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A multichannel relativistic random-pjase approximation (RRPA) for the photoionization of atoms is

presented. The RRPA equations are obtained by generalizing the nonrelativistic time-dependent Hartree-

Fock equations using the Dirac-Breit Hamiltonian to describe the atomic electrons. The angular

decomposition of the RRPA equations to a set of coupled equations for the radial wave functions is given,

and the radiative-transition operators are developed for arbitrary electric and magnetic multipoles. Formulas
are obtained for the total photoionization cross sections and angular distributions, including all multipoles.

The method of constructing multichannel solutions from the RRPA radial wave functions is described and

various ways of choosing approximate potentials for the photoelectron are given.

I. INTRODUCTION

Experimental and theoretical studies of atomic
photoionization have greatly increased our under-
standing of ihe role of electron correlation in
radiative processes. '*' By comparing experimen-
tal photoionization cross sections with the results
of the independent electron approximation, one
finds that many-electron effects, typically the
interaction of the escaping electron with the re-
sidual ion, are important; especially for photo-
electrons at low energies. Various theoretical
techniques have been employed to study many-
electron correlation effects in atoms; among the
simplest and most widely applied of these tech-
niques is the random-phase approximation (RPA)."
By treating certain types of correlation to all
orders (in the sense of perturbation theory) the
analysis of photoexcitation or photoionization can
be reduced to the solution of a set of integrodif-
ferential equations (the RPA equations) similar
in structure to the familiar Hartree-Fock equa-
tions. 4 Extensive comparisons of nonrelativistic
HPA predictions with experiment lead to the con-
clusion thai ihe HPA includes most of the impor-
tant correlation effects for photoionization pro-
cesses. '

With the increasing availability of synchroton
radiation as a light source, and with the rapid
advance of photoelectron spectroscopy, many pre-
cision measurements of atomic photoionization
are becoming available. In these experiments
not only cross sections from individual subshells
but also photoelectron angular distributions are
determined. These cross sections and angular
distributions contain complementary information;
the cross sections depend on the size of the trans-

ition amplitudes, while the angular distributions
are sensitive to relative phases.

One deficiency of the RPA is the omission of
relativistic effects, such as the spin-orbit inter-
action. These effects are generally thought to
be small, but they show up in precision measure-
ments, often in striking ways. A well-known ex-
ample of relativistic effects is the 4d, ~, .'4d, ~,
cross section ratio in Xe. If the relativistic ef-
fects were omitted, this ratio would be 3:2 inde-
pendent of energy; whereas experiment shows a
rapid variation of the branching ratio with energy
in harmony with relativistic calculations. ' Another
example of relativistic effects is the asymmetry
parameter P for the angular distribution of 5s,~,
electrons in Xe. According to the nonrelativistic
theory, the value of P is 2, independent of energy,
while experiment and relativistic theory' both
show significant deviation from the nonrelativistic
value, particularly at an energy where ihe cross
section is near the "Cooper minimum. "

Relativistic theory has been applied previously
to study photoionization above 1 keV,"where the
inner-shell contributions dominate the cross sec-
tion. It has also been applied to study the photo-
ionization of outer shells in heavy atoms at low
energies. ' In these studies correlation is omitted
and the photoelectron is assumed to move in a
local potential (often taken to be a Dirac-Fock
potential with exchange treated statistically). More
recently relativistic calculations have appeared
in which the outer shells of heavy atoms are stud-
ied using a Dirac-Fock potential equivalent to the
Vf J

' potential discussed later in this paper. "
Experience with the nonrelativistic theory leads

to the conclusion that at low photon energies where
outer shells contribute most significantly to the
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photoionization the effects of correlation are im-
portant (usually much more important than rela-
tivistic effects). It is desirable that the intro-
duction of relativistic effects into the theory
should be accompanied by a parallel consideration
of correlation. With the success of the RPA and
its simplicity, we are led to consider the rela-
tivistic random phase approximation (RRPA) a.s
a method to study relativistic effects in photo-
ionization, particularly in situations where cor-
relations are expected to be important.

In this paper we present a complete description
of the multichannel RRPA theory for the photo-
ionization of atoms. This relativistic theory is
derived in Sec. II using a generalization of the
time-dependent Hartree-Fock method. Af ter ex-.
plaining how these RRPA equations are reduced
to a system of coupled radial equations, we de-
scribe, in Sec. III, the partial wave decomposition
of the multipole transition amplitudes. A pre-
scription for solving the multichannel RRPA equa-
tions is given in Sec. IV. The question of choosing
different gauges for the electric multipole transi-
tions and the different ways of choosing approxi-
mate potentials for the photoelectrons are also
discussed at some length.

II. RRPA EQUATIONS

A. Time-dependent Hartree-Pock theory

The RRPA theory is most conveniently obtained
by linearizing the time-dependent Hartree-Fock
(TDHF) equations" describing the response of
an atom to a time-dependent external field. Let
us represent the ground state of an N-electron
closed-shell atom using a single Slater deter-
minant of 1V Dirac-Fock (DF) orbitals u, (r) . . These
orbitals satisfy the DF equations:

(Ijo+V)u;=ejuj, i=1, 2, . . . , N

where h, = Fr p+ pm —Ze'/r is a single-electron
Dirac Hamiltonian and where e& is an orbital
eigenvalue. In Eq (1) and th. roughout the remainder
of the text, we employ natural units: @ =c = j.. The
DF potential V(r) in Eq. (1) is given by

N

Vu(r) = Q e', ,
~

[(ujtu, )'u —(uJu)'u, ] . (2)
[r —r

Application of a time-dependent external field
5+e-hut+5 ef~t induces a tin e-dependent pertur-
bation in each of the DF orbitals uj(r); thus,

u, (r)-u, (r)+ w„(r)e ' '+ w, (r)e' '+. . . ,

where the omitted terms are the higher harmonics.
The generalization of the DF equations (1) to such
a time-dependent situation when all the higher
harmonics are included leads to a relativistic

version of the nonlinear TDHF equations. If, fol-
lowing Dalgarno and Victor, ' we expand the TDHF
equations in powers of the external field and re-
tain only first-order terms, a set of linearized
TDHF equations for the orbitals w„(r) are ob-
tained:

(Ijo+ V Ej + jd)Wj j (5j Y'j )uj + Q Ajj j.ujTAy)

i= ~, 2, ~ ~ ~, ¹

In Eq. (4) V is the DF potential and
N 3 I

Vi,"u,.(r) = Q e' ~,
~

[(u; w;, )'u, + (wjt, u, )'u;
l=l Ir-r'

(4)

—(wg ~uj) uj —(uj uj) wj j] .

includes the electron-electron correlation. The
Lagrange multipliers A,;„are introduced in Eq.
(4) .to insure the orthogonality of the perturbed
orbitals w«(r) to the occupied orbitals u, (r).

The fundamental RRPA equations are obtained

by omitting the "driving" terms v, from Eqs. (4),
leading to the eigenvalue problem,

k(Ijo+ V 'Ej)Wj j 2 Vj uj T Q Ajj/uj jdWj j y

It is natural to study this eigenvalue problem
since any solution to the inhomogeneous equation

(4) can be expanded in terms of eigenfunctions of
Eq. (6). The eigenvalues of Eq. (6) provide an

approximation to the excitation spectrum of the

atom, including the discrete range as well as a
continuum. The positive frequency components
of the eigenfunctions, „, provide a description
of the excited states of the atom including final-
state correlations, while the negative frequency
components ~& describe the effects of correla-
tions in the ground state. ' The perturbed orbitals
w;, are coupled together through the first-order
potential V,' . The eigenfunctions w» are subject
to the orthogonality constraint

d r )pug =0, i, j=1,2, . . . , N.~

~ ~ ~ ~

For continuum orbitals, this corresponds to the
normalization on the energy scale.

As mentioned above, any solution to Eq. (4) can
be expanded in terms of a complete set of solu-

Normalization of the orbitals in Eq. (6) is chosen
so that for two excitation energies (d& and u~ the
corresponding eigenfunctions ~,", and „satisfy

N

(6)
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B. Angular decomposition

1. Radial Dirae-Fock equations

The DF orbitals u(r) in Eq. (1) are expressed
in terms of spherical spinors 0, (x) and radial
functions G„„(r) for the large component, and
E„,(r) for the small component;

( ) fl..(.(-.) = —"
~ (F..( ) ~,.( ))

(12)

The subscripts n, z, and m are principal and
angular momentum quantum numbers; z = + (j+ —,')
for j =l +-,', where j and l are the total and orbital
angular momenta of the electron. As usual, m
is the z component of the total angular momen-
tum. The spherical spinor 0, (r) i." given in
terms of spherical harmonics Y, , (f') and two-
component Pauli spinors Xz as

tions to the homogeneous equations (6). Using
this fact the amplitude for a transition from the
ground state to the excited state described by the
RRPA function zv;, (r) of frequency e, induced by
v+e ' '+v e' ' is found to be

N

)'= g f d'r)u„v, u,. r u, v u, ) .
i=1

For an electromagnetic interaction, the perturba-
tions v, are described in the Coulomb gauge in
terms of the vector potential A by

v, =en A, v =v~.

Other gauges lead to similar expressions as wil1,

be discussed later. Thus, for an electromagnetic
transition, the HHPA amplitude is given by

)'=P ef d ( r„u'Auu, +u, u Avv, . ).

The subscript b ranges over all of the distinct
atomic subshells a.nd l is an integer limited by the
selection rules in the angular factor A, (a, b) de-
fined below. The Hartree screening function.
Y, (a, b, x) in Eq. (15) is given by

+ y'+' "
yy

+1+1 a b '
r

The angular factor A, (a, b) is defined as

6. j, f~
A, (a, b) =, ,

)
v(l„f„,l),

2 2

(16)

(17)

where the large round bracket designates a 3-j
symbol and where m is a parity factor

1, l, +l, +l =even
v(l„ l„l) =

0, lg+ lb+ l = odd.

If we introduce the radial Hamiltonian operator

Z 2

m- +V
'y

H, =

single Latin subscript a, b, . . . to designate the
pair (n, z). The DF potential V of Eq. (2) may be
expressed in terms of radial functions as:

VF, (r) = g (2j, +1) e' ' ' ' F, (r) —p A, (a, b), Y,(b, b, r)
b

, Y)(b, a, r)
Xs +A(&) ~ (1 5)

&„(f)= g (lm —X-,'Z~t-,' jm) Y, ,(~)x„. (13) we may then write the DF equations a,s

Various phase conventions are adopted for the de-
composition in Eq. (12). We adhere to the con-
vention given in Akhiezer and Berestetskii. "
Since the phase conventions are not uniform,
some care must be exercised in comparing the
radial equations written down by various authors.

For a closed-shell atom the DF equations re-
duce to a simple form. Let us introduce the two-
component radial functions:

(14)

Each of the radial functions for the electrons in a
given subshell are of course identical. We use a

(11.-~.)6:.=0, (2o)

where a ranges over distinct closed subshells. "
2. Radial RRPA equations

Let us consider a particular unperturbed DF
orbital u„, (r) and construct the corresponding
perturbed orbitals zv„,„,(r) describing an atomic
excited state of angular momentum (J, M) and
parity m. The ion formed by removing orbital
u„„will have angular momentum (Jz, Mz)
= (j, —m) and parity v, = (—1)'. We decompose

(r) into angular momentum components j,
l, rn, weighted so that the excited electron-ion
combinations will give the required atomic state
J, M, v The parity of t.he atom will be (-1)"',
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so that states excited by electric (magnetic) 2—
pole radiation must have l+l+ J= even(odd). To
obtain the required atomic state we write

n)„„„,(r) = Q (-1)' (j —mjm
Ijj JM)

(23)

For convenience we introduce two auxiliary angu-
lar functions

x m(l, l, J+ X —1)y(„„)-„—„,(r),

w„„„(r)=g(—1)j '"(j—mjm!jj J —M)

(21a)
Cr(ab) =, (-1)""'[j,][j] ', ,' )r(l„)~,A)

2 2

(24a)

x7((l, l, J+)],—1)y(„,)—„—(r) . (21b)

The coupling coefficients in Eq. (21a) are chosen
so that replacing the orbital n„„(r) in the ground-
state many-electron wave function by the excited-
state orbital ~„„(r)will result in an excited-
state wave function with angular momentum J and
M. The phase differences between Eqs. (21a) and

(21b) are needed in order to separate the RRPA
Eqs. (6) into radial components. The parameter
)(. in Eqs. (21) determines the parity of the excited
state J,M; A, =1 corresponds to electric 2 -pole
excitations with parity v = (-1), while A. = 0 cor-
responds to magnetic excitations with parity m

= (-1) ". The angular momentum components

y~„„~
—„-& represent perturbations from definite

orbitals na into distinct angular momentum states
k. We write

A (a, b, c, d, l, J) = (-1)" ' "C,(a, b) C, (c, d)

(24b)

where [j]=(2j+1)'~', and where the large curly
bracket is a 6-j symbol. Later we will use the
shorthand notation a- —a in Eq. (24) to represent
the replacement ~, --~„which modifies the
parity selection rules only.

To reduce the RRPA equations to radial forms,
let the radial Hamiltonian II, be defined just as in

Eq. (19) with V as the unperturbed DF potential
given in Eq. (15). The first two terms in Eq. (5)
can be collected together in a potential:

S( Ic)K&

1/
y(tlK) K ()K)A(T ( )

(22) 2

+ —Yr(b, b —,r)), (25)

To make our notation somewhat more compact
let us designate the quantum numbers (nj() of the
unperturbed orbital by the letter a = (nj() as before
and designate the specific excitation (nj()- j( by
the letter a. We may then collect the large and
small component radial functions into a two-com-
ponent vector

where the sum ranges over all of the perturbations
b of all of the subshells b of the atom. The sym-
bols b+ and b- in the Hartree screening functions
Y'~ refer to the radial functions y(, , (r) of Eq. (23),
while b refers to the functions S~(r) of Eq. (14).
From the RRPA equations (6), we then find:
(i) "Electric" case; J', v = (-1)

[Ho- —(&.+ ~)]y;b = —C~(a, a)V~ (r)F,
2 2

+ 7 ]A( , a, bbbl, z)—I;( ,a, ,b)rYrr(-1)~'' (Ab,a, bib)aY(a, br, r)Y~),

+ Q 5 „b—„)].—b A Fb
b

(ii) "Magnetic" case; J', v=(-1)"
[H(b —(EK 6 Qj)]yK A

2 2

A(-a, b, b, b, (, A) -Y(a, b, r)Y—„r(-1)~' ~' (-Aaba, , b, )) AY(,a, bar)ll),
b, b, l

+ P 5K&KK~K()&+() '

(26)

(2'l)
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The "electric" equations (26) with 4= 1 describe
the excited atomic states associated with low en-
ergy photoionization and will be considered in
greater detail later in this paper. The "electric"
equations for J~ 2 and the "magnetic" equations
for J~ 1 describe atomic states excited from the
atomic ground state by higher-order multipole
radiation; only limited applications of these
higher-order RBPA equations have been made in
the past. " We call attention to the absence of the
direct first-order potential V&' in the "magnetic"
case and to the replacements a -—a, b -—b, as-
sociated with the parity selection rules. The
similarity between the radial RRPA equations (26)
and (27) and the radial DF equations (20) should
be noted; the only significant difference is the
appearance of terms on the right of Eqs. (26) and
(27) coupling the perturbed orbitals.

To satisfy the orthogonality requirement (7),
we choose the Lagrange multipliers A.,—„so that
the perturbed radial functions Y;, are orthogonal
to the unperturbed orbitals having the same angu-
lar symmetry:

f. OO

dJ'J~pPy = 0 ~ fol Kg = Kg .
0

(28)

The normalization condition of Eq. (8) becomes

B Ag
d+(M+ 3'a+ ya- 3~a-) 5(~a~ &a)

a, o p
(29)

for perturbed orbitals with a given angular sym-
metry J' having energies +& and w~.

AE ikr (30)

For convenience we decompose the vector poten-
tial into multipole components. We write

III. ATOMIC PHOTOIONIZATION USING RRPA

A. Gauges and multipole transition amplitudes

A photon with wave vector k, frequency cu, and
polarization vector e excites a closed-shell atom
from its 'S, ground state to a continuum state
consisting of an electron moving off with momen-
tum p, energy E, and a residual ion. We write
the photon vector potential (in the Coulomb gauge)
as

1. Coulomb gauge

(p) ~ (p)a.u=).(~)Yz~,
a~u= [jj (er)+j z(cur)/un']Yz'„

y [J(J+ 1)]~&2j (~)/'(gy Y&-»

where j ~(&ur) is a spherical Bessel function and
where j~(&ur) is the derivative with respect to its
argument. Dipole matrix elements (J = X= 1)
evaluated using the Coulomb gauge potentials re-
duce, in the nonrelativistic limit, to matrix ele-
ments of the velocity operator.

If, instead of the Coulomb gauge vector poten-
tial A, we introduce potentials A' and P' obtained
from A by a gauge transformation

A' =A+ VX,

(32a)

(32b)

+u; (n ' VX —i+X)w -] . (35)

The sum on the right-hand side of Eq. (35) may
be evaluated with the aid of the RRPA equations
(6) and shown to vanish. " Thus we are led to the
gauge independence property of the BBPA:

(36)

It should be remarked that the transition ampli-
tude is also gauge independent in a potential
theory, while other theories, such as multicon-
figuration Hartree-Fock theory, give gauge de-
pendent amplitudes. " In some practical applica-
tions we truncate the HRPA equations to simplify
the numerical calculations. The sum on the right
in Eq. (35) does not cancel in such truncated
RRPA calculations; however, we may use the size
of the residual difference to measure the error
associated with the truncation.

Under a gauge transformation the multipole
potentials become

then the interaction v, in Eq. (10) is replaced by

v', = v, + e(Z VX —iurX) . (34)

The modification v, - v', leads to a corresponding
change in the transition amplitude in Eq. (11), viz. ,

T - T' = T+ P efd'r' [w„(E vy —iex)u, .

A = 4w Q i "
[Y~~ (k) &]a ~„(r) .

(~)' (&)a J'hl a 4'N + ~XJ'M &

(37)

The indices J and M are photon angular momentum
quantum numbers and A. = 1 or 0 for electric or
magnetic multipoles, respectively. The vector
spherical harmonics Y~J (k) are defined in Ref.
13. In the Coulomb gauge we may write the multi-
pole components a&„(r) as:

Agan= &~Xone ~

where X~„ is the gauge function. One particularly
useful choice of X~~ leads to dipole matrix ele-
ments which reduce to matrix elements of the
length operator nonrelativistically; we call this
the length gauge":



20 MULTICHANNEL RELATIVISTIC RANDOM-PHASE APPROXIMATION FOR. . . 969

2. Length gauge

~(0)' (0)a~jj =2z(()jr) YA

a, ~'~) = j~—„(~r) LY ~~zi —[(Z+ I)/J]'~'Y~~„'~),

P~„=—i[(Z+ I)/J)' 'jr(u)r) Y~„(r) .

(38a)

(38b)

(38c)

7"'= Q J a r(w, ','a I'Pju, +mfa a'PJw, ) (39)

The multipole transition amplitude is given in
terms of the multipole fields, from Eq. (11) as

reference to the corresponding single-electron
theory in which an electron [described by u, (r)]
moving in a central potential V(r) makes a transi-
tion to a continuum state [described by u);(r)].
The final-state orbital u, (r), which must satisfy
"incoming" wave boundary conditions, is expanded
in partial waves as

q X/2

u, (r) =
I I + (fl-..(P—)X,)i' 'e *'"

K%

in the Coulomb gauge, or by Eq. (39) with

m (g) m m (g)l

1 iS—,(r)Q —„—
r T-„(r)A -„-„

(4o)

in the length gauge. The only nonvanishing con-
tributions to T~"„come from electric or magnetic
multipole solutions to the RRPA equations with

exactly the same "multipolarity" JMA, as the po-
tential a ~„.

where p is the momentum, E the energy, v the
spin projection, and 5-, the partial-wave phase
shift. The large and small component functions
S-„(r) and T„(r) sati-sfy radial Dirac equations in
an effective potential V(r) We .collect together
S-„(r}and T, (r) in a—two-component radial function

B. Partial-wave decomposition of transition amphtudes
.(41)

One simple way to describe the analysis of the
multi-electron amplitude T of Eq. (39) is by

This radial function, normalized on the energy
scale, behaves asymptotically as

&Z+m &~2

! cos[pr+ v ln(2pr) ——,'(I+ 1)m+ 5—„]
k mP

m()
. sin[Pr+ v ln(2pr) —

2 (l+ 1)v-+ 6-„]
mP j

(42)

where the parameter v= cjzE/P, z being the ionic charge.
Substituting the single-electron expression into the multipole transition amplitude we obtain in the

1. Single —electron approximation:

(43)

In Eq. (43) the symbol (a!!@i!!a) designates the
reduced matrix element of an electric or magnetic
multipole operator between an initial state a = (nz)
and a final state (energy scale normalized) a
= (E,7). This reduced matrix element may be
expressed in terms of a radial integral:

(al)Q'P'Ila) =( ))' '(j](jl(-, 0")

&& v (I, I, J —A. + 1)R~& i (a, a),
where m is the parity factor previously defined
and where R~gi (a, a) are radial integrals written

out in detail below.
We refer to the various excited states with a

continuum electron a = (E, K) and with an ion having
a single hole a ~ = (nK) ~ as dissociation channels

(a, a}. When we solve the coupled RRPA equations

(26) and (2V) for a dissociation channel, we norma-
lize so that the outgoing part of the wave (a- a)
agrees asymptotically with the uncoupled excitation
a-a given in Eq. (42). Furthermore, we require
that the remaining waves (b, b) 4 (a, a) have no

outgoing parts, asymptotically. With such a
normalization we can use Eq. (43) to describe the
many-particle RRPA amplitude as well as the
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&F114"lls&„„,„=Q (&b+ IIQg" Ilb&

+ &5 —IIQ',
"'

lib&) .
The reduced matrix elements &b a IIQ(z

)
lib) occur-

ring in the many-particle expression are given in
terms of radial integrals R!z~) (b+, b) by equations
(44). These radial integrals can in turn be ex-
pressed as

(45)

R'P(deb)= f ,d~(d-„XP'+T„!',~~),-

where 8—„and T-„are the large end small com-
ponents of the perturbed orbitals y» (r) (the posi-
tive and negative signs refer to the sign of the
frequency ++) given in Eq. (23). The functions
&(,~) (x) and Y())~)(x) are given by

2. Magnetic multipole (X=O)

&(o) &'~( A (2&+1)«( K+)KI"
(Y(,", (y) ) (d J+ 1 G,

3. Electric multipoles (~=1), Coulomb (velocity) gauge

x"' ~
(2d+ 1)!! (a d), , j —(wr))

& 'o"()i jz(~)+

bl JJJ (pe

single-particle amplitude, provided we replace
the single-particle reduced matrix element by its
many-particle generalization, which is found from
Eq. (39) to be:

and b, respectively. In the single-channel radial
integral of Eq. (44), we use Eqs. (47) and (48)
with S—„and Tb, replaced by the single-channel
radial functions S,—and T, fr—om Eq. (41).

In the low-frequency limit the reduced matrix
elements of the electric dipole operator become:

&b~ IIQh'lib&

5. J =1, length gauge, m~0

(49a)

6. J'=I, Coulomb (velocity) gauge, ~~0
&b. IIQ',"lib)

1=+ C, (b, b) — dr [(K, —K~+ 1)s-„~,
(d o

(49b)

C. Angular distribution and cross section, general case

The differential cross section for photoioniza-
tion is given in terms of the transition amplitude
T of Eq. (11) as".

dn 2. T (50)

where E and p are the photoelectron energy and
momentum, and where cu is the photon energy.
Decomposing T into multipole components and
averaging over photon polarization one finds

+ (K(, —Kj, —1)T» G ]

where C, (b, b) is the angular factor defined in Eq.
(24a).

(48a)

4. Electric multipoles (X=1), length gauge

bJ r 2J+1 tt
J

y() ~

~ j g(&'r) & +
1 fd+x((d'r)

G

+i ~.i(~&)
b

(48b)

In Eqs. (47) and (48) the functions G, (x) and F„(r)
are large and small component radial DF orbitals
from Eq. (14). The + and —signs in (47) and (48)
refer to the + and —frequency contributions, and
the angular quantum numbers ~ and F refer to b

[g] [g)] 1-d'-K+ V

dO„K ~ d4~Pi (cosO),2~ r. =o
(52)

where 0 is the angle between the electron and
photon momentum vectors, and where A~ is given
by

[(-1)""T'"'T""
+ Tg, TJ,*], (51)

where T(dK) is given in Eq. (43).
If we use the results from Sec. IIIB to describe

the photoionization from a specific subshell n&,
we find, after summing over spins of the con-
tinuum electron and summing over the entire closed
subshell nz:

(, ,
)

(J+ 1)(J'+1)
(2J —1)!!(2J'—1)!I

x(~'-'-'" "«nIIQ" II
&)('-'-" '-&—IIQ' ll &)*
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where the coefficient B is

II(g gi + Pi I ) —
( 1)i+i -i+i/2[1] 2[ ][ I] ~ ~ (iI IJ)

2 2
(54)

Integrating Eq. (52) over outgoing electron directions we obtain

2v'n 2v'o, ~ (J+ 1) &'~ (~i~ q(2J, 1) [(2q 1)tt]. I&'ll@ (55)

We have written Eqs. (53) and (55) in terms of the
single-electron reduced matrix element; how-
ever, as explained in Sec. IIIB we may replace
the single-particle reduced matrix elements by
the many-particle expressions (45) to obtain the
RRPA results.

where

o„„((u)= (2v'a/(u)A, (57a)

(57b)

D. Electric dipole transitions: Angular distributions and
cross sections

For low photon energies only the electric dipole
amplitudes with J = A. = 1 contribute significantly
to the cross section. If we restrict our attention
to this dipole amplitude we find that only two terms,
A, and A„are nonvanishing in Eq. (52) so that we
may write:

Electrons in the subshell nK may be excited to
states with K = —K, K 2 1 by an electric dipole, so
we introduce the shorthand notation D,
= i' ' e""&71IIQii) lie) for the dipole matrix ele-
ment to find:

2. Electric dipole cross section

g. Electric dipole differential cross section

der„„o„„((u)[1 ——,'P„, (~)r,(cosg)], (56)
and

3. Electric dipole asymmetry parameter:

1 (2j —3), 3 2j 1 ' (2j 1)(2j+3)
2j 2(2~+2) '"'-' ' "") (2j)(2j+2)

(2j —1)(2j+ 3) " 1 (2j + 5)
2j(2j „2) ( ~ -~-i ~ -~'i + c c ) +

2 (2, , 2)
ID,-;„I'

( ~-P~-~ |+c.c) (ID~-g .I +I&g-gl +ID) g„l )

The term D& &, is absent for j=-,'. Expressions
similar to Eqs. (58) and (59) for the relativistic
dipole cross section and asymmetry parameter
were first derived by Walker and Waber, "in the
context of single-particle potential theory.

IV. SOLUTION OF THE RRPA EQUATIONS

A. Single-channel V], i approximation

We concentrate on the excited orbitals describ-
ing a state J" and take the radial RRPA equations
of Eq. (26) or (27) as the point of departure. Let
us disregard entirely the negative-frequency orbi-
tals and concentrate on the positive-frequency
parts which describe final-state particle-hole in-
teractions. To simplify the positive-frequency
equations for a given orbital y; we omit all terms
on the right-hand side of Eq. (26) or (27) which

couple the channel (a-a) to other channels. This

V(&-1)
y

l. Electric case: (a,a )~J",n=(-1 )I

+,' —Y~(a, a, r)S, .C~(a, a) e'
(60)

I

approximation leads to a single-channel equation
for y,—which is relativistic counterpart of the
nonrelativistic Vi~ ' approximation. ' We refer
to this simplification as the V&, approximation
to reflect the fact that the particle and hole (a, a)
are coupled in the j-j scheme to give a state J".

To describe the resulting equations it is con-
venient to introduce a potential V ' to describe
the motion of the. particle a in the field of an ion
with a hole a ' in one subshell. We have
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V(E- z)
Sa

2. Magnetic case: (a, a)-+J, m=(-2') coupled to J" and the radial functions varied to
find an extremum for the energy.

Introducing the radial V,", ~ Hamiltonian
2

= V y,——~ A( —a, —a, a, a, l, Z)—Y, (a, a, r)y;. 2Ze
V (N 1)

y'

Kq

These potentials are obtained from the radial
RRPA Eqs. (26) and (27) by omitting those terms
which couple the channel (a, a) to other channels.
The potential V is the N-electron DF potential
of Eq. (15). We decompose V " ', into a. con-
tribution from the subshell a which has the hole,
V, ', and contributions from the remaining filled
shells, Vb, b ta. The contributions from shells
f}ca are precisely those given in Eq. (15), while
VP ~} is modified according to Eq. (60). For an
electric dipole perturbed state we have

3. Dipole case(J =1 )

V(N-x}y V(z-z}
baa

(62a)

V(N-y)
a Xa

& = os 2s4&.

2

A, Y, (a, a, r)y,—r
2

Y', (a, a, x)&, . (62b)

The coeff ic ients A, and B, are' listed in Table I
for convenience. It should be noticed that these
angular coefficients can be obtained either by
simplifying the RRPA equations in a single-channel
approximation as we have done above, or directly
from a variational calculation in which (a, a) are

(N-1)
8

2Ze +Vr

(62)

%e may write the V;, equations

[H, —(e—, + (u)]y,——Q A.,—,6-„„,&„=0,
b

(64)

where the Lagrange multipliers are introduced
to maintain the orthogonality of y; to occupied
orbitals having the same angular symmetry.

The solutions to Eq. (64) for closed channels Q,
i.e. , channels (a, a) with m —c, &su, are exponen-
tially damped at large x. The solution for open
channels P, wh6re rn —«, &&, on the other hand,
are oscillatory at large x. The solution y;(x),
regular at x =0, for an open channel has the
asymptotic formgivenin Eq. (42), with energy
E=e, +~. The phase shift 6—„ in Eq. (42) is the
sum of a Coulomb part 0—„and a contribution 5—,

due to the short-range parts of V,~
' .

Although these solutions to the V;&
' problem

do provide a rough approximation to the RRPA
equations in which some of the effects of final-
state correlations are accounted for, they are not

TABLE I. One-particle, one-hole Va potential of Eq. (62b) is written
2

V~ y-= ~ &&—F&(a, a, r)y-+ ~ BE—P (g, g, ~)$M 1) e
l%, 2, oo. l=i, 3, 5, ~ 0 ~

+a B, B5

1
2

1
T

3
2

3
2

3
2

5

2

5

Y
5

2

7

2

7

2

7

2

1
2

3
Y

2

3
2

5

2

5

2

7

2

5

2

7

2

9
2

1
25

4
25

4
25

184
1225
10
49

10
49
85

441
2

9

2

147
3
49

3

49
23
539
1

11

25
1287

40
1287

1
9
1
9

2
9

1
45
2

5

1
5

1
35
5
7

7

5

189
28
27

6

35
8

105
1
7

2T
3

77
12
77

50
. 231

„, 5
77

20
231

75
1001
12

143

245
1287

56
1287
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recommended for practical studies. The primary
difficulty of the V» ' approximation is that the
continuum electron is actually coupled to the
residual ion in an intermediate coupling much
closer to LS than to jj. The intermediate-coupling
V ' scheme, such as that described in Sec.
IVB, remedies the problem with final-state
coupling; however, since the intermediate-coupl-
ing V " ' scheme involves several interacting
channels, much of the simplicity of Eq. (64) is
lost.

In RRPA calculations we do not use the solutions
y-, of the V&&

' equation to calculate amplitudes,
but rather as a first approximation to the solution
of the coupled RRPA equations. The U;&

' start-
ing solution is iterated numerically to give a de-
sired final RRPA solution in the channel (a, a).

l. Eleetrie ease: J,m=(-l)

R—, = —C~(a, a) Z ~ ', —Y~(b, b, r)g,C~(b, b) e'

I 2
+ A (a, b, a, b, f, J')—Y, (a, b, r)y (66)

B. Multichannel intermediate-coupling V

approximation and the truncated RRPA

For practical purposes the full set of RRPA
equations are not required; it is often sufficient
to truncate the RRPA, retaining only a few sub-
shells which interact significantly. For example,
in the study of photoionization of 5s electrons in

Xe we may consider the excitation of 5P, 5s, and
4d electrons and ignore the perturbation of the
ls, 2s, . . . . , 4P electrons. The resulting system
of coupled equations is referred to as the trun-
cated RRPA equations.

At the first stages of a practical solution to the
truncated RRPA equations one may neglect the
negative-frequency orbitals. This approximation
to the RRPA in which only the positive-frequency
orbitals are retained is called the Tamm-Dancoff
approximation"; the same approximation is also
referred to simply as the Hartree-Fock approxi-
mation in Ref. l. In the present study we refer
to these positive frequency, truncated RRPA equa-
tions as the intermediate-coupling Dirac Fock
approximation, V(1~ ', for reasons to be ex-
plained below.

The equations for the V~I~ ') approximation are
written

[a-. —(e.+ ~)jy.—=Jf.-+ g X.—,r„(65)
(H-z) .where H; is the Vi&~&

'~ Hamiltonian of Eq. (63).
The coupling term 8,—may be written down from
Eq. (26) or (27) by omitting negative-frequency
terms:

2. Nagnetie ease: J, ~=( l)~+&

eR; = A. (-a, -b, a, b, l, J)—Y, (a, b, r)y(, .
bbE

(67)

The primes on the sums in Eqs. (66) and (67) indi-
cate that the term (b, b) = (a, a) is to be omitted.

Let us illustrate the relation between the Ul&
"

approximation and the V&&
' approximation using

a simple example. The simplest case that arises
in practice is the photoionization of an ns electron
in the dipole approximation. The possible exci-
tations are

r
2

+ — Y,(ns, eP, r) S„,.9

We may now write out the terms R—, on the right-
hand side of Eqs. (65); restricting to the same
two channels we find

Wa e'
A~. = —

9
—Y,(ns, P)s„, ,y

A~ = —
9 Y~(ns, P *)s„,.W8 e'
9 (69)

These coupling terms in (69) may be included
as part of the V " potential by modifying the
exchange part of the potential to be

Xi„, iy&. — ———Y~(ns, p*, r)

)) 8 e'—Y, (ns, P, r)) 5

VS e'
)yp i

—Y (ns, P*,r)

l e
—,—„',(-,~..)),

(70)

The transformation of the (ns, op*) and (ns, cP)
states which leads from jj (J'= 1) coupling to f S
(J'= 1) coupling will obviously diagonalize the
exchange interaction (70). This transformation
is accomplished by the linear relation

y,,(r) = (1/3)"y .(r)+ (2/3)"y, (r),

y,p(r) = (2/3)' 'y) „(r)—(1/3)' 'y~(r ),
(71)

ns- op*,
ns- ep,

where P * and P represent Pg/2 and P,~, orbitals.
From Table I we may write the V „", ' potential as

2

V„, y~. =—Y,(ns, ns, r)y~.(ar-x)

2
—

9
—l;(ns, eP*,r)S„, ,
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from which one finds

(72)

We see that the resulting diagonalized exchange
interaction has the form of the nonrelativistic
V&~

" exchange potential used in Hartree-Fock
calculations. "

Of course, in the relativistic case the trans-
formation from jj states to LS states only diagona-
lizes the V " ' potential but does not diagonalize
the Hamiltonian H " ' because of the spin-depen-
dent terms in the remaining parts of H " ' . The
coupled equations (65) will therefore not reduce
to V~~ ' equations except in situations where
spin-orbit effects are absolutely negligible. The
resulting Vile '~ equations (65) are more realistic
than the U, &

' equations of Sec. IVA, since these
coupled equations (65) reduce to the proper non-
relativistic limit; furthermore, these equations
are more realistic than the V~~ ' equations em-
ployed nonrelativistically since spin-orbit inter-
actions are properly i-ncluded.

Equations (65) are therefore seen to be the in-
termediate coupling Vl~ '~ generalization of the
V &~

' equations used nonrelativistically. They
are not restricted to coupling electrons of only
a single orbital angular momentum but, in fact,
couple together all of the channels which are as-
sociated with one-particle, one-hole final-state
interactions.

In our practical calculations we start with so-
lutions to the V;&=' equations as a lowest ap-
proximation and then, as a next step, find solu-
tions to the V,~ ' equations, using the scheme
outlined in Sec. IVC to determine the resulting
photoionization cross section.

The solutions to the Vzc '~ problem provide an
excellent approximation to the positive-frequency
truncated RRPA orbitals, and the BRPA orbitals
can easily be obtained by iteration starting with
the Vl~

' solution.
It should be mentioned that the truncated RRPA

equations are not independent of gauge, as are the
full RRPA equations. Truncated RRPA amplitudes
are usually evaluated in both velocity and length
gauge. Differences between the velocity and
length amplitudes of 5%%uo is typical in truncated
RRPA calculations.

C. K matrix and S matrix

Let N~ be the number of open channels for a
state of given J', i.e., the number of pairs (a, a)
allowed by the angular momentum selection rules

having m —e, & u. We construct K~ independent
solutfons to the RRPA equation (26) or (27). It is
convenient to label these solutions with a channel
index i= 1, 2, . . . . , N&, in the remainder of this
section we use superscripts to represent various
channels. Starting with the single-channel ap-
proxima, te V&";

' solution of Sec. IVA we may
obtain solutions to the RRPA equations which are
regular at the origin, and which have the asymp-
totic form

yf~(r) f,.(r)6, , +g, {r)Z.. . i, I =I, . . . , X„

I

E+mi '~'
cos pr+ v ln(2pr)

7TP j
—(I(+ 1)—+g(

2

sin pr+ v ln(2pr)
mP j

(74)

where v = nzE/P with z in the ionic charge, and
where 0& is the Coulomb phase shift for the orbi-
tal i. If we let f; (r) = (8, (r), T; (r)) and g, (r)
= (U;(r), V, (r)) be any two solutions of the radial
Dirac equation for a local. central potential, then
the Wronsktan W(f„g;) = [S;(r)V,(r) —T, (r)U, (r)j
is a constant, independent of x. Two solutions
having a Wronskian different from zero, are said
to be indePenderit solutions. We may construct
a solution g, (r) to the Coulomb-Dirac equation,
independent of f, (r), to have the asymptotic form

where f&(r) and g, (r) are regular and irregular
Coulomb orbitals, described more fully below.
The matrix K= (K;;) which we shall show to be
symmetric is found once the coupled equations
are solved. Relations (73) describe the open-
chanhel orbitals only; the remaining closed-chan-
nel orbitals, as well as the negative-frequency
orbitals, vanish exponentially at large x.

In practical calculations several intermediate
steps are required to take the iteration solution
based on the V,", ~ approximation to the form
(7S), where the asymptotic behavior is governed
by Coulomb orbi:tais; these steps will be described
along with other aspects of the numerical pro-
cedure in a companion paper. "

The regular Coulomb orbital f, (r) is a solution
to the radial Dirac equation in a pure Coulomb
field, V= —e'z/r, regular at r =0, and normalized
in the energy scale; f;(r) behaves asymptotically
as
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Z+m '/' .
"

sin pr+ v ln(2pr)
rP

—(I(+ 1)—+a(
2

unitary S-matrix S = (S») is given by

S=UAU,

with

(84)

g,. (r)
l/2

cos Pr+ vln(2Pr)
7rP

(75)
A = diag(8"'") . (85)

S = (I+aC)(1-(Z)-'. (86)

An alternative expression for S in terms of K is

—(I(+ 1) +(T(
2

the Wgonskian is found to be

&(f(,g() = II(( (V6)

h( =f( T fg( ~ (77)

Later we will require outgoing waves h;(r) and
incoming waves h, (r) which are defined by

The unitarity of S follows from the symmetry
of the matrix K which in turn is a consequence of
the conservation of current in the RRPA.

Indeed, if we go back to the basic RRPA equation
(6) and construct the transition current vector
associated with two solutions w((') (r) and w(&') (r)
having the same energy u~~ = ~

I
(()())) —w(()+ (r) ~ w(()) (r) (87)

The eigenvalues and eigenvectors of K are im-
portant in our analysis of the final-state inter-
actions. If we write

we find from Eq. (6)

g fp, )
(')() -(p(-)). -

()
s

(88)

, &&)Ugn = ~nU&n (V8)

Z, (r)= g y(' (r)U«cos5„, j, o'=I, . . . , N(,
l

(80)

are called eigenchannel solutions. From Eqs.
(73) and (80) one obtains the asymptotic behavior
of these eigenchannel solutions:

Z((") (r) = ff((r) cos5„+g((r) sin6„]U&„. (81)

then the matrix of eigenvectors U = (U( ) ma, y be
considered to be orthogonal and the real eigen-
value A.~ may be parametrized in terms of eigen-
phases 6„using

A~ = tan6~ .

The particular linear combinations of solutions
(V3) given by

where the integration is over a surface S with
normal n. In Eqs. (87) and (88) the superscripts
refer to solutions in different channels (i) and (h),
while the subscripts refer to individual electrons
as in Eq. (6). The orbitals w; are exponentially
damped for large x so that their contributions can
be omitted for a sufficiently large surface S. The
orbitals m, , corresponding to open channels P
are oscillatory, while those corresponding to
closed channels Q are damped. Taking S to be a
large sphere, we may replace Eq. (88) by

fpg). (')() .p —p (89)
4&P $

If we let S(' (r) and T((' (r) be the large and small
component radial functions for the orbitals of the
channel solutions described in Eq. (73), then we
find that the current conservation law (89) reduces
to

~(') (r) = g Z(,")(r)e-'"U (82)

and we find using Eqs. (VV) and (81):

W',"(r)-—,
' h,'(r)6»+ ', h, (r)S», - (83)

where h('(r) are the outgoing and incoming spheri-
cal waves introduced in Eq. (7V) and where the

The "incoming-wave" boundary condition, that
the physical solution to the RRPA equations has a
normalized outgoing wave in one channel, and in-
coming waves in all other channels is easily satis-
fied in terms of the eigenchannel solutions (80).

The desired "incoming" wave solutions are
given by the combination

g [&("*(r)T"'(r)—Tj '*(r) S(((r)] = 0
J=l

(90)

(I/(() (&(a —&a;) = o, (91)

which gives the desired symmetry relations.
From the reduced matrix elements calculated

using the numerical solutions (V3) which for sim-
plicity we designate as Q, (Q; =(a)~Q(~ ) ((a)) we ob-
tain eigenamplitudes

after the angular integration has been carried out.
The individual terms in the round brackets are
just the Wronskians of Coulomb wave functions
and therefore constants. Substituting from Eq.
(73) and making use of Eqs. (74) and (75), one
finds
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Qi"~ = g Q;U, „cos5 (92) V. SUMMARY

Q(m) Q i&(yP Q(&) (93)

Using the expression (55) for the cross section,
we have

2v o. (J+ 1)cu

J(2J+ 1)[(2J —1)!!]'

(in) (94)

where the final sum is over those channels (i)
which leave the ion in a state n~. If we sum over
all open channels the cross section takes on a
particularly simple form in terms of eigenampli-
tudes Q'":

Finally we obtain our "incoming-wave" amplitudes
by combining eigenamplitudes according to Eq.
(84):

We have presented a complete, detailed descrip-
tion of the relativistic random-phase approxima-
tion and the application of this theory to the photo-
ionization of atoms. Explicit coupled RRPA radial
equations for electric and magnetic multipole
transitions are derived and are given in Eqs. (26)
and (2V); formulas for the photoionization cross
sections and angular distributions are presented
in Eqs. (55) and (58), respectively. The question
of choosing an effective potential for photoelec-
trons in a relativistic theory and the method of
solution of the RRPA equations are explained in
Sec. IV.

Results of the applications of this theory to the
photoionizations of heliumlike and beryllium like
ions, " the theoretical asymmetry parameter P
for the 5s electrons~ and the branching ratio' '
4d, ~, .4d, ~, of xenon atoms have been reported. In
a following paper, the results of RRPA calcula-

I

tions for other rare-gas atoms are-presented.
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