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Saturation and Stark splitting of an atomic transition in a stochastic field

A. T. Georges and P. Lambropoulos

{Received 21 February 1979)

The authors investigate the saturation and Stark splitting of an atomic transition in (i) a phase-diffusion
field and (ii) a chaotic field of arbitrary bandwidth. The theory takes into account the infinite sequence of
field-correlation functions. It is shown that a chaotic field is less effective than a phase-diffusion field in

saturating a single- or multiphoton transition. This is contrary to the weak-field case, where the intensity
fluctuations and the associated photon bunching make the chaotic field more effective in exciting a
multiphoton transition. It is also shown that the Stark splitting of an atomic transition, as observed in double
resonance, is influenced dramatically by the intensity fluctuations in the chaotic field.

I. INTRODUCTION

Most of the theoretical work on the resonant in-
teraction of strong electromagnetic radiation with
matter has been based on the assumption of mono-
chromatic and purely coherent radiation. Even
lasers, however, the most coherent sources of
optical radiation, do not always satisfy this as-
sumption as their bandwidth and departure from
coherence are not necessarily negligible. In sing-
le-mode operation and at the expense of reduced
power, the laser bandwidth can indeed be very
small. Many experiments, however, are per-
formed with high-power multimode laser pulses
whose bandwidth is much larger than typical atom-
ic linewidths and whose intensity undergoes sub-
stantial fluctuations. Basically, real lasers under-
go intensity, phase, and frequency fluctuations to
varying degrees, and depending on the experimen-
tal circumstances, should be treated properly as
stochastic processes. Numerous papers' and sev-
eral books' have dealt with the classical as well as
the quantum theory of coherence and the statistical
properties of radiation. Considerable attention
has also been given to the theory of the interac-
tion of radiation with matter generalized so as to
include the statistical properties of the radiation.
Mathematically, this generalization is simple only
for linear processes (weak fields) and nonreson-
ant multiphoton (nonlinear) processes. The mathe-
matical treatment of the more interesting case
of nonlinear resonant processes in strong, stoch-
astically fluctuating fields, is generally very dif-
ficult. 3 "

Such resonant processes can be formulated in
terms of an atomic density matrix p(t) coupled to
a stochastic field of amplitude e(t). The equation
of motion of p(t) must then be averaged over the
field fluctuations. But for N -photon resonance,
this averaging leads to atomic-field correlation
functions of the type &e*"(t,)z "(t,)p, , (t,)). Gener-

ally, such a correlation cannot be evaluated with-
out first solving the stochastic differential equa-
tion for p(t), which in general is a horrendous
task. The decor relation

&~ ""(t,)~ "(t.)p, , (t.))

= &~*"(t,)~ "(t,)&&p, ,(t.)&,

which was first used in this context by Apanasevich
et al. ' (N= l), is valid only for Wiener-Levy-type
phase fluctuations. In the case of a general stoch-
astic field, this decorrelation can be used as a
first approximation only for weak fields below sat-
uration. For strong fields the decorrelation ap-
proximation can lead to erroneous predictions.
Qne of these erroneous predictions, for example,
is that a chaotic field is always more effective
than a coherent field in saturating an N-photon
transition. Recall that for weak fields, N -photon
absorption iri a chaotic field is enhanced by a fac-
tor of N& relative in that in a coherent field. In the
decorrelation approximation, as the intensity in-
creases and the transition saturates, this enhance-
ment is predicted to decrease monotonically to
unity. 'This prediction is, however, incorrect.
Actually, as we show in this, paper with increasing
intensity the enhancement decreases rapidly to a
minimum value below unity, and then goes to unity.
Therefore, the chaotic field is less effective than
a coherent field, in saturating an N-photon tran-
sition. This is one of the new results in this paper.
The incorrect prediction of the decorrelation ap-
proximation is caused by the fact that in the de-
correlation approximation the equations describing
the interaction contain information only about the
Nth-order field correlation function. For weak
fields this information is adequate, because the
average N-photon absorption depends only on the
Nth-order field correlation. For strong fields,
however, because of saturation the average N-
photon absorption depends on the infinite sequence
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of field correlations of order N, K= j. , 2, . . . .
Therefore, as we have pointed out before, "any
theory based on the decorrelation approximation,
for a general field, is inherently a weak-field the-
ory. As me show in this paper, in the presence
of intensity fluctuations, whether they are chaotic
or not, the decorrelation is not valid. Conse-
quently, the predictions of Ref. 9 on the effect of
intensity fluctuations on the spectrum of resonance
fluorescence, based on the deeorrelation approxi-
mation, are incorrect. Specifying only the first-
order field correlation simply is not sufficierit to
solve the problem of resonance fluorescence in the
presence of intensity fluctuations. '

In this paper we investigate the saturation and

Stark splitting of an atomic transition in an in-
tense fluctuating field with arbitrary bandwidth.
The field is treated as a classical stochastic pro-
cess described statistically by specifying the in-
finite sequence of the field-correlation functions.
In the absence of such complete statistical inform-
ation about real laser fields, we consider two well-
known models for the stochastic field (a) the phase-
diffusion (PD) field (Wiener-Levy-type phase fluc-
tuations) and (b) the chaotic (CH) field. For the
phase-diffusion model the decorrelation of the
atomic and field variables is rigorous. This re-
sults from the statistical independence of the phase
increments for Wiener-Levy-type phase fluctua-
tions. For the chaotic field, the deeorrelation is
not valid. For a chaotic field of zero bandwidth,
we find the exact correction to the decorrelation
approximation. For a chaotic field of nonzero
bandwidth, we obtain a perturbation series expan-
sion for the correction to the decorrelation ap-
proximation. In the case of a Markovian chaotic
field, this perturbation series is summed to all
orders.

tude but its phase is a Wiener-Levy stochastic pro-
cess (Brownian motion with negligible acceler-
ation). " A Wiener-Levy process is a nonstation-
ary Markov Gaussian process whose increments
are independent, i.e. ,

&[&(f }—4(f )i[4(f,) —e(f, )]&

where the angular brackets denote stochastic av-
erage. The complex amplitude of the phase-dif-
fusion field has zero mean value [(e(t)& = 0] and its
nth-order correlation function is given by'

(2)

where f, & f, ' 't,„,&t,„. Since a(t) is a stationary
Markov process, the first-order correlation func-
tion is necessarily exponential, "i.e. ,

&&*(f,)&(f,)& = &Oexp(-2 y ~t, —f, ~), (3)

where y is the full width at half-maximum (FWHM)
of the Lorentzian spectrum and z,'=(~ e(t)

~

'& is the
variance of e(t). Note that (P(t,)Q(t, )& = yr, where
w is the smallest of the two times t, and t„and
(Q(t, )P(t, )& =y5(t, -f,), where the dot denotes time
derivative.

The chaotic field is a complex Gaussian stoch-
astic process, with both amplitude and phase fluc-
tuations. It can be written as e(t}= c„(t)+i&,(t),
where e„(t}and e„(t) are two independent real Gaus-
sian stochastic processes with zero mean value
and equal variance. 'The complex amplitude of the
chaotic field has also zero mean value and its nth-
order correlation function is given by'

(e *(t,)e(t,) .e *(t,„,)c(t,„)&

II. SATURATION IN A TWO-LEVEL SYSTEM

We consider a two-level atom with ground state

~

I& and excited state
~

2&. The matrix element of
the electric dipole between the two states is p»
and the transition frequency ~». The system is
interacting with a fluctuating electric field

E(t)= e(t)e' '+ e*(t)e '"',
where is the center frequency of the spectrum
and e(t) —=

~

e(t} e'~ "' is the fluctuating complex am-
plitude, with 'e(t)

(
and @(f) being the real am-

plitude and phase, respectively. The fluctuating
complex amplitude e(t} is treated here as a, stoch-
astic process. In this paper we consider tmo mell-
known models for the stochastic field: (a) the
phase-diffusion field and (b) the 'chaotic field.

The phase-diffusion field has a constant ampli-

where t, & t,» t,„,& t,„and P denotes permuta-
tion. A complex Gaussian stochastic process,
such as the chaotic field, is not necessarily Mar-
kovian and hence its spectrum is not necessarily
Lorentzian. However, because of simplifications
in the calculations later on, and for the purpose of
comparison with the phase-diffusion field, we will
assume that the chaotic field is also Markovian
and that its first-order correlation function is giv-
en by Eq. (3). Note that the phase-diffusion field
corresponds to an intensity stabilized single-mode
laser field. 'The chaotic field, on the other hand,
corresponds to a multimode laser field with a large
number of uncorrelated modes. A chaotic field
can also be synthesized by passing a single-mode
laser beam through a rotating ground-glass disk.
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The bandwidth of such a chaotic field is proportion-
al to the rotation frequency of the disk. '9

The equation of motion for the density. matrix
p(t) of a two-level system, in the rotating-wave
approximation [i.e. , t&„(t}=o„(t)e' ', p, , (t)
= o, , (t}, i,= 1,2, where the a,.z(t) are slowly varying
amplitudes] can be written in the form

~ ~ ~ d ~ ~ y g y ~ ~ 't ~2
OO &&0

xe '&~' 2 n(&t&, &t& )

+ I',
~ n(t) = -I', —2 Im[&eg(t}o„(t)],dt ')

(5)
~ ~ ~ d ~ ~ ~ ~ t ~ ~ e t

&oo

x n(&. & „)}
where n =o» —o» is the population difference
and the normalization condition is a,y+o»
=1. In the above equations, &=& —~»- is the de-
tuning from resonance, I", the spontaneous life-
time of state ~2&, and I'» the width of the resonance
which may in general be different from I', as is
the case of elastic collisions. The interaction
parameter ~„(t)= 25' 'p»c(t) is a stochastic pro-
cess and its root-mean-square value ~~= 21 psy26p

will herein be referred to as the average Rabi os-
cillation frequency. Equations (5) and (6) are
stochastic differential equations. What we now
need is the average value of their solution. Inte-
grating both of these equations formally and elim-
inating a»(t), we obtain the integral equation

t
n(t} = —1 —Re e 2 "& "dt

1
p

t~
x exp[f6+ —,

' I'„](t,—t, )
p

(7)

where we have used the initial condition o»(0) = 1
and v»(0) = o»(0) = 0. Next we calculate the stoch-
astic average of Eq. (7) for the two different stoch-
astic fields and we compare the results.

A. Phase-diffusion field

Taking the stochastic average of Eq. (7) with re-
spect to the fluctuating phase, we find

= (~„*(t,)&d„(t,)&(n(t, )&,

where

f(P" P t t) t&t»"t=o
is the joint probability density of the infinite se-
quence of random variables &t&,. = &t&(tj) and"

exp[-(y, —y, )'/2y(t, —.t,)]
[2&&y(t, —t,)]"'

(10)

is the conditional probability density of the Markov
process &t&(t). As we have pointed out previously, "
the decorrelation

&N(p)& = ———He "
&N(p)&

(P + I',)[P + th+ —,
' (I'„+y)]

(&dg(t, )&u„(t,)n(t, )&
= (~„*(t,)&e(t,)&(n(t, )&

in the case of the phase-diffusion field is mathe-
matically rigorous and not simply plausible as
argued in Ref. 10. The reason for its validity is
the statistical independence of the increments of
a Wiener-Levy process. We should point out that
the phase-diffusion field has been treated rigor-
ously by two other methods, one using the Fokker-
Planck formalism for Markov processes" and the
other the statistical properties of &P(t) which is
white Gaussian noise. '

Taking the Laplace transform of both sides of
Eq. (8) we find

t
(n(t))= -1 —He e 2«&-'&dt

0

x exp([it&. + —(I' „+y)](t —t ))
p

x ~„'(n(t,)&dt, ,

In deriving the above equation we have used the
relation

where (f&t(p)& is the Laplace transform of (n(t)).
Using the final value theorem for the Laplace
transform [lim~, p(N(p)) =(n(t = ~)&], we calculate
the steady state value of the population difference

(12)

where

S = (&u'/I", ) —,
' (I'„+y)/[A'+ —,

' (I'„+y)']

is the familiar saturation parameter from the
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monochromatic theory of a two-level atom. The
only change introduced by the fluctuating phase is
the addition of the field bandwidth y to the atomic
linewidth I"». The resonance curve for the aver-
age population of state

I
2),

pn 2S -'(I'., + y)' kS.
1+S b'/(1+ S,)+ —,

' (1 + y)' 1+So

where So is the value of S for 4= 0, is Lorentzian
and its FWHM is equal to vl+S, (1»+y). As we
will see in Secs. IIB and IIC, in the case of a
chaotic field this resonance curve is not Loren-
tzian and its shape depends on the relative mag-
nitude of u, I'„ I'„, and y.

B. Chaotic field

1. Zero bandwidth

a. One-photon resonance. Recall that for phase
diffusion, one obtains the simple algebraic rela-
tion

& ~s(t, )~R(t.)n(t, )& = &~s(t,)~,(t.)&&n(t.)&

which enables one to convert the stochastic aver-
age of Eq. (7) into an integral equation for (n(t))
solvable by Laplace transform. The result is an
exact expression in closed form for (n(t)). For a
chaotic field, the calculation of the stochastic av-
erage of Eq. (7) is in general much more difficult.
Only in the case of zero bandwidth are we able to
obtain a nonperturbative relation between the cor-
relation (&ug(t, )&„(t,)n(t, )& and the average value

(n(t, )) of the population difference. To obtain such
a relation we consider the formal expression for
(n(t)). Note that for y= 0, —which implies infinite
correlation time —the field is a random variable
with statistics independent of time. The real am-
plitude

I
t

I
of the field has a Rayleigh distribution

while the phase Q has a, distribution uniform from
0 to 2~. The intensity of the chaotic field has an
exponential distribution. Thus the average of n(t)
is formally given by

2T 2) ~ )
(l&gl/ g)

(n(t)) =

If we now take the derivative of both sides of Eq.
(15) with respect to &us2 =(&up&us&, we obtain

(&„*&„n(t)&=((u*(u &(n(t)&+((u*(u )' d(n(t))
d("!s4's&

(16}

The first term on the right-hand side corresponds
to the decorrelation result obtained for the phase-

diffusion field. By simply moving this term to the
left-hand side, we see that the second term is
equal to the correlation (&og&s6n(t)& between the
random intensity of the chaotic field ( &us

I
') and

the stochastic fluctuation 6n(t) =n(t) —(n(t)) of the
population difference around its average value
(n(t)).

If we calculate the average of Eq. (7}using Eq.
(16) and then take the Laplace transform, we find
that the steady-state value (n(t= ~)) satisfies the
differential equation

S' +(1+S)(n)+1=0,, d(n) (17)

where S is the saturation parameter defined in Eq.
(13}with y=0. It is worth noting for the sake of

comparison that for phase diffusion, the Laplace
transform yields an algebraic expression for
(n(~)& while in this case it leads to a differential
equation satisfied by (n(~)&. Its solution [with the

boundary condition (n(S = 0)) = -I] can be written in
the various forms

~/s q~ -g/se—dt
S

S'/S
— dS',

(18)

where the function E,(1/S) is the first exponential
integral. " For S «1 we use the asymptotic ex-
pansion of E,(l/S) which gives (n) "= -Z!, „k!(-S) ~

while for the phase-diffusion model we can write
the series expansion (n) = —Q~,(-S) of Eq. (12).
As expected, the two results agree only to first
order in perturbation theory. Higher-order terms
differ by the factors &

I

'
I

"&'"/&
I

&
I

)
large values of S, the series expansion" of E,(l/S)
gives (n&c" =-(lnS)/S, while Eq. (12) gives (n&~n

= -1/S. Clearly, the chaotic field is less effec-
tive than the coherent field in saturating a one-
photon transition.

The last form of the solution in Eq. (18}shows
explicitly that for a zero-bandwidth chaotic field,
(n)c" can also be calculated by first solving the
problem for a pure coherent state (phase-diffus-
ion field with zero bandwidth) or even a photon-
number state and then averaging the resulting ex-
pression over the exponential intensity distribution
of the chaotic field. This result is well known and

we could have used it from the beginning, by first
doing the time integral in Eq. (7) and then per-
forming the statistics which for y= 0 are indepen-
dent of time. However, the method used here in
obtaining Eq. (18}is more general, because for
y 4 0 the probability densities are time dependent
and the stochastic average must be performed be-
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CO

( & (1 )

S ~
S

dSr
S S

(19)

where we have simply averaged the value of n' for
a coherent field over the exponential intensity dis-
tribution of the chaotic field. The function E,(1/S).
defined above is the second exponential integral. "
The standard deviation of o.» is

(((T'„& -((7„&')"'

(20)

For S «1, the standard deviation increases with
increasing S as —,'S. It reaches a maximum value
of -0.12 for S =2, and then decreases as
2(L/vS)(1 —ln'S/S)' ' for S»1. The'decrease of
the fluctuations with increasing intensity (S) can
be understood as follows. The fluctuations are
caused by the random intensity of the chaotic field
which has an exponential distribution from zero to
infinity. As the average value of the intensity in-
creases and the exponential distribution broadens,
the statistical weight of the low intensities which
do not cause saturation decreases. Thus, as the
average intensity increases, the average value of
o» goes to —,', while the fluctuations go to zero.

b. Two-Photon resonance. The method used
above to study the saturation behavior of a one-
photon resonance in a stochastic field can be easily
extended to the case of a multiphoton resonance.
We examine here briefly the saturation of a two-
photon resonance and compare it to that of a one-
photon resonance. Neglecting optical Stark shifts,
the equations for the density matrix elements in
the two-level model for a two-photon resonance
are the same as Eqs. (5) and (6), with b, = 2&v —&u„

and (d„(t)= 212 2r»e2(t), where r» is the composite
matrix element for a two-photon transition. " The

fore the time integral. In addition, this approach
allows us to compare the decorrelation result of
E(L. (9) for the phase-diffusion field with the re-
sult of E(L. (16) for the chaotic field.

Another important parameter in describing fluc-
tuations is their standard deviation. We calculate
here the standard deviation

((/2' (o ()2)1I 2 1
((/2& (/&2)ll 2

This relation is evident if one notes that 0»
=2(n+ 1). The average of n2 is given by

steady-state value of the population difference for
a coherent field is n = —1/(1+ S), where S is the
saturation parameter [E(L. (13)] for a two-photon
transition. Note that now S is proportional to the
square of the intensity. Thus the average value of
n for a chaotic field can be obtained from

-1 exp[-(S'/S)'"]
1+S'

(21)

where Ci(l/~S and si(l/1) S} are the cosine and
sine integrals, respectively. '0 For S«1 the as-
ymptotic expansions of Eq. (21) gives (n&c"
= -Z„,(2k)! (-S)', while for the phase-diffusion
field we have (n&pn= —Z„2(-S)2, as in the case of
a one-photon resonance. To first order in S, and
thus to second order in the intensity of the field,
we have(o'2g "/(v2$ =2!. This is the well known
2l enhancement of two-photon absorption in a weak
chaotic field relative to a. coherent field of the
same average intensity. "'" For la.rge va, lues of
S, the series expansion" of E(L. (21) gives (n&

"
=-)T/(2~S, while for the phase-diffusion field we
have (n& = -1/S. Thus, the chaotic field is less
effective than a coherent field in saturating a two-
photon transition. Comparing the one- and two-
photon resonances, we see that the chaotic field
relative to the coherent field is less effective in
saturating a two-photon transition than a one-
photon transition. In fact, the higher the order
of the multiphoton resonance, the less effective
(relative to the coherent field) the chaotic field
becomes in s'aturating the transition. It can be
easily shown that under stj. ong saturation
(S't"» 1) of an N-photon resonance (N& 1),(n&

"
S-'t "(11/N)/sin(w/N) and (n&pn = -1/S, where the

saturation parameter S is proportional to the Nth

power of the intensity. Note that regardless of the
value of N, (n&c" is inversely proportional to the
intensity, while (n&~ is inversely proportional to
the Nthpower of the intensity.

2. Arbitrary bandwidth

As mentioned earlier, for a chaotic field with
nonzero bandwidth, we cannot find a nonperturb-
ative relation between ((dg(t, )&us(t2)n(t2)& and (n(t, )&

by simply knowing the statistics of cuR(t)
=28-'p, »c(t). To see the difficulty involved, con-
sider the formal expression

(~ '((,)c(t,)m(t, )) 1 d~ f d~
«40 «OO "n

d~ f(& ~ ~ t ~ .t )xl X ff& ]. tl

f(e ' ' 'a;t, ' ' 't„)(e„tC )(e„+it -)n(E„,e ' ''2„,e„), (22)
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where

e(t) = e„(t)+ia, (t),
and

f(a„e„;t, t ),

f(e ' & t t) t&t& ~ ~ &t=01 ft & 1 2 n

are Gaussian joint probability densities of the in-
finite sequences of the random variables e„=c„(t )
and z„,= e„(t~), respectively. Using the Markov
property,

f(~x '' 'ex 'ti ' ' 't) f(~x ~tiI~x

xf(c„' ' '6„;t, t„),

where the conditional density is given by"

n(t) =(n(t))+ 5n(t) (24)

from which it is obvious that (5n(t)) = 0. Taking
the formal stochastic average of Eq. (7) and using
Eq. f24} we write

&~,*(t,)~,(t.)n(t, )&

=exp[--.' y(t, —t,)](~,*(t.)~.(t,} (t.)& .

But no further progress can be made. [Relations
similar to Eq. (23) will be used in Sec. III.] We
can, however, obtain a perturbation series ex-
pansion of the correlation ((ug(t, )tuR(t, )n(t, )&, for
any general stochastic field. As we will see below,
for a Markovian chaotic field the series can be
summed systematically to all orders.

To develop a summable series it is convenient
to write the stochastic population difference as"

with

exp[-(e, , —re„,)'/2(z„', &(I —r')]
[»&~' &(I -r')l"'

(t„,E„). =e p[-~zr(t& —t.)l
[(~' &(~'g]"'

t
(n(t)&= -I —Re )

e"2"i "dt,
0

t~
x exp[(u +-,' r»)(t. —t, )]

0

x [(+R(t,)coR(t, }&(n(t,)&

+ (&ua(t, )era(t, )5n(t, ))]dt, ,

(25)
one can prove that and subtracting Eq. (25) from Eq. (7) we find

t2 3
5n(t, ) = -Re e 2 "& '&'dt, exp[(id+ 2I'„)(4—4)]

0 0

x ([~g(t,)w„(t,) (~„*(t,)~„(t ))](n(t )&

+ [&a(t.}&a(t.)5n(t. ) -&&*(t.)~ (t,)5n(t, )&]]«. . (26)

The fluctuation 5n(t, ) can be calculated in terms of (n(t)& at earlier times by iteration. Iterating Eq. (26)
and eliminating 5n(t, ) in Eq. (25}we obtain the series integral equation

(n(t)) = -I —Re e"2 "~ "dt, . exp[(i4+ , I'»)(t, —t—,)]
0 0

t2 t3
xdt, (~g(t, )&u„(t,)&(n(t, )& -Re er2 "& '2'dt, exp[(in+ —,

' I»)(t t, )]dt
lpga 0 0

t4 1

x MB*tl ~B t4 ~B t3MR t2 nt4 -Be er2(t. -t4)dt, exp Q+2r21 t6-t5 dt6
0 0

x([(u„*(t,)m„(t,)&(~*(t,)&u (t,)&(&u„*(t,)cu„(t,)& (&*(t,)e (t,)&(&o*(t,)&u (t,)&(e„*(t,)&u (t,))

(27)

For a Markovian chaotic field, the first-order cor-
relation function is exponential and the above equa-
tion can be solved by Laplace transform. For a
nonexponential correlation function, the Laplace
transform is not useful because it involves convo-

lutions of the Laplace transforms of the correl-
ation functions and the unknown (n(t)&. This limits
us to Markovian stochastic fields and Lorentzian
line shapes. The Laplace transform of Eq. (27)
can be calculated in a systematic way by writing
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&n(t)& = — I—
t

———&P($2) &+ (q{f )&
t( t~ t t, t~ t5 t4

f/ t2 t$ t4 t5 f6 f tl tP t$ f4 f5

+ ~ ~ ~

that equation in terms of diagrams'""'"

(28)

(d

(P+ I'.)[P+ f&+-,' (I'.,+y)]
2(d~

[) +I'+r)[p+)a+-,' (I'„+y)] )
1

(P+ I',)[P+ib+-,' (I'„+y)] 1+ Z,(P)

(30)

where the straight and wavy line segments between
two successive vertices at t,. and t,.„are assoc-
iated with the factors exp[I', (t&„—t&)] and
—2exp[(i&+ —,

' I »)(tj„-t,)]+c.c. , respectively. The
loop connecting two vertices at f, and t&, where t&

& t~ ( j&j'), is associated with the factor
[d„'exp[-~y(t& —t, )]; the vertex at f, is called t. he
initial vertex of the loop and the one at t,'. is called
the final vertex. As we can see from Eq. (27), a.

diagram may contain intersecting loops

which defines the second irreducible function
Z, (P). The diagrammatic representation of Z,(P)
consists of the set of irreducible diagrams which
are obtained by removing the outer loop in the
diagrams for Z, (P). Higher-order irreducible
functions are defined in a similar way. The re-
cursion relation for these irreducible functions is

Z.(P)=S.(P)[»[I+Z, (P)]],
where

[(~„*(t,)~„(t,)&(~s(t, ) ~„(t,)&([d„*(t,)&u„(t,)&],

but because of the exponential form of the first-
order correlation function it can be replaced by an
equivalent diagram that does not contain intersec-
ting loops

[([d*(f,)~ (f.)&(~*(t.) "B(t.)&&[dB(f )[dR(f.)&].

The number of equivalent diagrams of a particular
kind is found as follows. To each vertex t,. we as-
sociate a number kj kg y+1 lf lt is an initial ver-
tex, and k, =k&, —1, if it is a final vertex. The
first initial vertex at t, is given the number
k, = 1(k,=0). The number of equivalent diagrams
equals the product of the numbers —,'(k&+ 1), if k~

is odd, and ~k, , if k& is even, for all initial ver-
tices. Note that only irreducible diagrams appear
in Eq. (28). A diagram is irreducible if it cannot
be subdivided into lower-order diagrams. If in-
stead of iterating Eq. (26) for f)n(t) we had iterated
Eq, (7) for n(t) as was done in Ref. 13, there
would be both reducible and irreducible diagrams
but without the factor (n(t, )). In Eq. (28) the
term corresponding to the first diagram is equiv-
alent to all the reducible diagrams obtained by
following the method of Ref. 13.

Taking the Laplace transform of Eq. (28) by re-
peated application of the frequency-shift theorem
we find

&&(P)& = -(I/O)/[I+ Z, (P)],

where Z, (P) is the first irreducible function cor-
responding to the set of diagrams in Eq. (28) and
is given by the relation

S.(P)

(m+ l)[d„'

2[P+ I', + —' (m —1)y][P+z&+ —,
' (I'„+my)]

(32a)
for m odd, and

fly (d~S (P)=Re
2(P+ I",+ —,

' mygP+i 4+ —,
' [I'„+(m —l)y]j

(32b)

for m even. The steady-state value of the popu-
lation difference for a chaotic field of arbitrary
bandwidth is given by the continued fraction

(n&cH

~ ~ ~

where Z, = Z,(P = 0) is the saturation parameter for
a chaotic field and S =S (P= 0) are coefficients in
the continued fraction expansion of Z, . The first
saturation coefficient S, is identical to the satura-
tion parameter S [Eq. (13)] for a phase-diffusion
field. Since Zy~S„a chaotic field is always less
effective than a phase-diffusion field in saturating
a one-photon transition. For y= 0, the continued
fraction in Eq. (33) is identical to the continued
fraction expansion of (-I/S)e'~ ~E,(1/S) in Eq. (18).
For y+ 0 the continued fraction does not seem to
be associated with a familiar function, but it con-
verges and can be suitably truncated and summed
to any desired accuracy. The number of coeffic-
ients required to reach a certain accuracy in-
creases with the value of S,.24
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FIG. 3. Plot of (a22) —(o~2)c"vs the ratio of the
detuning (4) to the spontaneous decay rate (F2), for
different values of the Rabi frequency (~z).

20

on the ratio y/r, for different values of sos-, under
exact resonance. For y =0, the difference (g»)Po
-(g,gc" decreases as v„ increases from 2.51, to
10I',. As y is increased, first the difference in-
creases —b'ecause the saturation decreases —but
thenitdecreases, because the correlation between
the atomic and intensity fluctuations decreases.
Figure 3 shows the dependence of (g»)Po —(g,gc"
on the detuning from resonance for different values
of ~ with y= I', . As the detuning increases, the
saturation dec reases from its value on resonance.
If the saturation on resonance is weak, the fluc-
tuations in cr22" decrease monotonically with in-
creasing 4, and so does the difference (g,g
-(g») ". If, however, the saturation on reson-
ance is strong, then as the detuning increases
and the saturation decreases, the fluctuations in
gaa,

" and the difference (o»)P —(o») " first in-
crease to a maximum and then decrease. The val-
ue of maximum difference (g») n -(g») " and its
position depend on the value of ~~, I'„and y.
Unlike the resonance curve for (g,gpn, the reson-
ance curve for (g,g " is not Lorentzian and its
shape depends on the value of » I"» and y.

'The saturation behavior of a one-photon tran-
sition can be compared to that of a two-photon
transition. Figure 4 shows the dependence of
(g,g -(g,g

" and (g,ga" /(g, gpo on the satur-
ation parameter for a two-photon transition, in
the case of y= 0. For S& —,

' the chaotic field is
seen to be more effective than the phase-diffusion
field, while for S& —,

' it is the other way around.
The maximum difference (g2$ -(g,g "occurs
at S = 6 and has a value of -0.12 ((g»Pn
= 0.43,(g,ga" = 0.31), almost twice as large as in
the case of a one-photon resonance (see Fig. 1).
In the weak field limit S-0, we have (g,g "/
(g,gpn = 2, the well known 2! enhancement of two-
photon absorption in a weak chaotic field. " As
the saturation increases, however, this enhance-
ment decreases. At S = —,', the upper-state popu-
lations became equal, (g,g "=(g,/pa=0. 1. With

-.03 4
I

IO

I

IO

I I

10 IO

SATURATION PARAMETER

I

IO
eO

IO

FIG. 4. Plot of (o22Pn- (g&&)a" (solid line) and
(a2&)as/(o22)pn (dashed line) for a two-photon resonance
vs the saturation parameter. The bandwidth of the
fields is zero.

further increase in S, the ratio (o») "/(o»)
continues to decrease until it reaches a minimum
value of -0.7 at S = 3, and then goes to unity in
the limit of S- . For y4 0, we expect a similar
behavior. In the limit of S-O, we have"

(g,g'" r„+2y ~'+ —,
' (r„+4y)'

III. STARK SPLITTING IN DOUBLE RESONANCE

We consider a three-level atom, with levels la-
beled

~

1),
~

2), and ~3), and respective energies
hm„hv„and hu&, (u, & cu, & u, ). The transitions

)-I» and
I
') —13& 'r' assumed to have elec-

tric dipole moments J(.y2 and @23 respectively,
while the transition

~

1)—
~

3) is dipole forbidden.
'The atom is interacting with two stochastic fields
E (t) = e (t)e'"&' c+.c. and E„(t)= E,(t)e'"&'+ c.c.,
whose center frequencies &u, and e, are (near) re-
sonant with the transitions

~

1) 2) and
~

2)
~

3),
respectively. I In a recent paper, "we studied the
case .in which E,(t) and E,(t) are two uncorrelated
phase-diffusion fields. In this section, we study
the case in which E,(t) and E~(t) are two uncor-
related Markovian chaotic fields, with spectral
widths y, and y~, respectively.

'The relevant equations for the density matrix
elements of a three-level system in the rotating
wave approximations [i.e., p»(t) = g»(t)e'"~', p»(t)
= gm~(t)e'", p~~(t) = g»(t)e' "&'" ', p).(t) = g))(t),
where the g,.z(t) are slowly varying amplitudes]
are given in Ref. 1.6. The steady-state value of
the population of level

~

3), averaged over the
fluctuations of both fields is given by

which for & = 0 and y» I"„has a maximum value
of 4. With increasing saturation the ratio (g,ga" /
(o») will decrease to a minimum below unity and
then will tend to unity, as in the case of y= 0.
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(34)

where I', is the lifetime of level ~3), and +a~(t) = 2h 'P»c, (t) is the interaction Parameter for the ~2& —~3&

transition. The stochastic average «~~, (t)o»(t)&, &, can be calculated from the stochastic integral equa-
tion"

~*,(f)o..(f)
t
exp[(i~, + ,' I'—„)(f, f)] ~„„(t)&u (t, ) [o»(t, ) —g„(t,)]dt,

2 0

1 t~
+

4 exp[(in~+ 2 I'»)(f, —f)]«, exp{[i(n,+ n, )+2 I'„](t,—f, )}
0

Rb(f) &a&(f.)~a,(f,)o»(f, ) —~,*,(f,)~„.(f,)~g,(t)o»(t, )]dt, , (35)

where &,= &d„—&d, and &,= ~„—~, are the detun-
ings from resonance, 1"„and I'» the relaxation
rates of o» and cr», respectively, and &u„,(t)
=2h 'p, »a, (t) the interaction parameter for the

~1& —
~

2& transition. If the ac Sta.rk splitting of
this transition is probed with a field E,(t) suffic-
iently weak, we can assume (uz'„«e„'„(I'„+y, )',
(I'„+y,)', (I'„+y, +y, )'. We can also assume that

I

the population of state ~3& is negligible
(a»«o»+ o„=1) and that the probe field E,(t) has
no effect on the ~1& ~2) transition. The above
assumptions constitute the usual weak probe ap-
proximation in double resonance. Introducing
these assumptions and taking the stochastic aver-
age of Eq. (35) over both fields we obtain

t
«&a, (f)o„(f)», .= —— exp{[i&,+-,' (I'„+y,)](f, —t)}~„',(o„(t,)&,«,

0

+ — exp{[i~,+ —,
' (I'„+y,) J(t, —f)}«,

exp{(f(~.+ n, )+-,' (I"„+y.+y„)J(f, —f,)} ~'„, &~„*.(f,)v„(f,», «,
t~

exp{[id&+ z(I'»+y&))(t~ —t)}«, exp{(i( + b)+ 2 (~szl+y&)](f2 —fz)}
0 0

x[&~*,(f,)~ .(f,)&. &&~„*,(f,)o„(f.)&,&. + &~',(f,)~ .(f.)5&&*y(f,)o'-(f.)&b&.]«. (35)

where

5&(ua, (t,)o»(f, )&, =-&~„*,(t,)o„(t,)&, —((~ah(t, )v»(t, )&,&.

t2
exp{[i&„+—(I'„+y ) J(f —f )}~ „[ (f ) -( „(f,)&,]«

0

t3

+ 'exp{[a,,+-', (I'„+y, )](f, —f.)}«, exp{If(n. +n, )+-.' (I'„+y,) J(t, —f, )}
0 0

x(~z„[e„*,(f,)o»(t, ) —
& v„*,(t,)a»(t, )&,]

-l (~a.(f.)&a.(f4) -&~R.(f,)&,.(f,)&]&&&ah(f4)~»(f4)&b&.

--,'{~„*,(f,)~a,(f,)5&~a,(f,)o.,(f.)&y -&~„*,(f,)~„,(f.)(5(~ay(f, )o,.(f.)&b]&.})«. . (37)

In obtaining the last two equations from Eq. (35)
we have used the relations

& ~*.(f,)o„(f,)&.

= exp[--,'y, (f, —t, )]&~„*,(t,)o„(t,)&.

=exp[-l y, (f - &.) ]&,*„(f.)o..(f.))
which, as pointed out in Sec. II [Eq. (23)], are ex-
act for a Markovian chaotic field. Equation (35)
can be solved by iterating Eq. (37) and then elim-
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2A
(~La,g. = -r, ' +;)(e,g. ,

21+ ~a
(38)

we find that the steady-state value of the stoch-

inating 6(erg~(t, )o»(t, )),. Generally the series in-
tegral equation obtained by this iteration is very
complicated and difficult to sum. However, for
strong saturation of the ~1)

~

2) transition, we
can neglect the two terms on the right-hand side
of Eq. (37) which involve the fluctuations o»(t)
-(a»(t)), and ~g,(t)v„(t) -((ug, (t)v„(t)),. Recall
that as discussed in Sec. II, under strong satur-
ation these fluctuations vanish. In that case, Eqs.
(36} and (37) take the same form as Eqs. (25) and
(26}, respectively; the first two terms on the
right-hand side of Eq. (36) correspond to the term
-1 in Eq. (25).

Applying the diagrammatic technique described
in Sec. II, and using the relation

astic average of the population of level
~

3) is given
by

I',R*/(R+R*)+ T 1
RRR ST

2
~Rb+ c.c

3e

1+ e

] + ~ ~ ~

where

R =in.,+-,' (I'„+y,),
S=ih, + —,

' (I'„+y~),
T =z(~.+ n.,)+ ,' (I'„+-y.+y, ).

The coefficients of the continued fraction are given
by

(m+ 1)(d„'

8(i&,+-,' [I'„+y,+(m —1)y,]Hi(&,+ &,)+-,' [I'„+y„+my,]].

for m odd, and

(40)

Pl, (dR

8(in, + —,
' [I'„+y, + my, ]](i(&,+ &,)+-.' [I'„+y, + (~ —I)y, ]]

(41)

for m even. Note that had we not neglected the
fluctuations o„(t)-(a„(t)), and (dg, (t)v„(t)
-(~g,(t)o»(t)}, in Eq. (37), there would be ad-
ditional terms in Eq. (39) also involving continued
fractions. In the case of strong saturation, how-
ever, the contribution of these other terms is neg-
ligible. Equation (39) should be compared with
Eq. (44) of our previous paper" for the case of
phase-diffusion fields, which we rewrite here in
the form

(( ) ) ( (I',R "/(R+R*)+T td'„

(42)

Note that the expressions in parentheses in Eqs.
(39) and (42) which determine the shape of the re-
sonance curve for ((oRJ~}, as a function of n~ are
different. In the limit of strong saturation,
P„,»(I'»+ y, )(I'„+y, + y, ), the resonance curve
for ((o»),}Pn has two peaks at the roots of the equa-
tion

Re[ST+ R (daR ] —-bq(n. y nq)+ ~~ (dRa —0. (43)

The two peaks are sepa, rated by (b,'+ (dz', )')", and

their widths are determined by the atomic line-
widths and the bandwidth of the fields. In the same
limit, the resonance curve for ((v»},)c" has two

t

peaks at the roots of the equation
j.

$/+ =0
2

1+ '3

(44)

=(oRg "[(I'RR*/(R+R*)+T)

x(e*/~„',)&,(z)+ c.c.]~„',/r, ,

~ ~ ~

Because of the complicated dependence on 4~, one
cannot find an analytical expression for the roots
of Eq. (44), as we are able to do for the roots of
Eq. (43). However, from comparing these two
equations we expect, in the case of strong satur-
ation, the Stark splitting for a chaotic field to be
less than for a phase-. diffusion field and our nu-
merical calculations show that this is indeed the
case.

The continued fraction in Eq. (39) is very com-
plicated and does not seem possible to express it
in terms of known functions. It can however be
simplified somewhat if y, = 0, in which case it can
be expressed in terms of the exponential integral. "
In order to explore some of the qualitative fea-
tures of the process, let us consider that case for
which Eq. (39) reduces to
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where z = 4ST/cu2a, . Moreover, for exact reson-
ance in the ~-1) -~ 2) transition (&,= 0) and under
the conditions

~~"(rs.+ y~)(r3i+ y»

~~(r3.+7 32+2y )~/"a. - o

Eq. (45) reduces to

7.5x IO I I

y =
yb = 2' x IO

-3
6OxIO'- ftb

4.5xlo

b
V

3.0xlo

I I I

I;=6.3 IO"

I"3= 2x IO

co„= 5y

I

6 =0
0

/
I 'l/ t0)

/I
5/

I
/ t

I.5xIO

=(o,gc"2v(
~
a,

~
/~'„, ) exp(-4&,'/(u„', )uP„,/r, .

(46)

0 - I I

-I -8 -6
I I I I I

-.4 -.2 0 .2 .4 .6 .8 I

b/~

This equation should also be a good approximation
in the case of y, 4 0, provided that y, /ea, «1.
Thus, under the above conditions, the Stark split
resonance curve for ((o»),)," reproduces the Ray-
leigh distribution for the amplitude of the chaotic
field. "' The Stark splitting predicted by Eq. (46)
is equal to ton, /v 2. Generally, in the case of am-
plitude fluctuations and under the conditions for
the validity of Eq. (46), the resonance curve for
((o»),), will always reproduce the amplitude dis-
tribution. Since the root-mean-square (rms) value
of the amplitude is generally different from the
most probable value, the magnitude of the Stark
splitting will be different from the average Rabi
frequency ~R, . For a real Gaussian field with
zero mean value, there is no Stark splitting.

We should mention here that Elyutin" has re-
cently considered Stark splitting for the case in
which E,(t) is a, weak monochromatic field and

E,(t) is a strong chaotic field. This author neg-
lects the relaxation of the excited states and as-
sumes that o»(t) = 1 and o»(t) = o„(t)= 0. The
Stark effect in this case takes place between the
two excited states which have no population. For
&, = 0, these assumptions lead to a simple stoch-
astic expression for the absorption of the weak
monochromatic field, which is then averaged over
the fluctuations of the chaotic field. Note that in
this case the problem of atom-field correlations
does not arise.

Returning now to the general case of arbitrary
bandwidth (y,), we present numerical calculations
in which the predictions of Eqs. (3S) and (42) are
compared. Figure 5 shows the dependence of the
steady-state value of ((o»),)c" and ((o»),)~n on
4,/~„, for two different values of &u~, in the case
of exact resonance (4, = 0). The values of the
parameters used in the calculations are shown in
Fig. 5, and correspond to the parameters in the
recent doubly resonant (3S,&,—3I', &,—4D, &,)
three-photon ionization experiments in sodium. "
For the 700-nsec laser pulses used in those ex-
periments, the probability of ionization was less
than 10 '. Thus, the approximation o»(t)+ o»(t)

FIG. 5. Plot of the average population (os&) for
chaotic fields (solid line) and phase-diffusion fields
(dashed line) vs the detuning (&&) of the probe field,
for bvo different values of the Babi frequency ~R~.
The strong field is exactly on resonance (~,=0).

+o»(t)=1 is justified. The ion signal is approxi-
mately proportional to the steady-state value of
((o»)g, . As we can see, the Stark splitting caused
by a strong chaotic field is less than tha. t caused
by a phase-diffusion field with the same average
power. For ~R,= 10y„ the Stark splittings for the
phase-diffusion and the chaotic field are &R, and
0.8R„respectively. For higher values of ~R,
the Stark splitting for the chaotic field tends to
the limit (ua, /M2. The on resonance dip for
((a,g„)c" is very shallow compared to that for
((o»),)pn. For to„,= 5y„ the peak to dip ratio for
((o»),), is 4.6, while for ((o»)~)c" is only 1.2.
For (dR, = 10y„ these ratios become 17 and 1.63,
respectively. The shallow dip and the broadening
of the peaks in the case of ((o»),)," are caused by
the intensity fluctuations in the chaotic field. lf
we compare Fig. 5 with Fig. 1(a) of Ref. 1V, we
find that the experimental data (Stark splitting 8
GHz) is modeled better by ((o»)~)c" than by
((o»),Pn, with boa, = 10y, . The value of the peak
to dip ratio for the experimental curve is equal
to 1.5, which is very close to the value of 1.63 for
((o,g,)o". The experimental curve has a FWHM
of 1V.6 GHz, while the curve for ((o»)~)," has a
FTHM of 14.1 GHz. The small difference in the
values for the peak-to-dip ratio and the FWHM
could be explained by taking into account the hy-
perfine splitting (1.VV GHz) of the 3S,&, ground
state of sodium, shot-to-shot variations in laser
power and the fact that the laser pulses were not
square. The only disagreement between theory
and experiment is on the absolute value of the av-
erage laser intensity. Using the measured value
for the Stark splitting (8 GHz) we calculate (chao-
tic field) the intensity to be 40 KW/cm', whereas
the measured intensity was -2 MW/cm', a factor
of 50 larger. Direct measurements of the absolute
intensity are known to be very difficult and there
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were certainly uncertainties in the measurement,
but a factor of 50 seems too large. On the other
hand, the actual laser fields were neither ideal
chaotic nor Markovian. Most likely the laser of
the experiment had a multimode structure. As
long as the modes are statistically independent
and their separation is sufficiently smaller than
the Stark splitting, the discreteness of the modes
is not expected to play a role and cannot explain
the above discrepancy. The most unfavorable case
would have been two modes only correlated in some
fashion. But the crudest and most conservative-
calculation shows that one cannot justify more than
a factor of ~ 2 discrepancy in that case. Another
possibility is that the actual amplitude distribution
was such that the most probable value of the field
was smaller than the rms value by more than the
M2factor for the Rayleigh distribution. This
would be consistent with the fact that the FWHM of
the experimental curve is larger than that of
((a»),),". Such an effective amplitude distribution
is generated when one takes into account shot-to
shot variations in the laser power. Computer
simulation of this problem shows that the inten-
sities below the average value cause the Stark
splitting to decrease, while the intensities above
the average value cause the FWHM to increase.
Thus, when shot-to-shot fluctuations in the laser
intensity are taken into account, their average
value wouM have to be higher than 40 kW/cm' in
order for the splitting to be 8 GHz. This repre-
sents an effect in the right direction. But even so,
a satisfactory explanation of the above discrep-
ancy must await more detailed experimental data
since the necessary detailed information about the
intensity, and the model and spectral properties
of the laser is not available in this case.

Figure 6 shows the dependence of ((o'»)~)," and

((a„),Pn on 4, /~R, for 4, =y, . As in the case of
6, = 0, for ((o»),)c" the dip between the two peaks
is very shallow and the Stark splitting is less than
for ((o»),Pn. The resonance curves for both
fields are asymmetric. The asymmetry ratio
(peak-to-peak) for a chaotic field is larger than
for a phase-diffusion field. For both fields, the
asymmetry in the case of y, & 1, is opposite from
that in the case of z, & 1"„ independently of the
value of 4, . However, as we have pointed out
before, " this reversal of the asymmetry depends
on the line shape of the field. A field whose line
shape falls off faster than a Lorentzian will appear
monochromatic (but not necessarily coherent) to
the atom beyond a certain detuning, even though

y, & I',. The a.symmetry then becomes the same
as for y, & I', . This effect was observed in recent
experiments" with multimode laser pulses whose
spectrum was not Lorentzian. Because of the dif-
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FIG. 6. Same as Fig. 5 but the strong fie1d detuned
off resonance (&~ =y~).

ficulties in treating non- Lorentzian line shapes,
we are not able to make a comparison between
theory and experiment for 4,4 0.

IV. CONCLUSIONS

In this paper, we have shown that the presence
of amplitude fluctuations affects rather drast-
ically the saturation and Stark splitting of a re-
sonant transition. A surprising new result is that
a chaotic field is less effective than a phase-dif-
fusion field in saturating a bound-bound multipho-
ton transition. It has been known for a long time
that in the weak field case, N-photon absorption
from q, chaotic field of zero bandwidth is larger
by a factor of N t than that from a coherent field
with the same average power. "'" 'This stems
from the fact that below saturation the average
N-photon absorption depends only on the Nth-or-
der field correlation and the probability for N-
photon coincidence in a chaotic field is Nt times
that in coherent field. For a Markovian chaotic
field, as compared to a phase-diffusion field with
the same average power and bandwidth, there is
an additional enhancement because the coherence
time for the Nth-order field correlation of the
chaotic field [(e*"(t;)e~(t,))c"=NI ~'"e ~""''&-'2~1

is N times larger than that of a phase-diffusion
field ((e*"(f,)e~(t, )) =e2~e nl2rl 4 t2I) 22--
saturation regime, however, the average N-photon
absorption depends on the infinite sequence of field
correlations of order N", k=1, 2, . . . . It is through
this infinite sequence of correlation functions that
the atom gains more detailed information about the
statistics of the intensity fluctuations in the chaot-'

ic field. We must emphasize again that in weak
N-photon absorption below saturation, the atom
responds only to the Nth-order field correlation,
that is- one particular average of the field fluctu-
ations. Thus it is. only in the saturation regime
that the atom can always distinguish between fields
with different stochastic properties. A physical
interpretation for the chaotic field being less effec-
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tive than the phase-diffusion field in saturating an
atomic transition now seems to emerge. The atom
sees the intensity fluctuations of the chaotic field
and relaxes between spikes in the intensity, going
partially out of saturation. Thus, the same inten-
sity fluctuations which make the chaotic field more
effective in the case of weak excitation, make it
also less effective in the case of saturation. These
results which we have obtained for the chaotic field
should also hold to varying degree for other fields
with intensity fluctuations.

The effects of intensity fluctuations on the re-
sonant excitation of an atomic transition are dem-
onstrated even more clearly on the Stark splitting
of the transition, as observed by weak probing in
double resonance. In a one-photon transition the
splitting is proportional to the real amplitude of
the field. If the amplitude (intensity) of the field
fluctuates, the doublet structure is broadened and
at low intensities can be washed out completely.
For very strong intensities, when the atomic and

field linewidths become negligible compared to the
average Rabi frequency, the doublet structure re-
produces the probability distribution function of
the field amplitude. In that case the splitting is
determined by the most probable value of the field
amplitude and not by its rms value. Thus, the
Stark splitting of a transition in a fluctuating field
can be used to actually measure the probability
distribution function of the field amplitude. Gen-
erally, in the case of an N-photon transition the
Stark split resonance for very strong fields should
reproduce the distribution function for the Nth
power of the field amplitude.

ACKNOWLEDGMENTS

The authors gratefully acknowledge many dis-
cussions with Dr. P. Zoller. This work was sup-
ported by a National Science Foundation Grant No.
PH Y76-23163.

~Selected Papers on Coherence and Eluctuations of
Light, edited by L. Mandel and E. Wolf (Dover,
New York, 1970); R. J. Glauber, in Quantum Optics
and Electronics, edited by C. DeWitt et al. (Gordon
and Breach, New York, 1965).

2See, for example, J. B. Klauder and E. C. Sudarshan,
I undamentals of Quantum Optics (Benjamin, New York,
1968).

3P. A. Apanasevich, G. I. Zhovna, and A. P. Khapalyuk,
J. Appl. Spectrosc. 8, 14 (1968).

4L. D. Zusman and A. I. Burshstein, Sov. Phys. JETP
34, 520 (1972).

5S. G. Przhibelskii and V. A. Khodovoi, Opt. Spec-
trosc. 32, 125 (1972).

6S. G. Przhibelskii, Opt. Spectrosc. 35, 415 (1973).
Yu. S. Oseledchik, J. Appl. Spectrosc. 25, 1036
(1976).

8G. S. Agarwal, Phys. Rev. Lett. 37,. 1383 (1976).
J. H. Eberly, Phys. Rev. Lett. 37, 1387 (1976);
J. L. F. de Meijere and J. H. Eberly, Phys. Rev.
A 17, 1416 (1978).

OH. J. Kimble and L. Mandel, Phys. Rev. A 15, 689
(1977).

'P. Zoller, J. Phys. B 10, L321 (1977); 11, 805
(1978); 11, 2825 (1978); Phys. Rev. A 19, 1151 (1979).

2P. Avan and C. Cohen-Tannoudji, J. Phys. B 10, 155
(1977).

'38. G. Przhibelskii, Opt. Spectrosc. 42, 8 (1977).
'4P. Elyutin, Opt. Spectrosc. 43, 318 (1977).
~~P. Agostini, A. T. Georges, S. E. Wheatley,

P. Lambropoulos, and M, D. Levenson, J. Phys.
B 11, 1733 (1978).

~6A. T. Georges and P. Lambropoulos, Phys. Rev.
A 18, 587 (1978).

~~P. B. Hogan, S. J. Smith, A. T. Georges, and
P. Lambropoulos, Phys. Rev. Lett. 41, 229 (1978).
See, for example, A. Papoulis, Probability, Random
Variables, and Stochastic Processes (McGraw-Hill,
New York, 1965).

ieF. T. Arecchi, E. Gatti, and A. Sona, Phys. Lett.
20, 27 (1966).

20Handbook of Mathematical Eunctions, edited by
M. Abramovitz and I. A. Stegun, (Natl. Bur. Stand.
Publ. U. S. GPO, Washington, 1964).
'P. Lambropoulos, C. Kikuchi, and R. K. Osborn,
Phys. Bev. 144, 1081 (1966).

2 G. S. Agarwal, Phys. Rev. A 1, 1445 (1970).
23U. Frisch, in Probabilistic Methods in App/ied

Mathematics, Vol. 1, edited by A. T. Bharucha-Beid
(Academic, New York, 1968).

~4A different, but equivalent, continued fraction for
{n) "has been obtained recently by P. Zoller I. Phys.
Hev. A(to be published) l, using the Fokker-Planck
equation for a chaotic field.


