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A simple model for the effects of polarization is introduced for the study of positron-atom interactions. The
model is also used to study positronium-atom interactions by treatment of such systems as the interactions of
positrons with polarizable anions. The model depends upon the average dipole polarizability of the atom (or
ion) and one disposable parameter, -an effective radius. The effective radius is determined by fitting
calculated scattering lengths for H and He and the calculated positronium affinity of H to their well-
established values, and by interpolating on the ionization potentials for other atoms. The model produces
quite satisfactory phase shifts and cross sections for positrons scattering elastically off H, He, Ne, Ar, Kr,
and Xe. The model appears to be equal or superior in predictive power to the much more elaborate polarized-
orbital model recently formulated by McEachran et al. The model predicts that none of the rare-gas atoms
studied will bind a positron. As a measure of how far from binding they are, negative values of the positron
affinity are devised by appealing to effective-range theory and a heuristic argument involving the dependence
of the calculated scattering length on the disposable parameter in the model.

INTRODUCTION

The concept of modeling the response of a com-
plicated electronic system to an external per-
turbation has attracted attention from the early
days of quantum mechanics. The attractive fea-
tures of the concept include its numerical and
conceptual simplicity, and the great variety of
systems to which it can be applied. In the present
series of papers we are concerned with a particular
application: the interactions of the positron and
of positronium with neutral atoms.

Our understanding of the chemistry of positron-
ium has been advanced very markedly in the last
decade, principally by experimentalists who are
measuring the rate constants for the ortho-to-para
conversion of positronium by a large number of
molecules in a variety of gaseous and liquid en-
vironments. A detailed theoretical understanding
of this process is just beginning to appear, ** but
progress in this area is slow and uncertain owing
to our extremely limited knowledge of the inter-
actions of positron and positronium with simpler
systems—atoms.

This is what we know well about binding energies
and phase shifts for low-energy (=< 10 eV) positron-
-and positronium-atom interactions: the binding
energy of positronium hydride (1.02 eV)?; the s-,
p-, and d-wave phase shifts for positron-hydrogen
elastic scattering, 7 and s- and p-wave phase
shifts for positron-helium elastic scattering.®°®
These values are probably accurate to within 1%.
Less well known (5%—209% probable uncertainty)
are the cross sections for positrons scattering
off neon, argon, krypton, and xenon, !°*!® and the
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positronium binding energies for the halogen
atoms.'®

In the present series of papers we use some of
this information to calibrate a model which we
can apply to other atoms, calculating binding
energies and scattering cross sections of (hope-
fully) about the same quality. Specifically, we
calibrate the model with three well-known num-
bers: the binding energy of positronium hydride,
and the scattering lengths for positrons off hy-
drogen and helium atoms. The utility of the model
is then established by calculations of the cross
sections for positrons off hydrogen and the noble
gases (this paper) and calculations of the posi-
tronium affinities of the halogen atoms (next paper
in this series). In subsequent papers, the model
will be applied to many other atoms, thus mapping
out the main features of positron-atom interactions
for the bulk of the Periodic Table with a uniform
theory. We will then be in a position to improve
our initial attempt at understanding positron-mole-
cule interactions.'?

MODEL

We integrate a Schrddinger equation for the
positronic-orbital/scattering wave O 4

<_§V2+§-—;J,(r)+V,ol(r)—e,,>¢,(ﬂ=0. (1)

J; is the Coulomb potential for the ith electronic
orbital of the isolated atom,

I ) = f 4;:(1”%1_[ dr,; 2)
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€, is either the (-) binding energy of the positron
to the atom or 1/2k?, the positron incident energy,
depending upon whether a bound or scattering
positron is being considered; and V, is a po-
tential to account for the distortion of the elec-
tronic orbitals due to the presence of the positron.
This polarization potential embodies the model.
We calculate the static part of the potential,
-27;J,, trom tabulated Hartree-Fock wave fun-
ctions, '""?° and we model the polarization part: a
specification of V,, constitutes a model. Posi-
tronium-atom interactions are investigated by
applying this procedure to atomic mononegative
ions.

The long-range behavior of V,, is well known.
Its dominant term is —3a/7*, where a is the
average static dipole polarizability of the atom.
The next most important term is of the order of
¥"8, which we ignore. The short-range behavior
of V,, is not well known. It has important non-
adiabatic components, and its determination, even
approximately and for simple atoms, requires a
major computational effort.?2?

Our model is extremely simple:
-a/2r* r=v,

Vool (r)= (3)

4
- a/2rk v<w,.

The polarizability is the best value available?3 ¢
and 7, is a disposable parameter determined for
each atom as described below.

Any number of other functional forms than (3)
above might have been used. The most important
feature of any model for positron-atom interactions
is to have the correct long-range behavior, as in
(3). This was recognized very early by Ore®®; it
was applied in further calculations by Lee, ?® and
it has been emphasized more recently by several
other groups.?™

The only question has to do with the short-range
behavior of V ;. In some exploratory calculations
we used, instead of Eq. (3), a form —aw@)/2r*
where w, a cutoff function, was taken to be

w('r):(l—e'('/'om)"/N, @)

We found that, for each fixed value of N >0, we
could find a value for 7, which gave the desired
scattering length for positron-hydrogen scattering.
However, the agreement between our calculated
s-wave phase shifts and those of Bhatia et al.® for
hydrogen for <1 a.u. improved as N was made
larger; we therefore took the form of w as N in-
creases without limit:
_Nee_ /7))t r<wr,

(5)

w
1 r=27,.

This choice gives Eq. (3), the polarization potent-
ial used in the rest of our calculations.

Equation (1) is integrated outward from the
origin with the method of Bulirsch and Stoer, 3
using a subroutine coded by Ramaker. For the
scattering calculations, the integration is carried
out until the scattering wave achieves its asymp-
totic form as determined by the convergence of
phase shifts to five significant figures. Calcu-
lations are performed with our model for the
waves [=0 to 3 (exception: 2 for H and He) and
the rule of O’Malley et al.*® is used for I=4 to 6
(3 to 6 for H and He). For bound-state calculations
the integration is carried out until the positronic
orbital achieves its asymptotic form.*® The value
of €, in Eq. (1) which eliminates the diverging
component of ¢, is determined by a method due
to Schrader and Prager.%*

HYDROGEN-POSITRON

Hydrogen does not bind a positron®®3¢; the scat-
tering is only elastic from £2=0 up to £=0.707 a.u.,
the threshold for positronium formation. The
s-wave phase shifts were given with good accuracy
by Schwartz* whose numbers were later confirmed
and refined by Bhatia et al.> We take these results
together with those of Bhatia, Temkin, and
Eiserike® for the p wave and those of Register and
Poe” for the d wave, and the approximation of
O’Malley et al.* for I=3 to 6, and from them cal-
culate the cross section for comparison with our
model. For the scattering length, we take as our
standard —2.1036 a.u., the value of Houston and
Drachman.*”

The value of a, the dipole polarizability in our
model [Eq. (3)], is known from elementary atomic
theory; the value of 7, which reproduces the scat-
tering length is 2.399 a.u.

Our results for hydrogen are shown in Figs. 1
and 2 where they are compared with the accurate
values, and with those given by the adiabatic and
polarized-orbital approximations. (A key to all
the figures is given in Table I.) Our cross sections
in Fig. 2 cannot be distinguished from the accurate
values from k2 =0-0.25 a.u. beyond which they are
close to the polarized orbital results. No bound
state exists for our potential.

HELIUM-POSITRON

We know that helium is definitely not able to
bind a positron3** despite some confusion on this
point.****? The positronium formation threshold
is =1.145 a.u.

Following Campeanu and Humberston, ° we take
as our standard for comparison the s-wave phase
shifts of Humberston, ® the p~wave results of
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FIG. 1. The s-, p-, and d-wave phase shifts for posi-
tron-hydrogen elastic scattering as functions of positron
momentum k2 (s wave) ork? (p and d waves). See Table
I for a key.

Campeanu and Humberston, ® and the highest d-
wave results of Drachman._43 For the cross-
section calculation, we augment these with phase
shifts for I=3 to 6 with the rule of O’Malley

et al.®® Although the resulting cross sections are
in good agreement with the observed values of
Canter et al,'®!* these results should not nec-
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FIG. 2. Cross section for positron-hydrogen elastic
scattering. The point indicated by (-) is fitted; the re-
mainder of the PW curve is calculated from our model.
Ps indicated the threshold for positronium formation.
See Table I for a key.

essarily be regarded as the ultimate choice, for
there remains significant disagreement between
these results and other apparently accurate cal-
culations and observations.!®*5"5° The somewhat
confusing state of affairs, portrayed in Fig. 3,
has been analyzed by Humberston®* who argues
that the results of Canter et al.’®* and of Cam-
peanu and Humberston®® are the most accurate.
The calculations of Amusia et al.*” seem to agree
closely with the calculations of Humberston and
Campeanu®® and the measurements of Canter

et al.*'' The measurements of Stein et al.'® seem
to be in good agreement with those of Burciaga

et al, " the calculations of Aulenkamp et al.,* and
the observations of Jaduszliwer and Paul*® are
somewhat at variance with each other and the
other results as well. All these results are shown
in Fig. 3. {Some new experimental results (w. G
Wilson, J. Phys. B 11, 1629 (1978)] and analysis

[T. C. Griffith et al., J. Phys. B 11, L635 (1978)]
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FIG. 3. Cross section for positron-helium elastic
scattering. The point indicated by (¢) is fitted, the re-
mainder of the PW curve is calculated from our model.
Ps indicates the threshold for positronium formation.
See Table I for a key. The adiabatic results are not
shown in the inset for clarity.

indicates the result of Refs. 8—11 are best.}

The polarizability of helium is well known from
quantum calculations: 1.383a,.5*"°® The value of
7, Which reproduces Humberston’s® scattering
length (-0.472a,) is 1.774a,. This parameter pro-
duces cross sections (Fig. 3) and phase shifts
(Fig. 4) in quite remarkable agreement with the
results of Humberston® and Campeanu and Hum-
berston® from %2 =0 (the one fitted point) clear
through the Ramsauer minimum and up to the
positronium formation threshold. The agreement
is particularly apparent in the phase shifts, Fig.
4. One should note that the Campeanu-Humberston
phase shifts for /=1 can probably be improved a
little by including p-type targets in the wave func-
tion for the scattering problem.®

We find no bound state for our potential.

HYDROGEN-POSITRONIUM

The positron will bind to any negative ion, of
course. The question is, is the bound state below
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FIG. 4. The s-, p~, and d-wave phase shifts for
positron-helium elastic scattering as functions of po-
sitron momentum % (s wave) ork? (p and d wave). See
Table I for a key.

the threshold for positronium split-off? If so,
the positronium-atom complex is stable to dis-
sociation, and the positronium affinity Ap

Apg=A,—¢,-6.8 eV 6)

is positive. A, above is the electron affinity of the
atom in question, €, is the eigenvalue calculated
by solving Eq. (1) for the lowest bound state, and
6.8 eV is the binding energy of positronium, Ps.
The eiectron affinity of the hydrogen atom is
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extremely well known from quantal calculations.®
It is 0.754 eV. Similarily, an accurate value for
the polarizability of H" is also provided by calcu-
lations®*: 206.1a3. The positronium affinity in
Eq. (6) is known with good accuracy from the cal-
culations of Ho® and Page and Fraser®’; it is

1.02 eV. These numbers and Eq. (6) lead one to
-0.25982 a.u. as the desired value of €, in Eq. (1).
This number is obtained if the parameter 7, is
given the value 5.621a,.

This value gives €,=-0.17545 for the lowest /=1
solution of Eq. (1). Equation (6) then gives the
positronium affinity for a 2p positron as -1.27 eV;
this indicates there is no bound excited state of
positronium hydride.

The Hartree-Fock wave function for H", needed
to calculate the term —E,J, in Eq. (1), is not
available in the literature as far as we know. None
of the standard tabulations of negative ion wave
functions!™?* include H*, presumably because the
self-consistent-field iterative process diverges
for this system. A function purported to be the
Hartree-Fock wave function for H", %' is in fact
not, being infinite at the origin. Making an obvious
correction in the reported parameters (changing
each reported parameter n; ton; — 1) gives a func-
tion which is finite at the origin but does not ac-
curately satisfy the cusp condition for electron-
proton coalescense there, and hence does not
satisfy the Hartree-Fock equation at that point.

For this reason we have calculated a Hartree-
Fock wave function for H. For a wave function
of the Hartree-Fock form

¥(r,,T,)= () o(r,),
8r) =3 X,(r)C;, ()

i
(Zpi)"l“/z
[4n(2n,)1 ]2

we minimize the quantity (¥ |H |¥)/{¥ |¥) directly
as a function of the parameters C,, thus avoiding

X,r)= Y'vle i,

TABLE II. Hartree-Fock wave function for H-,

Parameters [Eq. (7)]

n; P C;

1 0.3 0.256 42
1 0.7 0.489 01
2 0.7 0.134 48
1 1.3 0.24819
2 1.3 -0.032 65
Total energy =-0,487909 2

Potential energy

Kinetic energy =.=2.000090
Orbital eigenvalue=—0.046 306
Orbital cusp =-0.999179

any self-consistency instabilities. H is
H==3V2—3Via1/v, = 1/7,+1/7,,. (8)

Our function is given in Table II. The basis set

is that of Curl and Coulson, ® with their »n; values
increased by one each. Our function is normalized
to unity.

HELIUM-POSITRONIUM

This system, as well as the other noble-gas
atom-positronium systems, is beyond the scope
of our model. In order to study atom-positronium
systems with our model, we must first solve Eq.
(1) for the positron interacting with the polarizable
mononegative atomic ion, and then we must use
Eq. (6) to calculate the positronium affinity of the
neutral atom. It follows that the atom must have
a stable mononegative ion, and that the Hartree-
Fock wave function for this ion must be known in
order for our model to be applicable. For helium,
these necessary conditions are not satisfied, so
we have nothing to say about this system.

It has been the object of only one quantum-
mechanical calculation to our knowledge, that of
Clary, ® that gives an extensive correlated con-
figuration-interaction wave function appropriate
for a bound state. However, Clary’s calculated
energy for the system is 1.51 eV above that for
separated He and Ps atoms.

EXTENDING THE MODEL TO OTHER ATOMS

The values of 7, obtained as described above are
(1.774a,, 2.399q,, 5.'621a0) for (He, H, H'). These
do not correlate well with any measure of the sizes
of these systems which are also available for most
other atoms and their mononegative ions. For
example, the accepted values of the “chemical”
radii (crystalline radius for He, covalent radius
for H, ionic radius for H) are (1.76a,, 0.65a,,
2.91a,).%® The electrical polarizabilities and
diamagnetic susceptibilities of atoms can be shown
on the basis of simple and approximate arguments
to vary as the cube and square of the atomic radii,
respectively.®® The radii calculated from polar-
izabilities are 0.69a,, 1.02a,, 3.71la, and those
from susceptibilities are 1.55a,, 1.93a,, 3.98a,,
respectively; the latter set of values correlates
fairly well with those of our parameter 7,; un-
fortunately, the diamagnetic susceptibilities are
not generally available for atoms and their mono-
negative ions, which are usually paramagnetic.

A similar problem obviates the use of radii from
kinetic theory. ’

It appears that we must search further for a
physical property to which we can relate our
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values of the parameter 7,. To be useful in deter-
mining 7, for other atoms and mononegative ions,
the property must be accurately determined for
these species. The polarizability is already a
part of our model; another property which is a
measure of how strongly a polarizable atom (or
ion) attracts a positron is the ionization potential:
a loosely bound electron (low ionization potential)
contributes more to attracting a positron than does
an electron tightly bound to its atom (high ioniza-
tion potential).

The depth of the polarization potential well at
the origin, —a/273, should relate directly to the
ionization potential, and a~7Z,% so we might rea-
sonably look for an empirical relationship between
1'(')2 and the ionization potential which is linear.
Fitting our three values of 7, (1.774a,, 2.399a,,
5.621a,) to such a relationship,

7;?=A+B(P)° ©)

we find, for the ionization potentials 24.586,
13.599, 0.754 eV, *® the values

A=0.026 37, B=0.007 308, C=1.1510, (10)

for P, in electron volts and #, in atomic units. Our
three systems (He, H, H") are very different from
each other in size, polarizability, and ionization
potential. Therefore, the near linearity (C~1)
found in Eq. (9) suggests our heuristic notions
leading to it have some merit, and that our inter-
polation scheme is reasonably safe. We are en-
couraged to proceed.

First ionization potentials of neutral atoms and
electron affinities of mononegative ions are well-
known and tabulated, 5% so this property, together
with the polarizabilities®®?* and Hartree-Fock
wave functions, !™?° provides us with all the in-
formation we need for applying our model to the
upper half of the Periodic Table. Our model is
well conditioned in the sense that the three values
(two ionization potentials and one electron affinity)
used to evaluate the constants in Eq. (9) very near-
ly span the set of these quantities for the whole
Periodic Table, and one (the ionization potential
of H) is near the middle of that range.

NEON-POSITRON

There is no experimental evidence that neon
binds a positron, and there is a strong theoretical
evidence that a bound state does not exist.?® The
elastic-scattering cross section has been mea-
sured recently below the positronium threshold
(=1.0416 a.u.) by four groups: Canter et al,*® 1%
Jaduszliwer and Paul,*® Stein et al, '® and McNutt
and Coleman.®® There is a little disagreement
among these results, which are shown in Fig. 5.
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FIG. 5. Cross section for positron-neon elastic scat-
tering. Ps indicates the threshold for positronium for-
mation. See Table I for a key.

Several variants of the polarized-orbital approxi-
mation for the positron-neon problem are in the
literature, and elastic-scattering phase shifts
below the positronium threshold are reported by
Massey et al,™ Gillespie and Thompson, ™
Montgomery and LaBahn, " and McEachran

et al.™ Among these polarized-orbital calcula-
tions, the formulation of McEachran et al is seen
to be the most accurate. These results are also
shown in Fig. 5.

The polarizability of neon, 2.663a3, is very well
established® ™7 ag is the ionization potential,
21.564 eV. The value of 7, from Eq. (9) above is
1.90a,. These values produce the curve labeled
“PW” in Fig. 5, which is in very good agreement
with the observations of Stein et al, '® up to the
positronium formation threshold. {New theoretical
results by Campeanu and Dubau [J. Phys. B 11,
L567 (1978)] are slightly higher than ours and also
in good agreement with experiment'® for 2= 0.4,
but are significantly below all other results for
0.1<k<0.3.}

Exploratory calculations show that there is
essentially no freedom in adjusting the value of 7,,.
Variations of only 1% or 2% do not change the
agreement on one side of the Ramsauer minimum
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but make it worse on the other side.

No bound state exists for this potential. The
calculated scattering length —-0.542a, is in exact
agreement with the value given by Tsai et a

(-<0.53£0.15)a,.

7
L

Jaduszliwer and Paul*® have extracted from
their data values of the phase shifts for the s, p,
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FIG. 6. Phase shifts for positron-neon elastic scat-
tering. The d-wave phase shifts of Montgomery and
LaBahn (Refs. 72, 73) are close to those calculated in

the present work. See Table I for a key.
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and d waves for five positron energies below the
positronium formation threshold. These are com-
pared with our calculations in Fig. 6, where a

.disagreement is seen only for the p wave; this is

necessarily the source of the discrepancy between
the two sets of cross sections (Fig. 5). The same
pattern is shown for helium, Figs. 3 and 4.

ARGON-POSITRON

Existence of a shoulder in the positron lifetime
curve for argon at certain temperatures and pres-
sures has prompted several experimentalists to
conjecture that the positron forms a bound state
with one or more argon atoms.”®8% Elastic-scat-
tering cross sections below the positronium
formation threshold have been measured by sev-
eral groups: down to 2=0.543 a.u. by Jaduszliwer
and Paul'®; down to £=0.383 a.u. by Canter
et al.*>'+%; and down to 2=0.169 a.u. by Kauppila
et al.'* Only the observations of Kauppila et al.
go to an energy sufficiently low to reveal a pro-
nounced Ramsauer minimum.

The polarizability®® is accurately known™ 7 to
be 11.06a3, and the ionization potential, 15.759 eV,
yields the value [Eq. (9)] 2.23a, for 7,.

We calculate a scattering length of —4.11a,, and
find no bound state. The analysis of Orth and
Jone’s*® measured lifetime dependence on density
and dc electric field gives the cross section for
thermal positrons as 33+ 5 in units of #a? which
suggests + (2.80+0.20)aq, for the scattering length.
Tsai et al.™ report (-2.8+0.7)a,; recent data and
analysis by Lee and Jones®! gives a scattering
length of (~4.4+0.5)a,; and analysis by Hara and
Fraser® of experimental data gives (-3.5+0.5)a,.
Our value, —4.11a,, is seen to be in good to ex-
cellent agreement with these experimental values,
and we take this and the failure of our potential
to support a bound state to be very good evidence
that one does not exist for a single argon atom.
The polarized orbital method of McEachran et al.®
gives a,=-5.30a,.

Our calculated cross sections and the several
experimental measurements are shown in Fig. 7.
Agreement between our results and the measure-
ments of Kauppila et al.** are seen to be perfect
below £~0.4 a.u. and about 5% too low from there
out to the positronium formation threshold. Agree-
ment between our results and recent preliminary
measurements of McNutt and Coleman®® are ex-
cellent. There is some leeway in the value of 7;
agreement with the measurements of Kauppila
et al. does not deteriorate significantly until 7,
rises above 2.33a,, which is almost 5% larger
than the value given by Eq. (9). The dot-dash
curve in Fig. 7 is for 7,=2.33a,. :
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A polarized-orbital calculation by Gillespie and
Thompson™ has only three calculated points in
the inelastic region; an older polarized-orbital
calculation by Massey et al.” shows a rather deep
minimum of 0~1.27a? at #~0.25 a.u. and a scat-
tering length of +2.5a,, somewhat unlike our re-
sults or those of Kauppila et al. in Fig. 7. The
cross-section curve of Montgomery and LaBahn™®
shows a pronounced Ramsauer minimum but is
otherwise unlike our present results or the ob-
servations of Kauppila et al. Very recent polar-
ized-orbital results® are also shown in Figs. 7
and 8.

Phase shifts for the s, p, and d waves are dis-

FIG. 7. Cross section
for positron-argon elastic
scattering. The dot-dash
curve (... — ...) is the re-
sult of the present model if
the parameter 7; is in-
creased about 5%. The ex-

perimental results of
McNutt and Coleman (Ref.
53) are preliminary. See
Table I for a key.

played in Fig. 8; the data of Jaduszliwer and Paul'?
and Hara and Fraser®® are based on the older ex-
perimental work. The discrepancy between our
cross sections and this older work, evident in

Fig. 7, is reflected in Fig. 8.

KRYPTON-POSITRON

If argon binds a positron then krypton does per-
force because of its greater polarizability (16.74a3,
Refs. 23 and 24); similarly, krypton may bind even

if argon does not.

Cross sections have been measured by two
groups'*1%44 and have been calculated by only one
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FIG. 8. Phase shifts for positron-argon elastic scat-
tering. The solid curves labeled A and D are extreme
models of Hara and Fraser (Ref. 82). See Table I for
a key.

group.” The experimental work is recent, but the
theoretical work is older—a polarized-orbital cal-
culation. The agreement between the observations
of Kauppila et al. and the calculation of Massey
et al. is good above £~0.3 a.u. and only modest
below that.

The polarizability and ionization potential (13.999

eV) gives 7,=2.37a, from Eq. (9), the curve “PW”
in Fig. 9 results. Our cross sections, like those
of Massey et al., are the right magnitude but dis-
agree in trend with those of Canter et al. A rough-
ly similar relationship between our cross section
and those of Canter et al. is seen for argon, Fig.
7, neon, Fig. 5; and helium, Fig. 3; so the re-
petition for krypton is not discouraging. The pres-
ent work agrees with the observations of Kauppila
et al. better than with that of Canter ef al. The
present model gives a scattering length of —-7.69a,,.

As 7, is decreased, the resulting scattering
length falls without limit, and around 7,~1.7 it
changes sign and continues to fall. This singularity
marks the appearance of a bound state, and it is
accompanied by a large and sudden increase in the
calculated cross section. Values for 7,=1.18a,,
1.11a,, and 1.05a, (for which the scattering lengths
are ~2.5a,, 0.6a,, and -1.1a,) are shown in Fig. 9
for the range of momentum %2=0.3 to 0.7 a.u. (the
inelastic part of the observation of Canter et al.)
They are markedly larger (0 ~30ma? to 607a?) then
the observed values (0~3.57a2 to 8maZ), and one
might reasonably doubt the existence of a bound
state on the basis of this discrepancy.

XENON-POSITRON

We know of no previous calculations on this
system. Measured cross sections are reported
by Canter et al.'®!! and by Stein et al.'? The
polarizability is 27.29a3 (Refs. 23 and 24) and
ionization potential (12.130 eV) gives 7,=2.54a,
from Eq. (9), which yields curve “PW” in Fig. 10.
Figure 10 does not show the preliminary measure-
ments of McNutt and Coleman, 5 which lie about
10% below the points of Canter et al. The present
work agrees more closely with the preliminary
results of McNutt and Coleman than with the other
observations.

The situation is similar to that for krypton in
that calculated and observed cross sections agree
in general but not in detail, although the overall
agreement between the present results and the
experimental results is rather better in the case
of xenon compared to krypton. The calculated
scattering length —20.3qa, is so large (negative)
that one knows the onset of a bound state is not
far away. Our calculations show this occurs as
¥, falls below ~2.0 a.u.; and our calculations give
cross sections for 7, below the critical binding
value which are very much greater than those ob-
served. As for krypton, we take this as evidence
that a bound state for the positron-xenon system
does not exist.
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NEGATIVE POSITRON AFFINITIES

There is only limited physical content in the
notion of “electron affinity” for an unbound elect-
ron, yet many negative values may be found in the
compendia of Massey®* and Hotop and Lineberg.%®
Negative values arise in model-dependent studies,
such as isoelectronic extrapolations, where a
parameter in a formula has a value defining a
system which itself is physically unbound; quan-

tal calculations on an atom and its mononegative
ion can yield a negative electron affinity upon
subtraction of the two calculated energies. Within

this limited context, the notion of negative affini-
ties has some utility as a relative measure of how
far an atom is from binding. Another measure is
the critical mass for binding, but this measure is
not of interest to us here because 7, is mass de-

pendent. Consequently, #, values for positrons
should not be expected to “work” (i.e., give the

known values of critical masses correctly) for
heavier particles.

Positron and positronium affinities, both posi-

tive and negative, are an essential ingredient in
the parameterization of a theory of the structures
of positron-molecule and positronium-molecule
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complexes.”? Therefore, these quantities have
some significance.

Our approach to calculating negative positron
affinities starts with effective range theory®®
and the observation that the calculated scattering
length for positron-hydrogen is nearly a periodic
function of the inverse of our parameter »,. Fig-
ure 11 shows this relationship. Each singularity
marks the onset of another bound s state; to the
left of the point X there is no bound state, between

X and Y there is one, and so on.

We know from effective-range theory®®®® that
the binding energy to the right of X is approxi-
mately 1/242) where A, is the scattering length.

The closer 7, is to the singularity (point X), the

better this approximation. Our simple thought is

as follows: for unbound systems (to the left of X),
the closer 7, is to the critical binding value (at
point X), the closer the system is to binding. It

is sensible to take -1/2AZ as our positron affinity.

A complication arises because this approxima-

tion is accurate only for very large absolute values
of the scattering length.®” Our remedy follows: The
approximate periodicity of the scattering length
in Fig. 11 gives rise to an approximate local in-
version symmetry in the curve about point X. We
find the value of 7, for a point (in the neighborhood
of A inverted through X) which has a scattering

929

scattering. See Table I for
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FIG.11. Scattering length
A, for positron-hydrogen
elastic scattering as a func-
tion of #;1. Atomic units
are used throughout. The
vertical dashed lines indi-

i 1 1 1

tional bound s state as one
moves from left to right.
Point A is the model of
Figs. 1 and 2, and B has
the same scattering length
but for sign.
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length equal to the negative of that for point A.
This point B corresponds to a fictitious system,
a hydrogen atom which is artificially overpolarized
at short range, and which has one bound s state
for a positron. We take the positron affinity of
hydrogen to be the negative of this binding energy.
For the atoms H, He, Ne, Ar, Kr, and Xe, the
inverted point has 7,=1.07a,, 0.52a,, 0.56a,,

1.07a,, 1.30a,, and 1.73a,, respectively and the
resulting positron affinities are —4.34, -43.9,
-23.3, -1.18, -0.35, and -0.037 eV, respectively.
Thus we see the expected trend in the noble gases;
perhaps not so expected are the magnitudes:
helium is extraordinarily repulsive to a positron,
and xenon comes very close indeed to binding.

TABLE III. Summary of results.?

Scattering Positron Positronium
length affinity affinity
75, Eq. (9)°" (ay) (eV) (eV)
H 2.399 (—2.1036°) -4,34 (1.029)
He 1.774 (~0.472°) -43.9 f
Ne 1.90 -0.542 -~23.3 f
Ar 2.23 -4.11 -1.18 f
Kr 2.37 -~7.69 -0.35 f
Xe 2.54 -20.3 -0.037 f

2Values in parentheses are fitted; all others are calculated in the present work.
Values in the first column are 7, for the neutral atom. The only negative ion considered

here, hydride, has 7,=5.621a.
°Reference 37.
dReference 3.
¢Reference 8.

f Not available from our model; one needs a stable mononegative ion in order to calculate a

positronium affinity.
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CONCLUSIONS

The results of this work are summarized in
Table III. Three numbers have been fitted, the
rest calculated. Two of the fitted numbers are
indicated by (*) in Figs. 2 and 3; in Figs. 1 and 4
the initial slopes of the PW curves for s waves
are fitted. Otherwise all other PW curves are
calculated in the present work from our model.

The predictive ability of our model may be
gauged by comparing the accurate results (curves
AC) with our results (curves PW) in Figs. 1-4,
and recent experimental results with our results
in Figs. 5, 7, 9, and 10. The agreement for
hydrogen is good for positron momenta below ~0.4
a.u. and no worse above that than other models
(adiabatic and polarized orbital), which require
much more elaborate and expensive calculations.

Our model agrees satisfactorily with the ob-
servations of Canter et al.}**** for helium,;

(Fig. 3) very well with the observations of Stein

et al.'® for neon (Fig. 5); very well with the ob-
servations of Stein et al. and of McNutt and Cole-
man®® for argon (Fig. 7); a little less satisfactorily
with the observations of Stein et al.’? for krypton;

and satisfactorily with the three sets of observa-
tions available for xenon.

Of the several variants of the polarized orbital
model in the literature, the formulation of Mc-
Eachran et al.5? is the most rigorous; our results
show that our model is at least its equal in pre-
dictive power. Our model is extremely simple
because no electronic equations are solved; it
requires at least an order of magnitude less com-
putation than the polarized orbital method of
McEachran et al.
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