. While- the theoretical values of the transi-
tion moment appear to be in general accord with
experiment, a direct comparison cannot be made
since the transition moment itself was not mea-
sured directly, but only inferred from the ob-
served absorption intensity.

In this paper we present a calculation of the
oscillator strength of the XSZ~ -B3Z„continuum
as a function of the absorption energy and com-

pare our results with those determined experi-
mentally. Good agreement is found except for
those transitions terminating at the very steeply
ascending part of the I3'Z„potential curve.
Included in our work is also a study of electron-
impact excitation to the J3 'Z„state.

II. OSCILLATOR STRENGTH

The dominant configuration of the X'2', ground
state of 0, is

and that of B Z„ is

(io,)'(lo„)'(2o,)'(2o„)'(3o,)'(lw„)'(ltr, )'.
A single-configuration wave function g is an
antisymmetrized product of one-electron mole-
cular-orbital (MO) functions Q, (r„A) with r;
denoting the ith electron coordinates and R the
internuclear separation. Each MO is in turn
expanded by a finite set of basis functions
g yp ggy as

isc t s = 'Qo t .
P

Under this single-configuration approximation,
the SCF method leads to a well-known pseudo-
eigenvalue equation, '

E,or= Q So

which is the prescription for determining the
orbital coefficients c. The Pock matrix E de-
pends on these coefficients, and thus Etl. (2) has
to be solved iteratively. The overlap matrix ~
arises as no orthogonality condition is imposed
on the basis functions q. The orbital functions Q

are constrained to be orthonormal by means of
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g (a,, -5,,Z, )a„=o, (4)

where

H;I,=,H qd7',

and H is the appropriate Hamiltonian for the mole-
cule. This is the essence of the method of con-
figuration interaction (CI). As no provision is
made for improving the orbital-expansion coef-
ficients c in the multiconfiguration environment,
a large number of configurations are needed in the
CI method. An alternative to CI is to extend the
SCF procedure to the multiconfiguration form of
Eq. (3). This was proposed by Hinze and Root-
haan, "and further expanded. by Huzinaga. " In
the method of multiconfiguration self-consistent
field (MCSCF), we start with a wave function of
the form Eq. (3) determined by the CI procedure,
and allow the orbital coefficients c to vary with
the set of configuration coefficients fixed. Analo-
gous to Eq. (2), the new values of c are deter-
mined from the equation

Q Ag~cy = Q Scyeg)~)
J

(6}

Here the Fock matrices due to various configura-
tions are coupled via the configuration coef-
ficients to form the A matrix. , It is noted, how-
ever, that the orbital coefficients c are common
to all constituent single-configuration functions

g in Eq. (3). Following the suggestion of Ref. 11,
we solve Eq. (6) linearly for the first-order cor-
rection term 6c. In other words, with the known
values of c from the nth iterative stage, we sub-
stitute

c("")= c("'+ac

in Eq. (6} and solve for 5c by retaining only the
first-order terms. Using the improved values of
c, we recalculate the configuration coefficients
a, and the cycle is repeated. All steps of the
MCSCF procedure are meticulously detailed in
Refs. 10 and 11. A general iterative procedure
leading to self-consistency may be summarized
as follows:

the Lagrangian multipliers e&;.
A considerable improvement is realized by ex-

pressing the wave function 4 as linear combina-
tions of single-configuration functions )I), ; i.e.,

+(r„r„.. . ,B)= Q a, (R))I);(r„r„.. . , R), (3)
j

where a(R) are called configuration coefficients.
One way to determine these coefficients is to
diagonalize the matrix associated with

(i) Solve a single (dominant) configuration SCF
to obtain starting c.

(ii) With c as given, determine the coefficients
a by Eq. (4).

(iii) ConstructA, , from the coefficients g of
step (ii) and solve for 5c.

(iv) Repeat steps (ii) and (iii) until a desired
self-consistency (~5c~ (10 ') is achieved.

In this work we used a basis set consisting of
five 8-type contracted Gaussian-type orbitals
(GTO) constructed from ten individual GTO, and
four P-type contracted GTO from six individual
Gaussians. The exponents of the Gaussians as
well as the contraction coefficients are given in
Ref. 12. In order to keep the computational work
within a manageable scope, we take the 10, and
lo„orbitals as being always doubly occupied and
consider only those configurations resulting from
all possible assignments of the remaining 12
electrons to the 20~, 2v„, 30„ lm„, 1m„3v„
orbitals. This leads to 30 configurations consis-
tent with 'Z~ symmetry, and 28 configurations
with 'Z„. In Tables I and II we present these con-
figurations along with the mixing coefficients and
the total energy for the I'Z~ and 8 '2'„states,
respectively, at the equilibrium internuclear dis-
tance for the ground state (1.2 A).

In the cases where more than two MO are
partially filled, two or more distinct Slater de-
terminants are derived from a given set of oc-
cupational numbers due to different spin assign-
ments. For example, we take a linear combina-
ti.on of the two Slater determinants associated
with the configuration labeled as 9 in Table I;
l.e.)

(I/W2) [~ (lw„'a)(lw„-P)(lw; a)(»;a) ~

(»:P)(».a)(lw;a)(lw, a)l],
in order to conform to the X'Z~ symmetry (with
Mz = 1). Likewise the appropriate combination
for configuration 10 in Table I is

(I/r2)[~ (lw„'a)(lw„a)(1wg a)(»gP)~
—

~

~ ~ (1w'„a)(lw„a) (1wg )6) (ling a) ~] .
Further details may be found in Ref. 13.

Denoting the MC electronic wave functions for
theX'Z, andB'Z„states as 4x and+~, re-
spectively, we compute the transition-moment
matrix element as

zg ())) = f 'kgtl', 1', . . . , R)

(6)
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TABLE I. Configurations R for the X Zd state at R = 1.2 A.

Coefficients
2o~ 2o.„30~ 30„1~„' 1x„ l~~ 1~~ 30-conf. SCF 5-conf. SCF

1 2 2 2
2 2 2 0
3 2 2 2
4 2 2 0
5 0 2 2
6 2 0 2
7 2 1 2
8 2 1 2
9 2 2 2

10 2 2 2
11 1 2 1
12 1 2 1
13 2 2 1
14 2 2 1
15 2 2 1
16 1 2 2
17 1. 2 2
18 1 2 2
19 0 2 2
20 2 0 2
21 1 2 1
22 1 2 1
23 2 1 2
24 2 1 2
25 2 1 1
26 2 1 1
27 2 1 1
28 1 1 2
29 1 1 2
30 1 1 2
Total energy (in a.u.)

0
2
0
2

2
1
1
2
2
2
2
1
1
1
1
1
1
2
2
2
2
1
1
2
2
2
2
2
2

2
2
1
1
2
2
2
2
1
1
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
2
2
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

1
1
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
1
1'
1
1
1
1

0.956 082
-0.072 058
-0.199331

0.039 208
-0.029 427
-0.014419

0.122 624
-0.037 672

0.021 566
-0.000 094
-0.041 254

0.000 191
-0.127 933

0.008 548
-'0.009 622

0.055 217
-0.008 658

0.002 904
0.008 228
0.003 764
0.022 654

-0.000 504
-0.031 174

0.006 808
0.025 786

-0.000 533
0.005 620
0.002310
0.001 286

-0.002 463
-149..708

0.960 931
-0.064 694
-0.188 520

0.128 960

-0.142 297

-149.496

Configurations are specified by the occupation numbers of MO.

where the summation covers all 16 electrons of
the 0, molecule. To study the Schumann-Runge
system, let us consider a transition from the
lowest vibrational level of the X'Z, state (XO)
to a continuum vibrational level of the 8 'Z„state
which is labeled by the index 8' corresponding
to the energy of this vibrational level as mea-
sured from the dissociation limit of the J3 'Z„
state. The continuum vibrational wave functions
X)(d(8 ~R) are determined from the potential curve
of the B '~„state" by using the procedure out-
lined in the Appendix of Ref. 15. The oscillator
strength for this XO-B& transition is

f0(0 Rw) = (2RR/2) f2(R IR)r* (R}.
2

X go(X~R)R'dR

where Xo(X~R) is the wave function of the ground
vibrational level of X 2', , and AE is the excitation
energy. If we normalize X~ so that the density of
states over an energy range of 1 eV is unity, then

f(XO-BW) is equivalent to the quantity df/dE
given in Fig. 4 of Ref. 6.

At R = 1.2 A (equilibrium internuclear distance
of the ground state), we obtain the transition mo-
ment z» as 0.873 a.u. which may be compared
with 0.920 a.u. reported by Julienne, Neumann,
and Krauss. ' This agreement is quite remarkable
in view of the fact that the manifold of configura-
tions selected for their MCSCF calculation as well
as their basis set for constructing molecular
orbitals are different from ours. To illustrate
the importance of configuration mixing, we de-
compose the transition moment into contributions
from various configuration pairs by combining
Eqs. (2) and (8); i.e.,

s„s(R)= Q a; (R)a, (R)
kj

x ) r~~ r2~ ~ ~ ~ pB

x
I E ) qCr„rr„0. . . , l r, Rddr„.

(1o)
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TABLE II. Configurations for the 8SZ„states at R= 1.2 L.

Coefficients
20' 2a„3crg 30«1~„' ln „1~~+ 1~~ 28-conf. SCF 5-conf. SCF

1 2
2 2
3 2
4 2
5 2
6 2
7 0
8 2
9 2

10 2
ll 2
12 1
13 1
14- 1
15 1
16 2
17 2
18 2
19 2
20 2
21 2
22 1
23 1
24 1
25 1
26 1
27 1
28 1
Total energy

2 2
2 0
0 2
1 2
1 2
1 2
2 2
2
2 1
2 1
2 1
2 2
2 2
2 2
2 2
1 1
1 1
1 1
1 1
2 2
2 2

2 1
2 1
2
1 2

1 2
1 2
1 2
(in a.u. )

0
2
2
1
1
1
2
1
1
1
1
1
1
1
1
2

2
2
2
2
2
2
2

2

1
1
1
1
1
1
1
2
2
1
1
2
2

1
1
2
2
1
1
1
1
1
1
1
1
1
2.
2

2
2
2
2
2
2
2
1
1

2

1

2
1
1
2

1
1
2

2
2
2

2
1
1

0.903 183
-0.012 380
-0.027 354

0.079 494
-0.000 534
-0,036 249
-0.021 400

0.374 944
0.049 311
0.109441
0.003 832

-0.077 988
-0.025 139
-0.066 132
-0.000 042
-0.079 394
-0.015 914
-0.015 732
-0.004 150
-0.042 689

0.022 660
-0.003 645
-0.000 996

0.001 298
-0.004 650

0.002 139
-0.013 389

0.004 883
-149.333

0.912 644

0.117096

0.365 003

0.117028

0.080 289

~Configurations are specified by the occupation numbers of MO.

The integrals in Ect. (10) may be one of the five
types shown in Table DI. In Table IV we list
the contributions from each pair of configurations
at A = l.2 A. One notices that only a few configura-
tions are important as far as the X-I3 absorption
intensity is concerned. From a series of test cal-
culations, we find little change in the transition-
moment matrix element i.f we limit the number
of configurations to five (configurations 1, 2, 3, 7,
13) for the ground state and to five (1,4, 8, 10, 12)
for the upper state. This allows us to greatly
reduce the numerical work. The configuration
coefficients and total energy derived from this
five-configuration MCSCF calculation for the
I'Z~ and 8 'Z„states are included in the last
column of Tables I and II, respectively. The
dipole matrix elements computed from these five-
configuration wave functions are given in Table III
and are quite close to the results of the full cal-
culation involving 30 configurations for X'Z~ and
28 for 8'Z„. A breakdown of the contribution
from the various configuration pairs to the transi-
tion moment for the five-configuration calculation

TABLE III. Dipole matrix elements at R= 1.2 A.

Configurations (30 x28) ~

(lw„ z
(30~ z
(30'
(2crg s
(2crg z

kg)
30.„)
20„)
3o.„}
2a.„)

1.182 825
-1.117884
-1.253 562

0.141830
-0.887 668

1.148 174
-1.106 711
-1.244 049

0.149 521
-0.892 271

'30 configurations for the X3&~ state and 28 for 83Z„-.
~5 configurations for the X 3Z~ state and 5 for BSZ„.

is shown in Table IV. The transition moment
varies from 0.891 to 0.8'73 a.u. between the five-
configuration and the full calculation. But if con-
figuration mixing is entirely neglected, the value
of the transition moment becomes almost twice
as large. This clearly indicates the inadequacy
of the single-configuration approximation for the
case of O, . Using the five-configuration scheme,
we calculate the transition moment at twelve
values of 8 from 0.9 to 2.0 A and, with the a,id
of the appropriate vibrational wave functions, the
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oscillator strength f(XO~BW) for the continuum
in the excitation range of V-9.5 eV which is shown
in Fig. 1 along with the experimental data of Ref.
6. (Earlier measurements reported by other
workers' ' agree well with those of Ref. 6 and are
not shown bere. ) We see very good agreement be-
tween theory and experiment at energies up to
9 eV. For absorption above this energy, we are
dealing with the steeply ascending part of the po-
tential -curve which is subject to a higher degree
of uncertainty than the lower part. This reduces
the accuracy of the continuum vibrational wave
function and therefore the oscillator strength. It
is likely that the low-frequency side of the ob-
served continuum spectrum contains, in addition
to the X-B absorption, transition from the
ground state to a 'O„state which is of repulsive

0.l4—

0.12

O. I 0—

I

O 0.80—

CL

0.60—

0.40—

0,20—

0.00
7

ENERGY LOSS (ev)

I

lO

TABLE IV. Contributions to transition moment.

Configurations
X B Type

Contribution
(30 x28)" (5 x 5)

1
1
3

13
13
7
2
3

13
7
1

13

2
16

7
16
4

16
16
11
11

3
13

8
8

11
6
2
4
9
5

others
total

1
8
1
1
8
8
8

10
10

12

16
16
1

12
12
10
14
4

12
16
14

2
9

8
16

2
18
20

7

1.444 464
-0.566 726
-0.301 152

0.182 671
-0.080 239

0.057 635
0.042 713
0.034 488
0.023 421
0.016 306

-0.014 956
0.012 749
0.010 883
0.010 142

-0.010 003
-0.008 489

0.007 203
-0.006 784

0.006 108
-0.003 896

0.003 597
-0.002 907

0.002 644
0.002 504

-0.002 329
0.002 284
0.002 194
0.002 031
0.001 492
0.001 094
0.001 089
0.001 053
0.001 998
0.873 282

1.424022
-0.548 957
-0.279 372
. 0.203 258
-0.084 337

0.058 559
0.036 959
0.034530
0.027 041
0.024 520

-0.016314
0.020 728

—0.-009 239

0.891398

Types are as listed in Table III. —

30 configurations for the X &~ state and 28 for B Z„.
'5 configurations for the X3~~ state and 5 for B3Z„.

nature lying somewhat below B 'Z„. . Vhlkinson
and Mulliken" suggested that the total oscillator
strength of X- '~„ is on the order of 0.0l. This
may account for the experimental oscillator
strengths at 7-8.5 eV (as shown in Fig. 1) being
somewhat larger than the theoretical values which
do not include the X- 'II„contribution.

III. DISSOCIATIVE EXCITATION OF THE 8'3 Z„
STATE BY ELECTRON IMPACT

Closely related to the photoabsorption process
discussed in Sec. II is the electron-impact exci-
tation of the B 'Z„state. Since the B 'Z„state
is an optically allowed one, the electron-impact

TABLE V. Electron-impact excitation (dissociation)
cross sections of the B Z„state in 10 ~7 em,

Cross section

10
15
20
25
30
40
50
75

100
150
200
300
500

1000

3.13
6.57
7.29
7.21
6.91
6.20
5.56
4.40
3.64
2.74
2.21
1.62
1.08
0.93

FIG. 1. Optical oscillator strengths of the Schumann-
Bunge continuum. The solid curve is the present theory,
and the dashed one represents the experimental data of
Ref. 6.



1080 SUNGGI CHUNG AND CHUN C. LIX 21

excitation cross sections may be expected to be
fairly large. Moreover, excitation of B 'Z„
furnishes a mechanism for generating metastable
0('D) atoms which is of considerable interest in
atmospheric physics. ' For cross-section calcula-
tions, we use the Born approximation to treat
direct excitation and the Ochkur modification for
exchange excitation. For this XO B~ excitation
produced by electron impact, the incident and
scattered electron are associated, respectively,
with the XO and the BS' target states; thus the
initial and final electron wave vectors are written
as kx, and k&~, respectively. We denote their
difference by

K =- kx —k~~,

and the relative orientation between K and the
molecular axis by the polar and azimuthal angles
0 and C . The transition amplitude is

16

(B, Brs, B, ) = —fndtr„r„. . . , R) g 8' "')
f=].

xCx(r„r„.. . , R)dr, . . .dr„.

The differential cross sections in the (9, Q) di-
rection for the XO-B+' excitation are

I (8, 8)=(ks /dek ) f sinBdRds f rd( R) kr(nB)( OB k„',}8' —( B BO@) R' dR (13)

Application of the Born approximation to elec-
tron-impact excitation of electronic states of
diatomic molecules has been discussed in our
earlier work. "'" [Eq. (13) here differs slightly
from Eq. (8) of Ref. 15 which contains a, typo-
graphical error. "] Integration of Ijd~ over 9 and

Q gives the cross sections for excitation to a unit
energy range about W of the repulsive state, viz. ,

Q(BO-Bsr) = fI s(88)sinede8() ., (14)

Details about the computational procedure can be
found in Refs. 15 and 17. Since the excitation to
the bound levels of 8 RZ„(i.e., XO-Bv) are very
weak in comparison with the continuum part, Eq.
(15) gives essentially the excitation cross section
to the entire B 'Z„electronic states.

With the same set of wave functions that were
used for calculating oscillator strengths, we ob-
tain the cr'oss sections Q(X-8) from Eq. (15) for
incident electron energies up to 1000 eV, and the
results are summarized in Table V. Although no
attempt was made to locate the exact position of

It follows that the cross sections of excitation
to the entire repulsive part of the B 'Z„state are

i)O(-R) = f ()(BO-B88)d)8.

I

the peak, the cross section V.29x 10 "cm at 20
eV should be quite close to the maximum value.
Since the two states (X-B) are connected by a
dipole transition, the excitation function is ex-
pected to be broad, decreasing only as InE/E
at large incident-electron energies. " We find
that the present cross sections conform to such
asymptotic form around 300 eV within -10%%uz. By
extrapolating the measured differential cross-
section data, Trajmar et al."report a cross
section of 8.6x10 ' cm' at 20 eV which is in
reasonable agreement with our calculation, but
their cross section (11.5x 10 "cm') at 45 eV is
much larger than the present result. Since the
Born-approximation cross sections become more
accurate at higher energies, one would not expect
a larger discrepancy at 45 eV. Additional experi-
mental work on cross-section measurement is
needed.
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