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Diagrammatic many-body perturbation theory applied to highly ionized atoms
of the copper isoelectronic sequence
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Many-body diagrammatic perturbation theory has been applied to the calculation of ionization energies and
multiplet strengths for two highly ionized atoms of the copper isoelectronic sequence. A unified Hartree-Fock
zeroth-order Hamiltonian the eigenfunctions of which include both open- and closed-shell orbitals has been
constructed for systems with a single open shell. Correlation energies for the excited 4p states as well as the
ground 4s states of Krvm and Moxiv were computed by means of individual basis sets generated for each
state. The distribution of the 31-41 correlation energy among second- and higher-order terms differed

significantly for the two ions. In Moxa, most of the correlation energy was concentrated in second-order,
with- small third-order effects. In Krvui, however, second-order results were substantially changed by
higher-order diagrams, particularly in the case of tQe 4p state. Correlated multiplet strengths for the'4s S-
4p 'P resonance transition were computed, including first-order corrections to the Hartree-Fock zeroth-order
wave functions for both initial and final states. The results of these calculations are in excellent agreement
with those of recent multiconfiguration Hartree-Fock calculations.

I. INTRODUCTION

The rapid development of plasma physics, both
laboratory and astrophysical, has created a re-
newed interest in the accurate calculation of the
properties of highly charged ions." Jn tokamaks,
for example, it has been found that trace amounts
of heavy-ion impurities in the plasma lead to sub-
stantial radiant energy loss. ' Thus, a knowledge
of the transition probabilities and wavelengths of
reactor wall materials is of great importance in
the design and diagnostics of plasma fusion ma-
cines. The interpretation of recent spectra from
solar flares and other highly energetic astro-
physical events also demands accurate atomic
data.

The beam-foil technique4 is currently the only
available experimental method for the generation
and observation of such highly ionized species.
In the past several years, however, a systematic
discrepancy between experimental transition pro-
babilities determined by the beam-foil method and
theoretical data has been recognized. "This dis- .

crepancy has been found to be most serious for
heavy isoelectronic sequences, exceeding 30%
for most ions of the copper sequence, and has
been interpreted by Younger and Wiese' as due to
masking cascades in the observed decays. As a
result of this serious experimental problem, re-
newed emphasis has been placed on theoretical
methods for the accurate calculation of spectral
data.

Almost all accurate calculations of transition
probabilities have been performed using some
form of multiconfiguration Hartree-Fock (MCHF)
or superposition-of-configuration method. Given

the serious discrepancies reported between such
theoretical data and those from beam-foil experi-
ments, however, it has become desirable to in-
vestigate an alternate method, based on a differ-
ent formal scheme, which may serve as a check
on these methods.

Kelly has developed the formal aspects of Bruck-
ner-Goldstone perturbation theory' applied to
atoms and has made extensive calculations of
atomic properties using "diagrammatic perturba-
tion theory. " We will use this perturbative ap-
proach, suitably modified for the open-shell case,
for an independent study of the copper sequence
correlation problem. The computational proce-
dures which will be used in the present work fol-
low those outlined in an excellent review of many-
body perturbation theory by Kelly. '

II. ZEROTHARDER HAMII. TONIAN

The choice of the zeroth-order or "model" Ham-
iltonian is of great importance in constructing the
perturbation expansion, for although in principle
many fulfill the general requirements (e.g. , Har-
tree-Fock, Thomas-Fermi, statistical exchange,
hydrogenic, etc.), the amount of labor involved in

achieving a desired accuracy will depend en how

close II, is to the exact Hamiltonian, that is, the
magnitude of the perturbation.

For a closed-shell system, the Hartree-Fock
Hamiltonian Ho"" is given by

IIHF —
g +
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where t is the "bare nuclear" term, including the
kinetic energy and the nuclear attraction, and J,.
and K, are the direct and exchange electrostatic
operators. ' The sum is over the total number of
electrons, Nr, in the atom. The set (p,.) of all
solutions to Eq. (I) corresponding to occupied
single-particle states is invariant with respect to
unitary transformations, a fact which allows the
eigenvalue matrix to be diagonalized.

For a closed-shell system, one can then define
a single operator ~0"which has as its eigenfunc-
tions a set of N occupied orbitals (the usual Har-
tree-Fock orbitals for an atom) and an infinite
set of unoccupied or virtual orbitals.

For open-shell atoms, the situation is some-
what more complicated in that the usual Hartree-
Fock equation describing the closed-shell core
states is different from the one describing the open
shell. Since. the perturbation formalism requires
a single zeroth-order equation which generates
all occupied and virtual orbitals, a method must
be devised to combine the two sets of equations
into a unified Hamiltonian having both open- and
closed-shell eigenfunctions.

Boothaan, in his investigations of self-consis-
tent-field theory for open-shell atoms, found that
such a "unified" Hartree-Fock Hamiltonian may
be defined by the use of coupling operators. Let
p,. represent the set of doubly occupied (i.e., spin-
degenerate) closed-shell orbitals, and p, the set
of all possible open-shell orbitals of the chosen
principal quantum number and angular momentum.
In the following we assume a single open shell.
Following Boothaan's notation, let the subscripts
k and l correspond to closed-shell orbitals, m to
open-shell orbitals, and i and j to orbitals of
either set. Define the direct, I... and exchange-,
M„coupling operators as

The total open- and closed-shell electrostatic
operators are

Jo=f Z J J~=Z J» Jr =Jc+Jo&
(3)

In Eg. (3), f is the fractional occupation number
of the open shell, i.e., the number of occupied
open-shell states over the total number of all pos-
sible open-shell states. The total direct and ex-
change coupling operators are similarly defined:

Lo=f Q L ) L, =QL», L„=L,+L

The desired unified Hartree-Fock Hamiltonian
then has the form

E = t + (2 Jr —Ãr) + 2n (I r —Jo) —P(Mr —Kg, (5)

where a and P are constants depending on the an-
gular momentum of the open-shell state. For one
electron outside a closed-shell core

(6)

There are three sets of eigenfunctions associated
with the operator F: closed shell, open shell, and
virtual. Each of these will be considered in turn.
A simple example is discussed in the Appendix.

(a) Closed shell orbitals Consid. er F acting on
a closed-shell core orbital y,. :

EP, =ty, +(2J. —K. )P,.

where l,. and m,. are angular and magnetic quan-
tum numbers. Note that the orbitals p, and P,
are already defined as solutions of the usual Har-
tree-Fock problem. The matrix e =(P,~F~Q, & may
then be computed using these known orbitals, and
diagonalized to obtain the closed-shell eigenfunc-
tions of F

It was found that although the eigenvalues of F
are significantly different from those associated
with the usual Hartree-Fock orbitals, the mixing
of the old Hartree-Fock orbitals to produce uni-
fied ones is very slight.

Since in all cases the eigenvalues of F are less
than the original Hartree-Fock values, their effect
on the perturbation expansion is to reduce the de-
nominators, causing an increase in the value of
each diagram. This apparent increase is some-
what misleading, however, in that there exists a
a class of higher-order diagrams which exactly
cancel the effects of the eigenvalue shift. Con-
sider the diagrams shown in Fig. 1. As-hole-pair
diagrams, all three are diagonal in the closed-
shell hole line p. Their sum equals the product
of the corresponding second-order diagram
(&Pnl~l»'& I'/d) and the factor
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FIG. 1. Third-order diagrams illustrating single-
particle insertions on a hole line.

Ng

p vp — pi ppz —pi vip d, 8

t E= I(tnlt I»'&'(d —t ). (10)

Summing from m = 0 includes the second-order
diagram. The summation of all such single-par-
ticle insertions on closed-shell hole lines is ac-
complished by modifying the denominator of the
corresponding second-order diagram.

It is conven. ':."nt to express the sum in Eq. (10)
in terms of the electrostatic operators J and K, so
that

For closed-shell core states the matrix element
of the single-particle potential is

&plvlP& = &pl2&, —K, lt»+1 &PI2&, -K, lp&

(12)

so that

The denominator shift 6 is identical to the differ-
ence between the original Har.tree-Fock eigenvalue
and the eigenvalue of E, that is

where d=e~+&„—&~- e~ and where the sum is
over the electrons in the atom. V is the potential
in E, and k and k' are virtual states. In still
higher orders, there are diagrams with two or
more single-particle insertions of the type shown
in Fig. 1, each insertion contributing a factor of
A/d. The summation of all such diagrams to all
orders is the geometric series

I&t nl ~l»'& I'

m

or

using the original Hartree-Fock eigenvalues in
the second-order energy denominator, thereby
eliminating the need for explicitly calculating such
diagrams. In the present calculations, all denom-
inators are assumed to be formed from the origin-
al Har tree-Fock hole eigenvalues.

(b) OPen shell orbitals F. acting on an open-
shell orbital produces

1
. FAo=tlo+( ~. -K.)40+ I Q &p, l2&D-K, ly, )y,.

+ [f/(I -f)]&y.l&.l y.)y. . (i5)

The open-shell eigenvalue is

e, = &y.ltl y.& +&y.l2&. -K.I y.&+
1 &y.I&01 y.&

which is equivalent to

~, = Po"+ [f/(1 —f)]&y,l&olyo)

Since there is no coupling of open- and closed-
shell orbitals, the eigenfunction of the original
Hartree-Fock problem for the open shell is also
the eigenfunction of E. The eigenvalue is shifted
upward by an amount [f/(I -f)](JOIE,I P,) decreas-
ing the value of the denominators and increasing
the value of each diagram in which it occurs.
Again the consideration of higher-order diagrams
containing single-particle insertions on the open-
shell hole line is equivalent to a shift in the
second-order energy denominator, which is equal
to the shift caused by the transformation to the
unified Hamiltonian.

(c) Virtual orbitals In additio. n to the set of N
occupied eigenfunctions, the operator E also has
associated with it an infinite set of unoccupied or-
bitals or "excited" single-particle states (not to be
confused with the physical excited states of the sys-
tem). F acting on such an orbital yields

F4.= t4. +(2~r -Kr)4. — (2~a-Ko)4.
1

+g, 1

+ g&y I2z, -K,Iy„)y„

~, =&PltIP)+&PI2&, -K, lf»+ &PI2J.-K.IP),
1

(14)

so that

~~=&HF++ ~

One may evaluate the sum of all higher-order
single-particle insertions on hole lines by simply

or

Fy„= ty„+(2g, -K,)y„— (2J, -Kgy„

+ '

+ Q (p 2IZ -0Kopl)0p 5, , 5
m
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The presence of the coupling operator in E re-
sults in a complex potential for the virtual-state
calculations. Consider the asymptotic form of E
in the limit of large radii. As x-~, K,.- 0 since

an occupied orbital, tends to zero at infinity
faster than r '. Also as r ~, d,. —1/x reflecting
the nuclear screening effects of the occupied or-
bitals. Then as r-~, the left-hand side of Eq.
(19) becomes

tl ons .
In Table I, we list Reader ' s experimentally de-

rived ionization energies, the relativistic shifts
of gneiss, the resulting nonre lativistic ionization
energies, and the ionization correlation energies.
Theoretical nonre lativis tic ion iz ation energies have
been reported for Kr VIII by Froe se -Fische r '
using the MC H F method, with the fol lowing results:
Kr VIII 4s 4.560 and 4P 3 .914 a.u.

&4. + ~'4. —
1

N, f 1

= fy„+/ X.—

The asymptotic charge seen by the virtual orbital
of the unified Ham iltonian is greater than that seen
by the physical excited states of the atom. For
lower excited states the decreased screening is
partially balanced by the presence of the coupled
core -state functions in the Hamiltonian. The first
few bound states have maxima quite close to the
core, substantially penetrating the core orbitals.
The effect of the coupling operators in mixing the
core functions with the virtual state is to negate
to some degree the change in asymptotic charge .
For example, the Har tree -Fock "physical" 4p
excited state of Kr VIII is almost identical to the
virtual 4p orbital of the unified operator construct-
ed for the ground -state occupied orb itals. The
eigenvalue s, however, are appreciably diff erent.

III. IONIZATION ENERGIES

A. Experimental

For the Cu-s equen ce energy levels studied here,
the ionization energy is that of a single n = 4 elec-
tron outside a closed -shell

1s 2s 2p 3s 3p 3d' iS

core . The corre lation contribution to the ioniz a-
tion energy is defined as

+corr @core @4l-core (22)

The correlation correction to the ionization energy
is the difference of the total correlation energies
before and after ionization:

fcorz @corr Ã 1) @corr Y) ~ (23)

For a single electron outside a closed™shell
core consisting enti re ly of sub she 11s of lowe r prin-
cipal quantum numbers than the optical electron,
core -correlation effects should remain constant to
a good approximation before and after ionization,
l.e.,

(24)

so that I., is simply E4, „„.The core wave func-
tions for 29- and 28-e lec tron Kr and Mo are al-
most identical for both the 4s and Q states, which
further support th is assumption. Thus, the only
diagrams which will be considered here are those
containing both 4l and core hole linis.

(a) Second order dia-grams. The only nonvanish-
ing second-order energy diagrams associated with
the unified Ham iltonian described in Sec. II are

B. Many-body perturbation-theory ionization energies

The correlation energy of the

1s 2s 2p 3s 3p 3d' 4l

state of Cu- like ions may be divided into hv o com-
ponents: one describing correlation within the
core, and the other the interaction of the 4l elec-
tron with the core:

corr "F9

where I is the exact nonre lativis tie ioniz ation ener-
gy (the observed energy minus the relativistic
contribution) and IHF is the corresponding Hartree-
Fock value. Ac curate ionization potentials for
Kr VIII and Mo XIV have been derived from spec-
tral observations by Reader. '

In order to obtain nonrelativis tie ionization ener-
gies, it is necessary to subtract from the observed
values the contributions due to relativistic effects .
Relativistic shif ts and spin -orbit parameters have
been calculated by

gneiss"

using the one -electron
Pauli approximation with Hartree -Fock wave func-

4s

TABLE I. Experimental ionization energies (a.u .) .

Inmrel c
obs Icorr

ohsIot

Kr vga 4.622
Mo xiv 11.120

-0 .066
-0.205

4.556
10.915

-0.042
-0.044

Kr var
Mo xiv

3 .927
0,876

3.947
9.948

-0 .020
-0.072

-0.044
-0.039

I b8: observed ionization energy Q,ef. 10)."I
& . relativistic shift (Weiss) Q,ef. 11) .' I'o~~: nonrelativistic ionization energy.

Iobs observed correlation energy.
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the direct and exchange pair diagrams. That there
are no surviving single-particle diagrams in second
order is due to the cancellation of the first-order
single-particle contribution to the wave function for
this Hamiltonian. To illustrate this, let V repre-
sent the potential in the unified Hamiltonian. Then .

the single-particle correction to the 4l state in-
volving a single excitation to the virtual state ~k)

ls
Nz

Q([&4li( v)ki) -&4li(v]ik) ]
1

—&4i~ V(k)} (k) .
Evaluating the matrix element V,

T

q= g([4li(vicki) —&4li~vjik)]
&4r

'
&A. g~4s

It follows then that the single-particle correlation-
energy diagrams also cancel, leaving only the
pair diagrams in second order.

The basis states used to construct the pair dia-
grams are those virtual orbitals corresponding to
the unified Hamiltonians for the 4s and 4p states.
Numerical solutions to the radial Schrodinger equa-
tion were obtained using the author's Hartree-Fock
program. .Five to ten bound states and 20 to 30
continuum orbitals in the range A = 0-10 a.u. were
found adequate to describe correlation effects.

I

Completely separate sets are required for the 4s
and 4p correlations because of the difference in
the Hamiltonians defining each. The techniques for
the summation over the excited states of the dia-
grams are those of Kelly 8

Numerical values for the second-order pair dia-
grams are given in Table II for the 4s states and
Table III for- the 4p states of Kr VIII and Mo XIV.
Tabulated are all diagrams with nonzero angular
factors. As expected, the largest correlations
are bebveen the 4/ electron and the 3d' subshell.
The closeness of the 4l to the 3d, as well as the
large population of the latter, makes this reason-
able. Progressively smaller effects are observed
for the 3p and 3s subshells, because of their smal-
ler populations and the larger eigenvalues they
contribute to diagram denominators. Correlation
between the 4l electron and n = 1 or I = 2 orbitals
is expected to be extremely small since the wave
functions overlap only deep within the core where
the 4l function is small. The large eigenvalues '

associated with the core orbitals produce large
energy denominators which further reduce the value
of diagrams containing such inner-shell lines.

The exchange diagrams are generally much smal-
ler than the direct diagrams. The largest direct
diagrams were found to be those involving one
bound and one continuum excitation. Next largest
were continuum-continuum diagrams with bound-
bound contributions least. It is not possible then
to estimate the importance of a particular dia-
gram merely by examining a few bound-bound dia-
grams alone. It is quite possible that bound-bound

TABLE II. 4s second-order correlation energies (& 10 a.u.).

Excitation pair Direct
Kr viil

Exchange
Moxtv

Direct Exchange

3d4s kpk' p
kfk'p
kpk'f
kfk'f
kdk's
ksk'd
kdk'd

Total 3d4s:
3p4s kpk' s

ksk'p
kfk'd
4 dk'f
kdk'p
kpk'd

Total 3p4s:
3s4s ksk's

kpk'p
kdk'd
kfk'f

Total 3s4s:

-2.554
-34.574
-0.811
-1.225

-13.984
-0.410
-0.470

-54.029
-4.439
-0.390
-3.296
-0.377
-1.544
-0.246

-10.293
-1.269
-0.364
-0.221
-0.542
-2.395

0.403
2.078
2.078
0.405

-0.244
-0.244
1.200
4.597

-0.071
-0.071

0.411
0.411

-0.042
-'0.042

0.598
0.547

-0.036
-0.008

0.193
0.695

-1.39
-36.76
-0.65
-1.24
-8.30
-0.09
-0.56

-48.99
-5.00
-0.26

. -4.17
-0.48
-2.54
-0.32

-12 77
-0.90
-0.51
-0.47
-0.73
-2.61

0.16
1.96
1.96
0.50
0.47
0.47
0.10
5.62
0.14
0.14
0.68
0.68
0.04
0.04
1.72
0.40

-0.01
0.02
0.26
0.67
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TABLE III. 4p second-order correlation energies (x 10 a.u.).

Excitation pair Direct
Kr vm

Exchange
Mo xrv

Direct Exchange

3d4p kdk'p
kpk'd
kdk'f
kfk'd
ksk'p
kpk's
ksk'f
kfk's

Total 3d 4p.
3p4p kpk'p

kdk'd
kfk'f
ksk's
ksk'd
kdk's
kpk'f
kfk'p

Total 3p4p:
3s4p kpk'd

kdk'p
kd k'f
kfk'd
ksk'p
kpk's

Total 3s4p:

-20.159
-0.961
-2.867
-4.624
-0.252
-0.741
-0.644

-11.285
-41.533
-7.369
-1.364
-1.599
-0.196
-0.221
-0.766
-0.269
-1.037

-12.821
-0.110
-0.097
-0.223
—0.198
-2.106
-0.086
-2.820

0.356
0.356
4.010
4.010
0.030
0.030
1.026
1.026

10.844
1.094
0.089
0.168
0.072
0.018
0.018
0.128
0.128
1,715
0.003
0.003
0.068
0.068
0.155
0.155
0.452

-7.21
-0.56
-2.67
-5.20
-0.54
-0.46
-0.51

-11.79
-28.92
-3.28
-1.67
—2.09
-0.20
-0.26
-0.88
-0.33
-1.18
-9.99
-0.22
-0.13
-0.34
-0.30
-0.63
-0.10
-1.71

0.01
0.01
4.52
4.52
0.01
0.01
0.96
0.96

11.01
0.43
0.05
0.23
0.03
0.01
0.01
0.11
0.11
0.97
0.02
0.02
0.10
0.10
0.03
0.03
0.29

diagrams are small while continuum-bound or con-
tinuum-continuum diagrams are large.

For the 4s state, most of the correlation results
from the excitations 3$4s- kdk's, -kfk'p, -kgb'p
and 3p4s-kpk's, -kfk'd. Although the relative im-
portance of the excitations differ for Kr and Mo,
these five diagrams contribute over 85% of the
second-order direct correlation. For the 4p state,
the most important diagrams involved excitations
of the kind 3d4p- kdk'p, -kfk's and 3p4p- kfpk'p,

kdk'd, kfk'f.
Included in Tables II and III are diagrams involv-

ing the excitation of a Sl electron into an unoccup-
ied 4l state, e.g. , 4s'Sd - kd4s . The magnitudes
of these diagrams were only a few percent of the
total correlation energies, mainly due to small
angular factors.

In all of the diagrams discussed in this section
and Sec. IV, we have employed the original Har-
tree-Pock (i.e., nonunified) eigenvalues in com-
puting the energy denominators, as discussed in
Sec. II. Technically, therefore, these diagrams
contain higher-or'der single-particle insertions on
the hole lines, effectively counteracting an artifact
produced by the unification of the Fock operators
for the open and closed shells.

(b) Tkird-order diagrams. Third-order dia-
grams corresponding to the unified Hamiltonian,

in which there are no single-particle excitations,
are shown in Fig. 2. The presence of three inter-
action lines, along with the triple summation over
excited states, makes the evaluation of these dia-

9'V
C D

FIG. 2. Third-order correlation energy diagrams.
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[(ki~ v[k'f&-&kilvlfk'& -&kI V(k'&]

(k'k"
i v iPq&

&p+ &e 4' &a"

The factor in square brackets is

(27)

grams much more difficult than their second-order
counterparts. - Because of the expected convergent
nature of the perturbation series, however, and
the small magnitude of most second-order excita-
tion pairs (arising from small radial matrix ele-
ments which also occur in third order), many of
these third-order diagrams are small.

For correlation in the 4s state, the second-order
diagrams Sd4s-kdk's, -kfk'p were the largest.
Angular factors and matrix elements are also
large for third-order diagrams containing these
excitations, so that one might expect sizable third-
order results. Exchange diagrams in third order,
including Figs. 2(g) and 2(h), comprise products
of matrix elements found to be small in the second-
order calculations. Since they do not have large
angular factors in third order, and contain an ad-
ditional denominator to further reduce the second-
order product, they are expected to be quite small
compared even to other "direct" third-order dia-
grams. Note that the hole-particle diagrams
should be included, even though they are exchanges
of the ring diagr" m. The angular factors and ma-
trix elements are large for these diagrams com-
pared to other "exchange" diagrams.

The single-particle insertion diagram shown in

Fig. 2(c) is particularly interesting and deserves
special attention. For the unified Hamiltonian
such a diagram involving correlation between hole
states p and q is

(pql v Ikk "&

i p e+E—E' —'
E~ i~

(28)

&k'k"
i vipq&

&p+ &q &I &a"
(28)

Diagrammatically, a single-particle insertion on
a particle line is equivalent to a sum of hole-par-
ticle diagrams. Note that the coefficients in the
sum are dependent on the occupation fraction of the

open shell. In a one-electron system, this reduces
to a dependence on the open-shell symmetry.

The magnitudes of third-order diagrams for the

4s correlation energy are given in Table IV. In-
dividual hole-particle and ring diagrams are il-
lustrated in Fig. 3. Similar diagrams for the 4p

state, including the important excitation pairs
Sd4p- kdk'p, -kfk's are given in Table V. The
hale-hole, particle-particle, and ring diagrams
are positive, while the hole-particle diagrams are
negative.

An important result of these calculations is that
in most cases the third-order effects decrease
in magnitude with the increasing charge of the ion.
For Kr VIII, third-order effects reduce the second-
order result by 27%, while in Moxlv, the third-
order contribution reduces the second-order re-
sult by about 18%. An even larger effect is seen
for the 4p state. For Mo X1V, the second-order
direct diagram is much smaller than that of
Kr VIII. The difference is not recovered until
third order, after which the final correlat'ions be-
come comparable. Note that the true extent of the
correlation as exhibited in the final (second plus
higher orders) correlation energy does not change

TABLE IV. 4s third-order correlation energies (&& 10+ a.u.).

Diagram
Kr vru Mo xiv

3d4s kdk's 3d4s kfk'P 3d4s kdk's 3d4s kfk'P

Hole-hole

Hole-particle ~

Particle-particle
Single-particle

Ring

Total

A
J3
C
D

0.92
-1.96
-1.32
-2.09
-1.45
3.80
2.62
3.43
2.55
2.55
9.05

2.70
-2.52
-4.86
-3.64
-3.46

4.40
8.03
3.34
1.72
1.72
7.43

0.33
-0.44
-0.57
—0.39
-0.62

0.58
1.20
0.79
0.59
0.59
2.06

2.46
-2.34
-4.30
-3.00
-3.24

3.22
8.05
3.63
1.86
1.86
8.20

See Fig. 3.
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F 0

FIG. 3. Hole-particle and ring diagrams tabulated in
Tables IV and V.

appreciably for a given state of the two ions, only
the division into second and higher orders. Al-
though the second-order 4s energy is slightly high-
er for Kr VIII, the final r'esult is smaller than that
of Mo XIV because of smaller third-order effects.
The rate of convergence of the perturbation expan-
sion would thus seem to increase with increasing
nuclear charge.

For nth-order diagrams, we have found that
n-body interactions dominate the correlation-ener-
gy contributions. Thus, the convergence of the
perturbation series is a measure of the "many-
bodiness" of the system, or the complexity of the
interelectronic interaction. In the present case,
as the nuclear charge (a single independent-par-
ticle potential) increases, it tends to dominate
the (many-particle) interelectronic interaction,
making the independent particle (zeroth order) and
two-particle (second and parts of higher orders)
descriptions of the atom more accurate.

It was found in the calculation of these third-
order effects that the off-diagonal diagrams were
at least as important as the diagonal diagrams
when sums over all particle lines were carried
out. Thus, approximations for third-order dia-
grams based on summing only diagonal inter-

mediate states would yield poor results.
We were unable to devise a reliable method of

estimating the off-diagonal contribution, which in
some cases may be of opposite sign to the diagonal
contribution, producing a cancellation in their
sum.

In order to make the calculations manageable,
very restricted basis sets were used in the third-
order calculations. For each virtual-state sym-
metry, three bound and seven continuum orbitals
were used to compute matrix elements and con-
struct sums corresponding to the diagrams. Bound
states of higher principal quantum numbers were
included through an extrapolation scheme de-
scribed by Kelly. ' Continuum matrix elements
were computed numerically. The continuum ener-
gy range was chosen to. map the region where the
matrix elements were found to be largest in the
second-order calculation. Because of the large
summations and inherent cancellations involved
in computing these diagrams, these sums are ex-
pected to be less accurate than those of second
order. (A second-order calculation performed for
Mo XIV 4p with both the full and the restricted ba-
sis sets, however, gave results within a few per-
cent of one another. )

In Table VI we list the final values for the Sl -4s,
-4p correlation energies of Kr VIII and Mo XIv
including all second-order diagrams and major
third-order diagrams. It is clear that considera-
tion of third-order diagrams is essential if ade-
quate convergence of the perturbation series is to
be assured. Table VII compares ionization ener-
gies obtained from the Hartree-Fock method, "
many-body perturbation theory (MBPT) (present),
MCHF (Froese-Fischer), ' and the estimated ex-
perimental values where the relativistic shifts
were subtracted. Good agreement is observed be-
tween the MBPT, MCHF, and observed values for
Kr VIII, and between the MBPT and observed va-

TABLE V. 4P third-order correlation energies (&& 10 a.u.).

Diagram
Kr vga Mo mv

3d4P kdk'P 3d4P kfk's 3d4P kdk'P 3d4P kfk's

Hole-hole

Hole-particle

Par tie le-particle
Single-particle

Total

A
J3

C
D

0.96
-1.81
-1.22
-2.15
-1.39
3.18
0.49
3.74
2.54
2.54
6.88

1.16
-3.27
-2.20
-2.11
-1.40

4.54
0.90
2.59
1.33
1.33
2.87

0.33
-0.62
-0.40
-0.77
-0.52
1.08
0.24
0.94
0.73
0.73
1.74

0.78
—1.49
-1.05
-1.03
-0.73
1.27
0.56
1.21
0.60
0.60
0.72

See Fig. 3.
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TABLE VI. MBPT 3l4l' correlation energies (& 10 3

a.u.).
(a)

k k

Order 4s
Kr vHi

4p
Mo mv

3L4k k k
Second
Third
Total

-60.8
16.5

-44.3

-44.2
9.8

-34.5

-56.4
10.3

-46.1

-28.4
2.5

-25.9
(b)

lues for Mo XIV.

1V. MULTIPLET STRENGTHS

The line strength for a dipole transition between
an initial state 4,. and a final state 4 z is given by"

&= l(~, IDI~, & I', (30)

where D is the dipole operator
Nz

FIG. 4. (a) First-order correction to the Hartree-
Fock wave function involving correlation between the
4/' electron and a 3$ core state. (b) Diagrammatic
representation of the dipole matrix element.

The last term in Eq. (33) represents transitions
between virtual excitations. For the first-order
corrections illustrated in Fig. 4(a), (x~~r~x~& has
the form

(3I)
&g& II&lij & (35)

&+ lrl+~& =&+""lrl+„""&+&X„lrl+~&

+ &+~ lr lx~& + &x~ lr lx.&& . (33)

If X is taken as the first-order correction to the
Hartree-Fock wave function involving correlation
between the 4l electron and n= S core states, then

(34)X4r X3g4l X3P4l XM4r ~

where X»„. represents the correction to the zero-
th-order function, 4 "", due to correlation between
the 4l' electron and the 3I subshell. A typical dia-
gram is shown in Fig. 4(a).

TABLE VII. Comparison of MBPT ionization energies
@faith other sources.

Kr vm

4s
Momv

Hartree- Fock
MBPT
MCHF
Inonxel

obs

4.514
4.558
4.560
4.556

3.883
3.918
3.914
3.927

10.869
10.915

10.915

9.837
9.863

9.876

'See Ref. 12.

In the correlated case, we may write the
1s' ~ ~ Sd"4s and 1s' ~ ~ Sd"4P wave functions as
the sum of the Hartree-Fock function and a "cor-
relation" component

44, =44, +X4sHF

(32)
HF+~= +4p+ Xw ~

The dipole matrix element is then

The additional matrix element over denominator
causes these terms to be small compared to those
involving a Hartree-Fock hole wave function and
a correlation component. They have been neglect-
ed in the present calculation.

The diagram corresponding to the dipole matrix
element (i~r~ f& is shown in Fig. 4(b). Note that in
this case, f is not necessarily a virtual excitation,
even though it is directed upward. It may also be a
Hartree-Fock hole line corresponding to the Phy-
sical excited state. (In the zeroth-order case both
i and f are Hartree-Fock functions. ) Thus, the
Goldstone convention for labeling hole and particle
lines is not rigidly adhered to in dipole integral
correlation diagrams.

Diagrams corresponding to all nonzero first-
order corrections to the dipole matrix element
are shown in Fig. 5. Diagrams 5(I) and 5(II) repre-
sent correlation in the 4s initial state, and dia-
grams 5(III) and 5(IV) represent correlation in the

4p final state. A list of all possible excitations
associated with these first order diagrams is given
in Table VIII. Note that the excitation symmetries
involved in each class of diagrams are limited by
the angular momentum selection rules of the di-
pole interaction. Since the final-state wave func-
tion is required to have occupied Sl and 4p states,
many otherwise large Coulomb matrix elements
are eliminated. The factor in brackets in Fig. 5
is a normalization correction. The present form-
ulation of the line strength assumes normalized
total wave functions, whereas in the perturbation
theory each occupied and virtual orbital is indiv-
idually normalized.
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s, 3&
4P &k,

k

"4s

& 3f 4s (sr (
4pk &

=Z & kf r[3f &
k 3X 4$ 4p k

Class Diagram
Core
state

Excitation
symmetry

TABLE VIII. Angular momentum combinations for
virtual excitations occurring in Fig. 5.

4P ik II

4'"

s'k 3g
& 3f 4s isr

i
k4p &

& k/ r/3f &
k ~3/ ~4s ~k 4p

3g ik jk 4p

!~k
4S /k I

"3E

& k 4s (7r) 4p 3f &=Z &3f r k &
e4 p' e3f- ek E4-s

4p ]s

4
jK

"3E

&4s k ls'I4p 3f &=g &3f r k&
k 64rr+ e3f ek 4s

FIG. 5. Correlation diagrams for the line strength.

& 'P4s ( r[$ 4
& = q & Ir4sl r I Irk,

&+I+II+III+IV)

I
II
II
I
I
II
II
I

III
III

IV
IV
IV
IV
IV
III
III

B
C
D'

F
G

I
J
K
I
M
N
0
P
Q
R
$
T

3d
3d
3d
3d
3P
3P
3P
3P
3s
3s
3d
3p
3s
3d
3d
3P
3P
3s
3d
3P

p
f
p
f
S
d
S
d

p
p
p
S

p
p
f
S
d

p
f
d

Correlation corrections to the transition inte-
gral were computed using the same virtual basis
sets as the correlation energy calculation. The
results are given in Tables IX and X. Table IX
lists the correlation contributions to the transi-
tion integral where correlation in the 4s state is
considered and also lists similar data for the 4p-
state correlation. Table X summarizes the cor-
relation contributions to the transition integral,
and gives the resulting multiplet strengths.

The dominant excitation contributing to the 4s-
4p multiplet strength correlation was found to be
Sd4s- kf4p (diagrams D and 0 in Table VIII),
which was also the most important one for the
ground-state ionization energy calculation. Be-
cause of the dipole selection rules, the excitation
pair 3d4p- kdk'p, important in the 4p correlation
energy, does not contribute. Cancellation between
contributions to the dipole matrix element of op-
posite sign was observed, with the final correla-
tion component being approximately equal to the
sum of diagrams D and O. For correlations in the
4s initial state, the general pattern is for the ab-
solute magnitudes of the diagrams to decrease as
the ionic charge increases. For the 4p final-state
correlations, the major contribution decreases
(diagram 0 in Table VIII), but lesser diagrams in-
crease. In all cases, the normalization correc-
tions were found to be small. In KrVIII, the final
normalization correction was 1.007, in Mo XIV it
was 1.005.

The present calculation yields multiplet strengths

in excellent agreement with the multiconfiguration
Hartree-Fock results of Froese-Fischer. " Exact
agreement is not expected due to the ambiguity be-
tween two- and three-electron contributions in the
MCHF data, as well as the contrasting theoretical
formalisms. The present calculation is limited to
two-body correlation effects in initial and final
states, with sums over all possible excitations.
In the MCHF calculation, the 3d' core was partial-
ly relaxed so that the final 3d wave function was
allowed to differ from that of the other nine, pro-
ducing a 3d'3d' 'S core instead of a 3d"'8, in which
all 3d wave functions are the same. Such a core
relaxation would correspond to three-body effects
in a perturbation series. The difference in theo-
retical methods should be more apparent in the
neutral end of the sequence, where correlation
effects are most pronounced.

A useful quantity in astrophysics and plasma
physics is the oscillator strength f defined as'4

f= l(~~lg)&. (36)

A comparison of theoretical and experimental f-
values for the Cu-I isoelectronic sequence is shown
in Fig. 6. Clearly, there is a large systematic
discrepancy between the best theoretical calcula-
tions and beam-foil experimental data for ions
heavier than zinc. This large disparity is sur-
prising for a system with only a single valence
electron outside a closed-shell core with different
principal quantum numbers and was a motivation
for the present work. Although inclusion of cor-
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TABLE IX. Correlation corrections to the radial dipole matrix element due to first-order
correlations in the 4l wave function (& 10 a.u.).

Diagram
4s correlation

Kr vnr Mo tv Diagram
4p correlation

Kr mr Mo xiv

A
B
C
D
E

G

H
I
J

Total

-0.935
-1.021
-1.814

-15.71
0.210

-0.119
-0.829
-0.130

0.043
-0.199

-20.50

-0.139
-0.906
-0.214
-9.097

0.138
-O.ill
-1.224
-0.061

0.036
-0.164

-11.74

K
LI
N
0
P

R
S
T

Total

-1.504
-1.709

0.047
-3.022

-26.74
-0.147
-1 732
-0.091
-1.665

0.024
-36.54

-1.362
-1.524

0.017
-0.730

-14.68
-0.100
-1.274
-0.081
-1.154

0.017
-19.87

'The Hartree-Fock integral is positive.

relation effects does reduce the Hartree-Fock
values somewhat, especially at the neutral end,
there still remains a (10-20)qo systematic dis-
crepancy which does'not appear to be explained
by higher-order theoretical effects. The excellent
agreement between Froese-Fischer's MCHF data"
and the present MBPT values, obtained by quite
different theoretical formalisms, is a strong in-
dication that the theoretical multiplet strengths
have converged.

It is highly unlikely that the problem has its ori-
gin in relativistic effects on the radial wave func-
tions. Younger and Weiss" have studied the limit-
ing case of the hydrogen isoelectronic sequence
using exact solutions of the Dirac equation for a
particle in a Coulomb field. Deviations of the line
strengths from nonrelativistic values rarely.
amount to more than a few percent at Z = 50, and in
no case do they change the nonrelativistic f by the
30%%uq that would be required in the Cu-I sequence.
In many electron atoms, relativistic effects will
be less serious than in the hydrogenic case due

to the screening effects by the other electrons.

Younger and Weiss" have found that an excellent
approximation to the Dirac-Hartree-Fock line
strength may be obtained by multiplying the non-
relatlvlstlc value by the l atlo

c,= s„,g)/s„„.„„g), (3V)

where SH„, is the hydrogenic relativistic line
strength and SH, is the nonrelativistic value.
The charge is the full and not screened charge of
the nucleus. For Kr VIII and Mo XIV these cor-
rection factors are 0.978 and 0.970, respectively,
producing "relativistic" multiplet strengths of
3.66 (Kr vm ) and 1.V8 (Mo XIV ).

An explanation of the continuing discrepancy has
been proposed by Younger and Wiese' in an exten-
sive discussion of the beam-foil method for deter-
mining lifetimes. It is well known that, tollowlng

Cu Sequence

1.0 — 4s S—4p P'

0.8—
o

its

TABLE X. MBPT transition integrals and multiplet
strengths.

0.6—
f S

Radial
Matrix
Element

Normalization

Multiplet
Strength

~See Ref. 11.
b See Ref. 12.

Hartree- Fock
4s correlation
4p correlation
Total

IIartree- Fock
MBPT
MCHFb

Kr viu

0.813
-0.021
-0.037

0.755
1.007
3.96
3.37
3.40

Momv

0.579
-0.012
-0.020

0.547
1.005
2.01
1.78
1.82

0.2—

I

0.008

PbAuW Xe Sn Mo

I I I

I I I I

0.016 0924

KrBr As Ga Zn Cu

I I I I I I

I I

0.032

FIG. 6. Systematic trend for the oscillator strength
of the 4s S-4P P resonance transition of the Cu iso-
electronic sequence: 4, critical compiliation (Ref. 18);
~, beam-foil data: P, Ref. 19; E, Ref. 20; I, Ref. 2];
D, Ref. 16; A, Ref. 22; S, Ref. 17; A, Ref. 23; +, HF,
(Ref. 11); solid curve, MCHF (Ref. 12); *, semiempiri-
cal (Hef. 24); x, MBPT (present).
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excitation by the foil, many excited states other
than the one being monitored are populated. Some
of these states may decay directly or indirectly
into the primary level, repopulating it and alter-
ing the shape of the decay curve from that of a
single exponential. These "cascades" are usually
accounted for by decomposing the decay curve
into two or three exponential decay components.
One of these, the primary, corresponds to the
state under study, and the remaining one or two
account for the repopulating cascades. It has been
shown, however, that the number of exponentials
involved in the actual decay may number ten or
more, and that unless adequate attention is paid
to all of them, an erroneous primary lifetime
will result. There is a subtle masking occurring,
so that while the curve may aPPear to be a single
exponential, it may actually be a 30-exponential
curve constructed from lifetimes quite different
from those extracted from a two- or three-expon-
ential fit.

Based on atomic-structure considerations, they
propose that the disagreement between the theo-
retical and experimental lifetimes and multiplet
strengths is due to the presence of these many re-
populating cascades, and that the decomposition of
an experimental curve into two or three exponen-
tials is insufficient to extract the true primary
lifetime.

~ xzAs + ~ &ala (Al)

E2,$~ —(t+ 2 J~,
—K~)P~ —2e 2~/~, + e mP ~ ~

(A2)

where e»= e» is the off-diagonal Lagrangian mul-
tiplier necessary to ensure orthogonality between

p~ and P~. It is a simple matter to show that

Following Hoothaan, we replace the off-diagonal
terms with coupling operators

2L.=ly &&y I!J +!J ly &(~I,
f.=ly„&(y„l.'J~+!J-Iy &&y„l,

2~,=Iy &&y I-,'K +-,'K Iy„&&y„l,

M, =ly &(y„l-,'K +-,'K ly„&(y„l,

(A4)

so that the pseudoeigenvalue equations (A1) and
(A2) become

F.4x -&ulnas (A5)

1s'2s. In this case there is only one closed-shell
orbital, p„„and one open-shell orbital, p~. The
Hartree-Fock equations for g„and p~ are

F„Q„=(t+ 2 J„-K„+J —,'K,—)P„

V. SUMMARY

Many-body diagrammatic perturbation theory has
been applied to the calculation of ionization ener-
gies and line strengths for two highly ionized mem-
bers of the copper isoelectronic sequence. The
close agreement between MCHF and MBPT line
strengths support the conclusions of Younger and
%iesee that the reason for the continued discrep-
ancy between theoretical and beam-foil experimen-
tal data in the Cu sequence is primarily experi-
mental in origin, and not due to the neglect of cor-
relation effects.

Fo42 = &224as (A6)

o= ~+2~xs K~+ 4L c 2Mc ~ (A8)

We now define a unified Fock operator F as

E=t+2J~ -K„—(J~ —,'K~)+2(2L M )

where the open- and closed-shell Fock operators
Eo and E, are

1"c = t+ 2t~ Kx +~a &Km+ 4L, o 2Mo
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APPENDIX' EXAMPLE OF A UNIFIED HAMILTONIAN
FOR THE 1s2 2s CONFIGURATION

+ 2(u„-M,)

Direct calculation verifies that

Als 1141s t

Fd~=n24a

where

q, =~„+(y„l2J -K ly„&,

q, = ~.,+&y„lJ

(A9)

(A10)

(A11)

(A12)

(A13)

As an example of a unified Hamiltonian we con-
sider the ground state of a lithiumlike atom:

which are the same equations as if one had applied
Eq. (5) directly.
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