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This paper is a study of the topological relationship between two scalar fields of a molecular system, the
electronic charge density and the Coulombic field generated by the atomic nuclei—the nuclear potential.
Because of the essential observation that the only local maxima of ground-state charge distributions occur at
the positions of the nuclei, the nuclei are the point attractors of the gradient vector fields derived from the
charge density and from the nuclear potential. The basins associated with the set of point attractors in
either field partition a molecular system into nucleus-dominated regions. The common boundary of any two
such neighboring regions contains a particular critical point which generates a pair of gradient paths linking
the neighboring attractors. The union of this pair of gradient paths and their end points is called an
interaction line. The network of interaction lines defines an elementary graph of the molecular system which
identifies the dominant physical interactions in both the charge density and the nuclear potential. Having
defined a unique elementary graph for either scalar field for any molecular geometry, the authors partition
the total nuclear-configuration space into a finite number of regions. Each region is associated with a
particular structure defined as an equivalence class of elementary graphs. The representation of this
structural partitioning of nuclear-configuration space is called a structure diagram, which is analogous to a
thermodynamic phase diagram. Bader, Nguyen-Dang, and Tal have previously shown that chemical
concepts like bonds and molecular structure can be rigorously defined through such a topological analysis of
the electronic charge distribution in a molecule. In this paper the authors trace the fundamental role of the
nuclear potential in determining the topological properties of this charge distribution. Through a detailed
study it is demonstrated that the structure diagrams of the charge density and of the nuclear potential are
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homeomorphic for the H,O system. It is conjectured that this homeomorphism exists in general for any

molecular system.

I. INTRODUCTION

Within the Born-Oppenheimer approximation, a
molecular system is described as some number of
electrons moving under the external Coulomb po-
tential V(T) of the fixed atomic nuclei. The result-
ing distribution of electronic charge, as described
by the charge density p(T), is a real, positive
semidefinite function in three-dimensional space.
According to a theorem formulated by Hohenberg
and Kohn,! the ground-state charge density for a
given system is uniquely determined by specifying
V(F), and conversely, a particular ground state
p(f’) determines a unique V(f), i.e., there exists
a unique (but unknown) functional relationship be-
tween p(f) and V(¥). Our purpose in this paper
is to establish an explicit correspondence between
these two scalar fields in terms of their topologi-
cal properties.

The study of fields in terms of their topological
structure is finding an increasing number of ap-
plications throughout physics. Although the roots
of these ideas are to be found in Faraday’s geo-
metrical description of electric and magnetic
fields in terms of their lines of force,? much of
the present stimulus in this direction stems from
the modern mathematical analysis of structural

stability as employed particularly by Thom.® Ber-
ry* has given a general account to show how Thom’s
theorem can be used descriptively and predictive-
ly to solve problems in wave physics, with par-
ticular examples from optics. Berry and Mackley
have applied Thom’s theory in a study of the
streamline patterns in the two-dimensional flows
produced in a six-roll mill. Thorndike, Cooley,
and Nye® have also given a general discussion of
the structure and stability of flow fields, classify-
ing the changes in structure for both two- and
three-dimensional fields in terms of Thom’s list
of eleméntary catastrophes. Collard and Hall”
have discussed the analysis of the electron den-
sity and the Born-Oppenheimer potential energy
in terms of their associated gradient vector fields
and illustrated the relevance of Thom’s theory.
Kléman ef al.® have given a classification of topo-
logically stable defects of ordered media, with
particular applications to crystals. Coleman and
O’Shea® have provided a classification for the local
topological structure of phase diagrams. Schul-
man'® has applied catastrophe theory to the study
of phase transitions with tricritical points.

Common to most of the above investigations is the
attempt to define the significant structure associat-
ed with a phenomenon or a physical system and to

5

1 © 1980 The American Physical Society



2 YORAM TAL, RICHARD F. W. BADER, AND JAN ERKKU 21

obtain a quantitative description of its stability.
Nowhere is the concept of structure more import-
ant than it is to the study of molecules. The no-
tion of a molecule being a collection of atoms
joined by some network of bonds, i.e., the notion
of molecular structure (as distinguished from
molecular geometry) plays an essential role in our
understanding of chemistry. Owing in large part
to the intuitive ideas of Lewis, Pauling, and Slat-
er, the concept of molecular structure has evolved
to its point of operational usefulness notwithstand-
ing the fact that it had never been formalized. The
deficiencies of such classical structure assign-
ments and their lack of a firm foundation in basic
physical concepts are, however, becoming in-
creasingly apparent in, for example, the studies
of activated species or chemical intermediates,
cluster compounds, and solids.

It has recently been shown''2 that the concepts
of an atom in the molecule and of a chemical bond
find precise expression in terms of the topological
properties of the electronic charge density p(¥)
of a molecular system. As a consequence of these
identifications, one is led to a definition of mole-
cular structure and to a phenomenological analysis
of structural stability. This approach to the de-
finition of molecular structure and its stability is
found to parallel in a most detailed way Thom’s
general analysis of structure and its stability. The
topological properties of p(¥) are predominantly
determined by the positions of the nuclei which are
identified as the attractors of Thom’s theory. The
basin associated with each attractor, the space
traversed by all the trajectories of Vp(¥) which
terminate at a given attractor, defines the corre-
sponding atom. Consequently, one observes in a
molecular system a unique set of trajectories
joining pairs of attractors and thereby defining a
molecular graph. This molecular graph sum-
marizes the essential topological features of p(T)
and provides a basis for a rigorous definition of
molecular structure. We show that one may apply
the same analysis to the Coulombic field V(¥) and
thereby obtain a similar representation of this
field in terms of elementary graphs.

In a molecular system the nuclear potential
plays a fundamental role in determining the prop-
erties of the electronic charge distribution. This
point is further elaborated in the present paper by
showing the existence of a considerable similarity
between the scalar fields p(f) and V(¥). As
stressed by Thorndike ef al.,® one may answer the
question “when are two fields similar?” by com-
paring their topological properties. We first de-
monstrate that the charge density and nuclear po-
tential exhibit structure which is definable in terms
of their associated vector fields. We then show

that nuclear configuration space may be partitioned
into a finite number of regions, each region pos-
sessing a unique structure, thereby defining a
structure diagram. Finally, we argue that in
general, the structure diagrams generated by the
charge density and the nuclear potential for a par-
ticular system are homeomorphic.

II. ELEMENTARY GRAPHS AND STRUCTURE

Consider the scalar field f(F, X) which is a
function of the internal variables T€R? of the be-
haviov space and which depends parametrically
upon the coordinates X€RY of the control space.
In the following discussion the field f may refer
to either the electronic charge density p(r; X) or
the external potential V(r X ), where

VER) =2 Z(F-F ), R={X). )

The topological properties of f(T; X) are dis-
played and characterized by its gradient field
Vf(F; X), the gradient being taken with respect
to the internal variables . For a _given value of
X, the vector field F(F; X) = Vf(T; X) generates
a one-parameter set of integral curves {g;} called
gradient paths, defined by

gi~{r( )If(s =vf(F;X), S€R, f(0)=F,.€R3}.

2

The topological analysis of f(T; f) then proceeds
through the search for and the identification of
its critical points. A critical point T, is defined
by
VI, X)rz,=0. 3)

In the neighborhood of a critical point, the field
f(F; X) is expanded in a Taylor’s series, the first
nontrivial terms of which are quadratlc in the
variables . The rank of the critical point equals
the number of nonzero eigenvalues of the Hessian
matrix A defined by

(2 )
A= (L r @

Its signature is the excess number of positive over
negative eigenvalues.” The power of catastrophe
theory lies in its ability to isolate those discon-
tinuities in a system’s behavior which result from
continuous changes in its control variables.

These discontinuities, which Thom calls catastro-
phes,®are manifest either through the occurrence
of critical points of less than maximal rank or
through the establishment of a balance between two
or more competing regimes.. The values of X for
which f('f;f) exhibits singularities, i.e., critical



21 STRUCTURAL HOMEOMORPHISM BETWEEN THE ELECTRONIC... 3

points of rank less than 3, are catastrophe points
of the bifurcation type. Catastrophe points re-
sulting from a balance between competing regimes
are called conflict points. All other points in R¥
are called regular points.
In the neighborhood of T, Eq. (2) becomes

B p 5. (5)
The nature of the critical point is determined by
the sign of the real eigenvalues ; of A. Pictorial-
ly, the critical point is characterized by its phase
portrait—the pattern of trajectories traced out by
the gradient paths in its neighborhood. All of the
trajectories traced out by the gradient paths orig-
inate and terminate at critical points. For critical
points of rank 3, four characteristic phase por-
traits are found, corresponding to the four possible
signatures, -3,-1,+1,+3. The presence of any of
these critical points, labeled as (rank, signature)
in the scalar field f(F; X) denotes the presence of a
particular element of structure, as we now illus-
trate.

A. Topology ofp(?;i(—))

We have observed that local three-dimensional
maxima in ground-state molecular charge distri-
butions occur only at the positions of nuclei.*!"*3
Such maxima correspond to (3, -3) critical points
in p(F; X)™; all trajectories of Vp(¥; X) in the
neighborhood of a (3, —3) critical point terminate
at that point. The concepts of an attractor and its
basin as defined in terms of particular sets of
trajectories play a central role in Thom’s general
analysis of structure and its change. It has been
shown!? that the phase portrait of p(F; X) in the
neighborhood of a nucleus is such that a nucleus
fulfills the definition of a point attractor, and the
volume of space spanned by the gradient vectors
of p(f; )-E) which terminate at the nucleus is its
associated basin. Thus a nucleus is a point at-
tractor and the atom is the union of the attractor
and its basin. These associations are presented
in Fig. 1, which illustrates maps of Vp(¥; X) for
charge distributions obtained at several points
along the C,, approach of O('D) to H,(*Z}) to form
ground-state water.

The interaction between two such nucleus-dom-
inated regions of space results in the formation of
a (3, -1) critical point in p(F; X) and the boundary
between the regions is determined by the collec-
tion of all gradient paths which terminate at the
critical point. The positions of the (3, -1) saddle
points in Vp(F; X) are indicated by dots in Fig. 1.
Only two gradient paths which terminate at each
such saddle point lie in the symmetry plane in-
dicated in this figure. Each such pair of gradient

FIG. 1. Gradient maps of V(¥;X) (left) and of p(F;X)
(right) for symmetric structures of the H,O system. The
elementary graphs are indicated on each diagram by
heavy lines, and the (3, -1) critical points by dots.

‘ paths defines the boundary between neighboring

atoms in this plane. We define the afomic surface
S, of an atom A as the boundary of its basin. For
an isolated atom, this boundary is found at infin-
ity. Two atoms A and B are neighboring if there
exists an interatomic surface S,g, defined by S,p
=S,NS, and such that S, is of dimension 2.
Hence S,2UzS45-

Two neighboring atoms are linked to one another
by the single pair of gradient paths which originate
at the (3, -1) critical point, and terminate, one
to each, at the neighboring nuclei. These two grad-
ient paths define a line through the charge distri-
bution along which p(¥; X) is a maximum with re-
spect to any perpendicular displacement. Such
lines, called inferaction lines, are to be found in
any scalar field f(T; )?) possessing point attractox_‘_s.
In the particular case of the charge density p(¥; X)
they are called bond paths,'* and neighboring atoms
are defined to be bonded to one another. The bond
paths are indicated by heavy lines in Fig. 1.

Since atomic nuclei are the only points within a
molecular charge distribution which fulfill the de-
finition of an attractor in three dimensions, the
set of surfaces generated by the presence of the
associated (3, —1) critical points partition the space
of a molecule info a collection of chemically iden-
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tifiable atoms.**'? In addition, it has been demon-
strated'! that the network of bond paths defined

by the unique axes of the (3, ~1) critical points
coincides with the network generated by the linking
together of those pairs of atoms which are con-
sidered to be bonded to one another on the basis

of chemical observations. We define the network
of bond paths for a molecule in a given nuclear
configuration as the molecular graph. In the gen-
eral case such a network of interaction lines will
be referred to as an elementary graph.

The two remaining critical points of rank 3
arise as consequences of particular molecular
graphs. I three or more nuclei form a ring of
bonded atoms, than a (3,+1) critical point must
be found within the perimeter of the ring., For
such a critical point, two of the eigenvectors of
A generate a surface which contains the nuclei and
the (3, —1) critical points of the ring. This is a
ving surface (not an atomic surface) on which
o(T; X) possesses a minimum at the critical point;
the gradient paths defining the ring surface orig-
inate at the (3, +1) critical point. An example of a
bonded ring is shown in Fig, 1,

If four or more nuclei form a bonded cage, a
true three-dimensional minimum in p(%; f) must
exist in the interior of the cage; all gradient paths
within the cage originate at such a cr1t10a1 point.

A three-dimensional minimum in p(’ X isa
(8, +3) critical point for which all three eigenvalues
are positive and hence DetA > 0.

The number and type of critical points of rank
3 which can coexist in a system with a finite num-
ber of nuclei are governed by the Poincaré-Hopf
relationship. With the structural associations
given above, this relationship assumes the form’

n=b+r—-c=1, (6)

where 7 is the number of nuclei [pseudo-(3, —3)-
critical points], b is the number of bonds [(3, ~1)
critical points], 7 is the number of rings [(3, )
critical points], and ¢ is the number of bonded
cages [(3, +3) critical points].

B. Topology of V(?‘,)_())

We now describe the topology of V(¥; X) and com-
pare it it with the topology of p(T; X The field
V(’ X), Eq. (1), becomes infinite if and only if
T= Xa, the coordinates of any one of the nuclei.
At such a point vV is both dlscontmuous and in-
finite. Thus the maxima m V(T; X) like the corre-
sponding maxima in p(F; X), are not true (3, ,—3)
critical points. However, again as for p(%; X)
the phase portrait for this point is indistinguishable
from that for a true (3, —=3) critical point. This
behavior is evident in Fig. 1, which portrays maps

of the trajectories of VV(T; 52) for the electronic
fields associated with a number of nuclear con-
figurations representing the C,, approach of an
oxygen nucleus to two protons held a fixed distance
apart. All the trajectories of VV(r; )?) in the
neighborhood of a given nucleus terminate at that
nucleus. Thus a nucleus acts as an attractor in
both V(¥; X) and p(¥; X) fields. Moreover, nuclei
are the only attractors in V(?; 55) and they are ob-
served to be the only attractors in (ground-state)
charge distributions. Since topological structure
and its stability are determined by a state of
balance being achieved in the- competion between
the attractors of a system,'? one anticipates a
significant degree of similarity in the topological
properties of p and V. Thus one finds that the
basms of neighboring attractors in V(T; X as in

o(F; X), are separated by the surface of a (3 -1)
critical point and the attractors are linked by an
interaction line.

From Fig. 1 it is seen that the same sequence
of elementary graphs for the H,0 system is ob—
tained for V(T ; X) as is obtamed for p(%; X
cluding a graph corresponding to the bonded ring
of nuclei. However, as a consequence of Poisson’s
equation for V(F; X),

veVE;R) =dn ) Z5F -X,) )

and the topological properties of V(%; 5?) are con-

strained relative to those for p(T; 5?). Since
vVED =2 N, (8)
T

the sum of the eigenvalues A; of the Hessian ma-
trix for a critical point in V(T; ff) other than a

(3, -3) must equal zero. No such restriction
exists for critical points in p(f;X). Thus
V(¥;X) may possess both (3,-1) and (3,+1)
critical points but with the restriction that

]Xl +>\2| = '7\3 l, where 2, is the eigenvalue of
unique sign. It cannot possess a (3, +3) critical
point, and hence it cannot exhibit an elementary
graph corresponding to a regular cage. However
as discussed later, even in this case V(T; X) may
possess an elementary graph wh1ch is topologically
equivalent to a bonded cage of p(F; X).

A gradient path of V has a simple physical inter-
pretation. It is a line of force— the path traver-
sed by a test charge moving under the influence
of the potential V(F;}_f). At a critical point other
than a (3, -3) critical point, the force vanishes.
Thus a critical point in the field V(¥; X) denotes a
point of electrostatic balance between the attrac-
tors of the system. Since the trajectories defining
the surface which separates neighboring basins
satisfy the “zero-flux” condition
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VV(EX) -7F) =0 VFeSE), 9)

where 1 (T) is a unit vector normal to the surface
S at T, a test charge on such a surface trajectory
is not drawn to either attractor. On the contrary,
a test charge lying within a basin is drawn to the
attractor and thus the boundary of a given basin
defines the region of space dominated by that at-
tractor. )

Wlth a common set of elements as attractors,
1463 ,X) exhibits the same basic elements of struc-
ture as does p(¥; X), with the atoms and bond paths
of the latter field being replaced by the topological-
ly equivalent nuclear basins and nuclear-nuclear
interaction lines of the former field. An elem-
entary graph identifies the dominant physical in-
teractions in both V(F; X) and p(F; X). As such it
represents the physically essential topological
features of either field for any given configuration
X. The elementary graphs form the basis for the
definition of structure and structural stability.

C. Structure

So far we have been able to define a unique ele-
mentary graph for p(¥; X) or V(F; X) for any given
value of X. Wwe also observe that as X changes
from X to X the elementary graph associated
with X may either be equ1va1ent to or different
from the one associated with Xl. This equivalence
relationship is defined as follows: the two vector
tields U,V defined on R® are equivalent, U~%, if
and only if there exists a homeomorphism which
maps the trajectories of U onto the trajectories
of V. Hence we define two elementary graphs to be
equivalent if the corresponding vector fields
Vf(F; X,) and Vf(F; X,) are equivalent. A structure
is thevefore defined as an equivalence class of
elementary graphs and may be represented by any
elementary graph of the class. We emphasize,
however, that while the notion of structure is de-
fined for a general scalar field, molecular struc-
ture is specifically determined by the electronic
charge density.

From Fig. 1 it is evident that the nuclear poten-
tial exhibits the same sequence of structures for
the approach of an oxygen nucleus to a pair of hy-
drogen nuclei as does the charge density for the
approach of an oxygen atom to a hydrogen mole-
cule. In fact, we can always find for this system
two conhguratlons X and X such that the molecu-
lar graph of p(" X and the elementary graph of
VT, X) are equivalent. Both scalar fields exhibit
the same finite set of structures. To complete
the comparison of the topological properties of

o(T; X) and V(T; X) we must determine the mechan-

isms of structural change and the nature of struc-
tural stability.

III. STRUCTURAL CHANGE AND STRUCTURAL
STABILITY

A change in structure is abrupt. We may illus-
trate this through the sequence of elementary
graphs in Fig. 1. Consider the dissociation of the
water molecule. As the oxygen nucleus recedes
from the protons the system first passes through
a series of points in configuration space, all of
which possess equivalent elementary graphs as
typified by the graph in Fig. 1(c). According to
Thom,? “if the observer can see nothing remark-
able in the neighborhood of a point X, that is, if
X does not differ in kind from its neighboring
points, then Xisa regular point of the process.”
However, at some point along the C,, dissociative
path there is a discontinuity in the morphology of
the process as evidenced by the sudden appear-
ance of a different kind of elementary graph char-
acteristic of a new structure, the ring structure,
Fig. 1(b). The point in configuration space at which
this change in structure occurs is a catastrophe
point. A second abrupt change in structure, a
second catastrophe, is encountered when the in-
teraction of the protons with the receding oxygen
is reduced to the point where the ring structure
is transformed into a structure typified by the
graph O—(H,), Fig. 1(a). We now discuss the
mechanisms of structural change.

A. Bifurcation catastrophe

A bifurcation catastrophe occurs when a sin-
gularity, i.e., a critical point of rank less than 3,
is formed in the scalar field f(7; X). In general
such a singularity is unstable to a change in the
control parameters X; it may vanish entirely or it
may change into two or more critical points of
rank 3. The behavior of the system is “catastroph-
ic” in the neighborhood of such a point in con-
figuration space, as a change in the number and
nature of the critical points of a system leads to
a change in its structure.

The determination of the set of bifurcation points
is accomplished through the computation of the
behavwr surface of the system. For a given field
F(¥; X) with F€R® and X€RY, the behavior surface
is defined by

B={(, X)e R"3|vf(F; X)=0}. (10)

In the particular case of the H,O system, T=(x,y)
and X=(D,R) (see Fig. 2). The H-H separation is
set equal to unity, as all results are readily scaled
to any other value. The behavior surface for this
system is represented via a set of behavior dia-
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FIG. 2. Definition of the (D, R) control parameters and
the (x,y) behavior coordinates for the H,O system.

grams in which two-dimensional cross sections of
the surface are displayed (see Fig. 3).

In Fig. 3(a) (D=0), one observed two bifurcation
points along the R axis. The values of R at these
points, R,=2.3043 and R,=1.9187, thus divide the
R axis into three distinct regions: (a) R>R,, in
which there are only two (3, —1) critical points
and the corresponding structure is O-(H,), i.e.,
an interaction line connecting the two hydrogens
and another connecting the oxygen to the midpoint
of the previous line, as typified by the graphs in

Fig. 1(a); (b) R,<R<R,, in which there are three
(8, 1) critical points and one (3, +1) critical point;
this region corresponds to a ring structure in
which all three nuclei are connected by interaction
lines [Fig. 1(b)]; (¢) R<R,, in which there are
again only two (3, —1) critical points but the struc-
ture is H-O-H, i.e., the oxygen is linked to each
proton but there is no link between protons [Fig.
1(c)]. R

The two points in control space, X,=(0,R,) and
X,=(0,R,), are bifurcation points. At X, a (3, -1)
critical point becomes a singularity in V(T; f).
For a further infinitesimal decrease in R this
singularity bifurcates into two (3, —1) critical points
and one (3,+1) critical point. As R is decreased
still further, the (3, +1) ring critical point moves
toward the (3, —=1) critical point defining the H-H
interaction line. At 5?2 these two critical points
merge to form another singularity in V(F; 5?),
which for a further infinitesimal displacement
along R simply vanishes. Thus the link between
the protons is broken by the advance of the oxygen
nucleus whose basin, for values of R<R,, extends
between the two protons.

The points 551 and 5('2 are points of transition be-
tween different structures in configuration space,
The gradient map for 5(: is displayed in Fig. 4.
The map for 552 is shown in Fig. 5 together with
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FIG. 4. Gradient map of V (¥;X) at a catastrophe point
on the boundary between the structure (O—~H,) and the
ring structure.

the corresponding Vp(T; X ) map for the molecular
system. Comparison of these maps with those in
Fig. 1 clearly demonstrates the transitional nature
of the bifurcation catastrophes. The structure in
Fig. 4 is indeed intermediate between structures
1(a) and 1(b), whereas the structures in Fig. 5 are
intermediate between the structures 1(b) and 1(c).
Figure 3(b) displays a behavior diagram for
D=0.1. The essential features of this diagram are
similar to these of Fig. 3(a). Here again, the
presence of two catastrophe points, at R,=2.0430
and R,=1.9105, divides the R axis into three struc-
tural regions. The only difference is that the re-
gionR> R, corresponds in this case to the struc-
ture O—H-H rather than O—(H,) as found in the
case D=0. This difference is discussed in Sec.
IIIB. One observes that the ring region is smaller
for D=0.1 than it is for D=0, and that it vanishes
for D> 0.25 [Fig. 3(c) and 3(d)]. Thus for values of

FIG. 5. Gradient maps for V(r;X) (left) and p(r;X) (right)
for the symmetrical catastrophe point on the boundary
between the regions of ring and open structures of H,0.
The singularities in both V(¥;X) and p(#;X) result from
the coalescing of the ring critical point with the H-H
critical point.

D> 0.25, all curves of the behavior diagram are
single-valued functions of R, implying that the num-
ber and kind of critical points exhibited by V(F; )?)
are invariant to changes in R. However, in spite
of the absence of bifurcation catastrophe points
for values of D> 0.25, one still encounters struc-
tural changes. Examination of the elementary
graphs for D=0.7, for example, shows that the
system undergoes two changes in structure, from
O-H-H to H~O-H and back to O-H~H, as R is
decreased to zero. A change in structure without
change in the kind and number of critical points

is the characteristic feature of the second possible
mechanism structural change, a conflict catas-
trophe.

B. Conflict catastrophes

A structural change can occur as a result of a
competition between two or more attractors of a
system.® A conflict catastrophe occurs when the
system achieves a state a balance in such a com-
petition.

Examples of such catastrophes points for both
the p and V fields are illustrated by the elemen-
tary graphs given in Fig. 1(a). Such structures
are unstable for any change in the value of D. An
infinitesimal displacement of the oxygen perpen-
dicular to the C, symmetry axis results in a
switching of the interaction line (or bond path)
from the H-H (3, —1) critical point to the proton
lying on the same side of the C, axis. Such a dis-
placement yields a new structure of the form
O-H~H. Clearly, .the intermediate structures in
Fig. 1(a) both represent a state of balance in the
competition of two neighboring attractors, the
protons, for the interaction line from oxygen.
One notes that unlike a bifurcation catastrophe,

a conflict catastrophe becomes apparent only
when structure has been defined over the given
field.

The series of graphs shown in Fig. 6(b) illus-
trates the operation of the conflict mechanism—
the switching of attractors—for the case D=0.17.
These diagrams represent the three structures
encountered along the R axis for this value of D.
The conflict points are not shown in this case but
they clearly exist. Along this path an interaction ¢
line switches from a proton to the oxygen nucleus
to give the structural change

O-H~-H~ H-O-H.

At a later stage this process is reversed and the
original structure is recovered. Thus the elemen-
tary graphs associated with the conflict points
along this path are of the form H-(OH). (Be-
cause of their inherent instability, it is extremely
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FIG. 6. Gradient maps for asymmetric structures of
V@E;X): (a) for D= 0.25 and (b) for D= 0.7. The central
diagram in (a) corresponds to a catastrophe point at the
apex of the ring region [Fig. 7(a)]. By suitable displace-
ments from this point the system may attain a ring
structure, a conflict structure, or either of the open
structures O—H-H and H-O-H. The sequence of struc-
tures in (b), beginning with the upper diagram, is
O-H-H—~H-O-H— O-H-H.

difficult to obtain the molecular graphs associated
with assymmetrical conflict points.)

Finally, for D =0.25 a “supercatastrophe” is
observed. The middle graph in Fig. 6(a) exhibits
both bifurcation and conflict behavior. It corre-
sponds to the value of D for which the ring region
is reduced to a single point in configuration space
[Fig. 3(c)]. 7

C. Structural stability

The collection of all the bifurcation points (the
bifurcation set) and the conflict points (the conflict
set) forms the catastrophe set in the (D,R) plane.
The catastrophe set is a closed subset C of the
control space R¥, It partitions the control space
into a finite number of structural regions. Each
region g; is an open subset of R¥ such that

V(i,j), cinoj=¢:
CU(U;'U,'):RN»
Vi, dimo;=N; dimC<N.

a -
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FIG. 7. Structure diagrams obtained from the field
V(F;X) in the (D, R) control space in (a), and the (%, v)
control space, obtained by the linear transformation
u= 3.000D, v= 2.5934(R-1.9187), and w= 1, in (b). In
(a) a portion of the conflict-catastrophe set lies on the
R axis for values of R>2.304. The plot in (a) is the
mirror image of that found for negative values of D.

The diagram illustrating this partitioning is called
a structure diagram [Fig. 7(a)]. Such a diagram
is analogous to a phase diagram in thermodynam-
ics; both represent a partitioning of a control
space into structurally stable regions.

Structural stability is defined as follows. Con-
sider a subset MSRY. A point Xc M is struc-
turally stable in M if and only if there exists a
neighborhood L of X in M such that

vX' €L, FE;X)~FF;X),
F being the gradient field associated gith either
p(;X) or V(¥;X). Therefore a point X€g, is
structurally stable in RY for all {, while a point

X&C is structurally unstable in R¥, although it
may still be stable in a manifold of dimension less
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than N. Indeed, according to this definition of
structural stability, a point XeRY is a conflict
point if it is structurally unstable and yet nonsin-
gular. In this way we avoid the use of the so-called
Maxwell convention® to define the conflict set. In-
deed we make a direct use of the notion of struc-
tural stability as previously defined.

Through a suitable linear transformation of the
control parameters (D,R) to a new coordinate
system (u, v) of the control space, the structure
diagram of Fig. 7(a) assumes the form shown in
Fig. 7(b). The geometry of the bifurcation set in
Fig. T(b) corresponds to a cross section of a hy-
pocycloid. An identical structure diagram is ob-
tained from the scalar field p(¥; X) for the H,0

- system.

IV. DISCUSSION AND CONCLUSIONS

We observe that the structure diagrams obtained
for V(F; X) and p(F; X) of the H,0 system are
homeomorphic in the sense that both exhibit an
identical partitioning of the control space yielding
the same sets of structures. This homeomor-
phism may be defined in the following way. To
each point of the control space R” one associates
two different functions f, =p and f,= V, and there-
by obtains two mappings from R¥ onto the function
space C* (R R),

fit R¥~C”(R3,R), i=1,2.

Furthermore, one generates the tangent space
T(R3), a space of vector fields on R3, by letting
the gradient operator act on C*(R3,R),

grad:C”(R3,R)~ TR?Y,
that is,
vXeRY, vf,(F;X)=F,F;X)ec TR, i=1,2.

Using these definitions, we define two structure
diagrams to be homeomorphic if there exist two
homeomorphisms 7 and ¢ such that the diagram

R¥':C*(R%,R) =T(RY)
nt vt (11)
R¥22 c=(R® R) =X TRY)
is commutative, that is,
togradof,=gradof,on ,

where o denotes a mapping composition. Here

the homeomorphisms % and ¢ are defined by
pxenf ¥
vX,X'ERV - =
X,X'€ toF (T; X)=F,(F; X').

We have not studied other molecular systems
over such a broad range of nuclear configuration

space, but have compared the structures of

V(T; 5(’) and p(T; X) for many molecules at their
equilibrium geometries. In general, equivalent
structures are obtained. In some instances the
elementary graph for V(T; 55) must be determined
at a geometry other than the equilibrium geometry
to obtain an equivalent structure.

We conjecture that the structure diagrams for
V(#;X) and the ground state p(¥; X) will, in gener-
al, be homeomorphic for a particular system.

The primary reason for making this conjecture

is that p(F; X) is observed to have the same set of
attractors as does V(T; )_f); the topological proper-
ties of both fields are controlled and determined
by the force fields exerted by the nuclei. As a
result of the definition of a nuclear basin, one
appreciates even more the dominant role of the
nucleus in the determination of the atomic surface
defining the boundaries of an atom in a molecular
system. In addition to finding the same set of
structures for V(¥;X) and p (F; X), it has been
shown that the mechanisms of structural change
are also the same for both scalar fields. Thus
the bifurcation and conflict mechanisms appear

to de_s_cribe all possible structural changes in both
V(F; X) and p(F; X).

Because of the constraints imposed on V(T; 55)
as a consequence of Poisson’s equation [Eq. (7)],
the mapping denoted by Eq. (11) does not apply in
two particular cases where a structural region is
reduced to a single point and therefore becomes a
closed subset of R¥. However, the physical
equivalence of the structures persists, as we now
illustrate. In the Hj system, the ring region of the
structure diagram, Fig. 7(b), is reduced to a
single point in configuration space.!? This single-
ton corresponds to the presence in p(T; X) of a
singularity whose Hessian matrix possesses two
zero roots. Because of the conditions implied by
Egs. (9) and (10), V(F;X) cannot possess such a
singularity. The singularity in p(¥; X) arises from
the merging of the (3,+1) eritical point of the ring
with the three (3, —1) critical points in the perim-
eter of the ring. Thus it behaves as a threefold
degenerate-bond critical point, and the resulting
molecular graph is still characterized by three
nuclei as in a regular ring structure.

Unlike p(F; X), V(¥ ; X) cannot possess a (3, +3)
critical point, for in such a case each A;>0. Thus
in the interior of a bonded cage of four nuclei, for
example, where p possesses a (3,+3) critical
point,’® the corresponding point in V must be a
degenerate critical point with three zero roots.
Such a critical point results from the coalescing
of the (3,+3) cage critical point with the six (3, -1)
critical points whose bond paths define the bonds
of the cage and with the four ring critical points.
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The singularity in V(¥; X) behaves as does a six-
fold degenerate-bond critical point, and the re-
sulting molecular graph is characterized by six
bond paths linking the four nuclei as in a regular
cage structure. Thus the physical equivalence in
the structure observed for p(F; X) and V(F; X), as
determined by the equality in the number of their
interaction lines and the nuclei they link is main-
tained even in these particular cases.

The potential-energy operator which determines
the electron-nuclear attractive energy for a single
electron is V(F; X) = —eV(¥; X). Thus an interaction
line in an elementary graph of V(T; f) represents
a minimum energy path in the potential-energy
surface, linking two neighboring nuclei. If V(T; 5?)
were the sole potential acting in a molecular sys-
tem, one might expect the electronic charge den-
sity to be concentrated along corresponding lines,
i.e., the interaction lines of V(f'_i)*() would coin-
cide with the bond paths of p(¥;X). In a many-
electron system, however, there are electron-
electron repulsive forces acting, in addition to the
force determined by the external potential. Thus
the homeomorphism expressed in Eq. (11) does
not, in general, map a point X €R" onto itself, but
rather onto another point X'#X. For a given X
the critical points of V(f‘; 53) do not coincide with
those of p(¥; X). This is true even for a one-elec-
tron system where V(¥ ; X) is the sole Coulombic
potential, as we now show. In such a case one may
obtain from Schrddinger’s equation the expression'®

Ep(F) = —%V % (f)+% Vo) Vplr) (12 'er @ , VE)p(F),

63)
(12)
where

p(F)=¢*@y@ .

Equation (12) may be used to obtain an expression
for VV(F) at a critical point in p(¥) [where Vp(T,)
=0]:

VV(T,) = -V OF,)=—1V[V(T.)]/p({,) . (13)

Unless demanded by symmetry, the value of
V2p(F) will not be an extremum at critical points in
p(T). Thus V and p will not possess critical points
at identical X values other than at nuclear posi-
tions. Therefore, the distribution of electronic
charge in a molecular system is not determined
entirely by the external force -V V(T).

Bohm!” ascribed the stability of a stationary
state in a quantum system to the balance of the
classical force -V by the quantum-mechanical
force which is given by the gradient of the “quan-
tum potential.” For a one-electron system at a
critical point in p(¥), Bohm’s quantum-mechanical
force is just the right-hand side of Eq. (13).

'

FIG. 8. The bifurcation set of the elliptic umbulic in
the (z,v,w) control space.

Finally, we compare our use of the definition
of structural stability with that employed by Berry
et al. in their application of catastrophe theory to
the study of diffraction phenomena. The geometry
exhibited by the bifurcation set of the structure
diagram [Fig. 7(b)] is characteristic of one of the
elementary catastrophes, the elliptic umbilic, as
described by Thom.3'2 The unfolding of this ele-
mentary catastrophe is a function of two behavior
variables (x,y) and three control parameters
(#,v,w). Inthe full control space, the bifurcation
set comprises two tapered cones which are joined
at the umbilic, the origin of the control space, as
illustrated in Fig. 8. The bifurcation set in the
structure diagram Fig. 7(b) is a cross séction
of one of the cones for a value of w > 0.'2:18

Elementary catastrophes provide a description
of the caustic surfaces enveloped by families of
light rays as observed in diffraction phenomena.*-'?
Berry et al.? have observed caustics whose struc-
tures comprise the elliptic umbilic catastrophe
set. For w # 0 such a caustic is structurally
stable: there exists a diffeomorphism correspond-
ing to a smooth reversible mapping which is ob-
tained as w is continuously varied and which leaves
the local structure of the caustic unchanged. Such
stable caustics are in general found to correspond
to one of the elementary catastrophes,?

Thus, inthe study of diffraction patterns, the
stability of a given caustic is related to the gen-
ericity of the complete bifurcation set, whereas
in our application to molecules the catastrophe
set serves to define the different structurally stable
regions of the control space. The use by Berry
et al. of the complete bifurcation set to define the
structural stability of the observed caustics is
similar to our method of establishing the homeo-
morphism between the structure diagrams for
p(F;X) and V(F; X).

Note added in proof. After this paper was sub-
mitted for publication a related work by Parr et
al. [R. G. Parr, S. R. Badre, and L. J. Bartolotti,
Proc. Natl. Acad. Sci. U. S. A, 76, 2522 (1979)]
appeared, in which a local model of the relation-
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ship between the charge density and the nuclear
potential is proposed. Such a local model may be
‘considered a particular case of our general analy-
sis (Sec. IV) where the homeomorphisms % and ¢
in Eq. (11) are replaced by identity mappings. In
this case the structure diagrams of p and V coin-
cide. The same is true for any local model re-
gardless of the detailed functional relationship
between V and p—provided it is sufficiently
smooth and well behaving. In general, however,

it is unlikely that a local model of this kind will
closely approximate a real system, since not even
for the single-electron case [Egs. (12) and (13)]
does one obtain an identical set of critical points
for both V and p at'any given X.
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