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CoHisional excitation transfer in high magnetic fields. I. Theory
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The effects of strong magnetic fields on thermal collisions in a vapor are reviewed. Semiclassical and
quantum-mechanical symmetry properties of the relaxation matrix are established for resonant collisions
between identical atoms and nonresonant collisions with a structureless partner, The variations with field
strength of the transfer rates between Zeeman sublevels for R ' dipole-dipole interaction and R Van der
Waals interaction are obtained with an exact semiclassical computation of the collision matrix. These are
then compared with those predicted with an approximate formulation by means of the symmetrical
correlation function for the potential.

I. INTRODUCTION

Strong magnetic fields are of particular interest
to the study of weakly inelastic collisions in a
vapor as they offer a very simple means for con-
tinuously varying the energy difference between
the Zeeman substates of an atom over a con-
siderable energy range (of about —,', kT currently
obtained with steady fields). The effects ot a
magnetic field on the collisional process in a
vapor are twofold. The parameters describing
the relaxation are field dependant, Secondly, the
lack of invariance in the system under time re-
versal and spatial rotation produces a breakdown
of the statistical rotational invariance generally
satisfied in zero external fields. These effects
are important when the energy difference between
levels is about S(7,) ', where 7., is the mean
duration' of the collision or the correlation time
of the potential.

In the following sections, we will investigate
the symmetry properties of the relaxation matrix
in various physical situations in the presence
of strong magnetic fields using first a semi-
classical and then a quantum-mechanical deriva-
tion with detailed balance.

Predictions obtained by means of an approxi-
mate theory based on the symmetrical correla-
tion function of the potential will then be com-
pared with exact numerical results for J = 1-J=0

.resonance transitions and for various kinds of
potentials.

Several experimental investigations of collis-
ional excitation transfer between Zeeman sub-
levels in strong magnetic fields have been per-
formed on Hg and Na vapors and will be reported
in forthcoming papers. They reveal the possibili-
ty of direct measurement of various collision
parameters such as correlation time and correla-

tion function, anisotropy of the potential, and also
selection rules during the collision process.

II. SYMMETRIES OF THE RELAXATION PROCESS

A. Symmetry considerations

The relaxation process in a vapor is in general
statistically isotropic provided the system is not
subjected to external fields." In fact this con-
clusion requires the fulfillment of additional con-
ditions, e.g. , broad line excitation and isotropic
velocity distribution of the atoms. Then the re-
laxation matrix (SR), which conveniently describes
the process, is a scalar in Liouville space. The
relaxation rates, which are matrix elements of
(K) satisfy (in an irreducible tensoriai basis)

&(uq~(%)~u'q')) = ~„.~„,g',
where g' is the relaxation rate ot the (kq) com-
ponent of the density matrix. Of course, notations
in (i) omit many dummy indices, referring to the
fact that there is usually more than one rank-0
tensor operator subtending Liouville space. %e
will use this convention in the following to simplify
notation.

%hen a vapor is submitted to an external mag-
netic field, while all other conditions remain
valid relation (1) no longer holds since the re-
quirement of isotropy of the system is not ful-
filled. Moreover, the system no longer posses-
ses time-reversal invariance. Statistical sym-
metries still exist, and result from rotational
invariance around the field direction, invariance
in parity operation, and also from invariance in
the product of reflections in planes containing the
field direction and time-reversal operation. This
last operation, which looks like a dynamical
symmetry for the system, results from intuitive
arguments that the field is reversed in each
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operation, and that their product consequently
leaves the field unchanged. These are basically
the main points developed in the following sub-
sections. At first examination, it seems more
convenient to seek these new symmetry properties
in a dyadic Zeeman basis (in the direction of the
field), but in fact the use of a tensorial irreducible
basis built on Zeeman's is still of great interest.

As concerns the relaxation matrix for the whole
system with zero external field, the time-re-
versal operation does not produce any additional
relations between relaxation coefficients' when
they satisfy the isotropy condition (1). But the use
of time-reversal invariance with some additional
transformation' to calculate the result of one
definite collisional process (within, for example,
the framework of impact approximation) leads
to considerable simplification of the computa-
tional procedure. '

One must also remark that as the system in a
strong field is not invariant under the time-
reversal operation, the usual proof of detailed
balance which supposes the validity of this
property' breaks down.

B. Establishing symmetries

Statistical symmetry properties of the relaxation
process in strong magnetic fields may be es-
tablished in two different ways. There is a purely
quantum-mechanical treatment which is the only
correct way of satisfying the laws of conserva-
tion of quantum momentum and energy in the ex-
ternal field. Secondly, there is a semiclassical
treatment of the collision process in the frame-
work of the impact-para, meter approximation.

In the simple case where there is no external
field, significant difficulties' arise in the latter
method from the partition between internal and
external (nucleus positions) orbital variables and
from the t parametrization of the positions. This
method permits the conservation of neither energy
nor angular momentum during each collision pro-
cess, and the expression of time-reversal in-
variance depends strongly upon the choice of
basis. ' Nevertheless, this is in general of little
importance for the final results when the con-
ditions of applicability of the impact-parameter
approximation are fulfilled.

For the present problem the nonzero Zeeman
splitting aE of the levels allow weakly inelastic
transitions to occur during the collision. A one-
trajectory impact-parameter treatment obviously
violates energy- and angular-momentum-con-
servation laws. Therefore the treatment of inter-
Zeeman transitions will be significant only for
~E «kT and for large mean values of the mo-

C. Semiclassical derivation of symmetry properties

1. Hypothesis of derivation

We suppose that the interaction potential is
invariant under time reversal and in plane re-
flections around the internuclear axis. ' Such
potentials are, for example, dipole-dipole inter-
action between identical atoms and long-range
Van der %aals anisotropic interaction between
an excited atom A and a structureless spherically
symmetric partner X. More generally, this
treatment concerns all electrostatic potentials
which possess these symmetries.

Moreover, we suppose for simplification that
the trajectory of the atoms is rectilinear and of
constant velocity; the results remain valid with
the proper classical trajectory, provided the
impact-parameter direction b is an axis of
symmetry.

A frame (xyz) with x and y axes parallel to the
impact parameter b and relative velocity v, re-
spectively, will be associated with a given col-
lision process in space. This frame is derived
from the fixed frame in space (with the Z axis
parallel to the magnetic field B) by the rotation
(8 '(((), e, y), where (y0y) is Euler's angle (fol-
lowing the definition of Messiah). '

The general form of the interaction potential
in the fixed frame is then'

with

U (2) —(~ (1) @~ ( x) )(2)

(2)

and u ' the unit vector along the internuclear
axis. In (2), we neglect the isotropic part in the
internal variables (which is nonzero, e.g. , for
Van der Waals interaction), q is the strength of
the interaction, ""and f(JL) its A dependence.
A rank-2 tensor on the internal coordinates and
on the orbital variables (U(')), V is a scalar for
the whole system. The (U,') depend on (y()y) and
on x = et/b, which in reduced variables results
from the t parametrization of the potential. The
(U,') have simple expressions in the (xyz) col-

mentum of the partial, waves, i.e., essentially
for collisions between heavy atoms with long-range
interactions.

Having recalled these well-known difficulties
arising from the use of the impact-parameter
approximation, it is not surprising that with this
method one obtains symmetry properties that are
only limiting cases of the true ones obtained with
a quantum-mechanical derivation and which are
only valid in the weak-field limit (AE «kT).
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lision frame" which are readily obtained from

11T i2) (P il) (I P i() )(2)
(i) (2) (4)

Explicit expressions are given in Appendix I.
As the interaction is of purely orbital nature

(exchange interaction is excluded), T('i is a
rank-2 tensor built on the orbital angular mo-
mentum L for A*-X collisions, and on the electric
dipole moments PI'J and P I,'~& of the atoms for
A*-A resonant collisions. It follows then that

p being the density matrix, and f(v) the (isotropic)
velocity distribution. The brackets indicate angu-
lar average over the angles of b and v. It is more
convenient to characterize (%) by means of its
matrix elements in a (T,"j or standard
(IJM)(Z'M'Ii basis, giving

a. Symmetries fox A~-X collisions. The princi-
ple of the deduction is to use Eqs. (Al)-(A5) in
taking the angular averages in (7) and (8). This
gives after a little algebra the following sets of
relations:

2. Relations between semiclassical collision matrices

The analysis is done for A*-A collisions
(J = 1-J=0 transitions) and A*-X collisions (J= 1

excited state).
The evolution during the collision process is due

to the interaction potential and the Zeeman
Hamiltonian (assuming no I.S decoupling effects).
In the interaction picture, Schrodinger's equation
is

(«') (pp') (pp') («')

oa ao (rr) (pp)
Og'o go

p

(9b)

(9c)

(Bd)

(9e)

(5)

with

= q f(B)P (-)'~ U', '"e'&"T'" . (6)

Z(y&y) is the collision matrix associated with

(5). To solve the relaxation problem one thus
needs to know Z(p8y) for each orientation of the
collision plane relative to the field.

In the case of A*-A collisions, (5) is invariant
under the exchange of atoms. Then the symmetric
and antisymmetric states evolve independently
in their respective+P and -I' potentials. In that
sense, a complete formal analogy exists between
A*-X andA*-A collisions for J=1-J=o transi-
tions.

The basic idea of the investigations of symmetry
properties is to search for relations between col-
lision matrices (in the fixed frame) for different
collision Processes in sPace. These relations are
established" and interpreted in the Appendix and
used in Sec. IIC3.

3. Symmetry of the relaxation process

The semiclassical relaxation matrix is defined
following usual conventions such that" (5(I) is given

by

Some relations may also be deduced for the shift
and broadening of the optical lines. "

Relations (9) can be interpreted as follows.
(Ba) is the expression for rotational invariance

around the field.
(Bb) expresses the invariance in the Product of

time-reversal operation and XOZ-plane reflec-
tions. "

(9c) is a general relation" due to the Hermiticity
of the density matrix.

(Bd) is not the expression of a symmetry prop-
erty, but permits one to relate the parameters
of relaxation in the two cases in which the relative
positions of the 5 and II potential-energy curves
of the system are inverted. The existence of this
relation is closely related to the particular form
adopted in (2) for the anisotropic part of the po-
tential, which permits one to interpret(-V) as the
potential for another physical situation. " Also
note that the derivation of this relation in the
framework of impact-parameter theory with
straight-line trajectories supposes that the iso-.
tropic part of the potential is not used foy tra
jectory calculations. If it is used the very simple
situation which obtains here (where the relaxation
depends only upon the anisotropic part of the po-
tential) will no longer be correct, and (9d) breaks
down. Of course, in a fully quantum-mechanical
treatment such an approximation does not apply,
as the effect of the potential on the wave function
would be included.

(Be) expresses the conservation of population
during the collision process and comes from the
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where Z& are not unitary matrices. From the
definition (8) and relations (Al)-(A5) one then
deduces the following set of relations for each
class i of atoms:

g,", (i) =&„g,» (i),
(rr ') (PP') (i) 5 (rr ')(PP')

r -r', p-p'g

»'(;) = P'P( )(«')(PP')
(
.
) (PP')(«')

&e ~ ge (11b)

g»'(i) =g»'(i)w g(«')(PP')(i) g(r'r)(P'P)" (i) (11 )

g,'" (i) = (—)"""g," (i),

unitarity of 5 matrices. This supposes that the
perturber X is structureless and cannotbe strongly
perturbed during the collision process.

b. Symmetpies for A*-A collisions. A natural
partition of the system between two classes cor-
responding to the initially excited atoms (class 1)
and ground-state atoms (class 2) is generally
made. " One always supposes that the density of
excited atoms is small compared to that of ground-
state atoms, excluding e.g. spin-exchange col-
lisions and collisions in a saturating laser field.

As remarked above, Schrodinger's equation is
invariant under the exchange of atoms. The
evolution of the system is then equivalent to that
of the symmetric states in the potential+ V with
the associated Z(+) collision matrix and of the
antisymmetric states in the potential -V with
the Z(-) collision matrix. The evolution of each
subset is equivalent to that obtained in A*-X
collisions. Then the relations of Appendix I are
verified by Z(+). But now, the collision matrices
for each class of atoms are given by

So although (lid) has no quantum-mechanical
analog, it will probably be well verified with a
quantum-mechanical treatment of the problem
for not-too-strong magnetic fields (AE «kT).

The,collision matrix for the whole ensemble
of atoms is defined through the action on each
class separately" by

g(I+ 2) =g(1)+g(2), (12)

thus neglecting the correlation terms [crossed
Z(+) ~ Z(-) terms]. This is of no practical im-
portance since quantum-mechanical indisting-
uishability effects are negligible (for long-range
interactions). Moreover, correlations do not
have any physical meaning in our model, where
atoms are far from each other before and after
collision.

The coefficients g(1+2) satisfy relations (11)
and one additional relation,

g',"(1+2)=g",'(1+ 2) =0, (13)

which expresses the conservation of population
for the whole system.

The broadening and shift of the optical lines
are only connected to the Z(+) collision matrix
for the symmetric states"; this is a well-known
result in super-radiance theory when one neglects
retardation effects. "

These various relations show that the relaxation
in high magnetic fields is strongly anisotropic.
Some of the relations (9) take a form very similar
to those obtained when the system is submitted
to an external electric field, "'"the differences
coming from the rather different behaviors of E
and B under parity, plane reflections, and the
time-reversal operation. '

(rr')(PP') (i) ( rr')(-P-p')-- (11d)
D. Generalization for A*-X collisions

The interpretation of relations (ll) is that de-
veloped in Sec. IIC3b [Eqs. (9)]. But there is no
equivalence of conservation laws, as Z) are not
unitary transformations. Not identical to (9d),
(lid) is now a new symmetry property for the
system. Concerning the difference from the situa-
tion in Sec. IIC3a, the solutions of Schrodinger's
equation in the + V (symmetric states) and -V
(antisymmetric states) potentials are simultan-
eously involved in the solution of the physical
problem for identical atoms as expressed in Eq.
(10). All remarks made on the validity of (9d)
remain valid, except that in true. physical situa-
tions the isotroyic part of the potential is now
much weaker than R ' dipole-dipole interaction
(main anisotropic part), and the various assump-
tions (straight-line trajectories and impact ap-
proximation) are in general well verified. "'"

V=, (if(R)Z Z b(LSD')( )'&U' ~~ T " -(14)
JJ' q~

the ]bj being proportional only to the reduced ma-
trix elements of the various operators and satis-
fying b =5*.

In the general case, the unperturbed Hamil-
tonian of the system is

H =AL ~ S + P.s B ~ (L+ 2S) . (15)

Several situations must be considered according
to the relative orders of magnitude of the LS
structure, magnetic interaction, and interaction

Relations (9) can be generalized following the
methods of the Appendix to various situations, in-
cluding the case of several fine-structure levels.
In the case of a purely orbital interaction po-'

tential, (2) may be written in the form
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potential. 20 %6 always suppose that the various
energy differences are small compared to kT.

IJM) = Z d(I.SJ')IJ'M) (16)

Transitions which are usually weak (as T, '«Ho)
may occur via the mixing of fine-structure sub-
levels. " Since II, does not depend linearly on
M and the energy differences between the states
(JM) (JM') and (J -M), (J -M') are not the same,
(Bd) is not valid. The other relations (9) are valid
in the basis of eigenvectors lJM).

2. Paschen-Back regime

If v, '- H „»AL 8, the problem ss sxmplsfxed
by the purely orbital nature of the interaction po-
tential. During the collision process which es-
sentially perturbs L, S is precessing around B.
Then symmetry properties (9) hold for M~, and

~s =~s

3. Intermediate regime A L S ~ HMAGN ~ ~c

There is inter- and intramultiplet transfer by
collision. If decoupling effects are still weak,
the Zeeman approximation of (15) is valid and the
derivation of Sec. IIC may be used. Relations (9)
are valid in J, but also hold for J'0 J (inter-
multiplet transitions) with convenient phase fac-
tors.

If decoupling effects are not negligible, (9d)
does not hold as in Sec. IID1. Between the eigen-
vectors lJM) of H, (Ba) and (9b) are still valid,
giving

the demonstration of which needs some modifica-
tion in the algebra of Appendix I, as the transfor-
mations of lJM) in T(g) are not those of lJM).'"

Of course, these conclusions are valid for long-
range interaction. Practical physical situations
are in general intermediate cases of the pre-
ceding, as the situation may change drastically
with the values of 5, v, and t, and thus requiring
a more accurate analysis using, e.g. , Hund's

coupling schemes for each collision process. "'"

1. Strong L S coupling

If A. L S» II „„-v, ' one can consider each
fine-structure level separately in the interaction
potential (14). Equations (9) are valid provided
the proper phase factors c =+ 1 are included, and
hold exactly for population transfer.

If H „„-AL~ S»7, ', a partial decoupling of
L and S due to the field occurs. The eigenvectors
of (15) are then

E. Generalization for A -A collisions

We consider the case of identical atoms pos-
sessing a structure both in the ground (j) and in
the (J) excited states .We supp'ose the validity
of the Zeeman approximation for the magnetic
Hamlltonian. Some of the relations we derive
are not valid if one includes the decoupling of
LS structure due to the field.

l. Expressions of dipole-dipole interaction

2. Zeeman Hamiltonian

The Landh factors of the excited and ground
states are g, and g~, respectively, and

H. = ~.H(g. (J)J..g, (j)j.l.
In the lJM, jm) uncoupled basis H~ is diagonal,
but not in the l(Jj)Fm) coupled one unless g, =gz.

3. Exchange of atoms

The interaction potential (2) is invariant under
the exchange of atoms. The symmetric and anti-
symmetric states under exchange, which are just

l~ JM,jm) =2-"[lJM,jm) = ljm, JM)], (19)

Dipole-dipole interaction is still of the general
form of (2), where the operator "T"' is given
by (4) and corresponds to the ((j,J,')1, (Jj,')I; 2q)
coupling scheme. " The alternative coupling
scheme is Oj „J,)F„(J„j,)'F,)'; 2Q) and cor-
responds to ~~~27' operators constructed by
successive coupling of the angular momentum of
the two atoms, in the initial and final states. One
then obtains a unified-atom description of the
problem, making clear the analogy between'*-A
and A. *-X collisions. The two bases are related
by a unitary transformation'" with real coef-
ficients.
a. Remarks. The second coupling scheme is of

interest for expressing symmetry properties in
zero field. The expression of rotational invariance
is straightforward, since one is dealing with one
unified atom system, so that the results for A. *-X
collisions may immediately be transposed. " The
first coupling scheme is useful for describing the
perturbation of each class of atoms, since a
partial trace is readily obtained in this repre-
sentation. '4

For a J = 1-j = 0 transition, the two bases coin-
cide exactly, and so have convenient properties
both for expressing symmetries and for dividing
the system between each class of atoms. The
problem is almost equivalent to that of collisions
with a structureless partner, since the ground
state of the atoms is spherically symmetric.
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evolve independently in the + V and -V potentials,
respectively.

4. Derivation of symmetries

a. SPecial case of g, =gz. Invariant under the ex-
change of atoms, II~ is diagonal in the coupled
~+, EM+& symmetrized basis. The problem is thus
completely equivalent to that of collisions with a
structureless partner, and so E(ls. (9) are valid
in the ~+EM),& basis. The derivation of the rela-
tions in the uncoupled basis is straightforward,
but the situation is of little physical interest.

b. Weak fine structure in ground and excited
states (A. 7, « I). The Zeeman Hamiltonian is then

H2 =)lsB ~ (L+1)+2)lsB (S+ s) . (2o)
I

Since the interaction (2) is of purely orbital
nature, the spin (S + s) of the system is not af-
fected. The orbital part of H~ is diagonal in both
the decoupled and coupled (I /)G representa-
tions. All symmetry properties referring to the
orbital part of the wave function for the two-atom
system are obtained from the derivations of
Sec. IIC3 (in the coupled basis). As the field

effect will be important for p~B- 7, ', this im-
plies that the system is in the Paschen-Back
regime and no recoupling of L and S is needed
after collision. For l = 0 ground states, the sym-
metries are those given in (11).

c. General case. As II~ is nondiagonal in the
coupled basis, we use the uncoupled one and
some minor modifications of the demonstrations
of Sec. IIB. The relations between (U2j coef-
ficients are those given in the Appendix. The
transformation in rotations and plane reflections
of the uncoupled basis are given by"

ft2())I~M,fm&=e '~("' ) IZM,fm& (21)

T(g)~JM, jm& =(-)"'- -"e"""' ) ~(d-M,f -m&.

(22)

Using the invariance under exchange of atoms, we
split Schrodinger's equation into two differential
sets for the + V and -V potentials, the associated
collision matrices being Z(+) and 2(-), connected
by (10) to Z, and Z2. The matrix elements of the
interaction potential in the interaction picture are

&ad'M', j'm'II'~ a JM, jm& =+ —2, ,/2, ~» exp(i~xi gz(m' —m)+ge(M' -M)1)

with

' z &-)'U'. («) e)&»QH2I2Q&& jlm411~'M'&«IMV2lj'm'&,
aa ya2

(23)

I'&~'&'III'"
ll ~j& =5 &n'L')(&)in&&(-)"" "(2j+1)'2(2d'+ I)' 'SS' s z

Using &L[)I')[I&*=(-)' (l((P[[I&, one deduces that
«Ill'llt&&till'1IL& is real. Then relations (Al)-(A5)
are still valid, and one can deduce the following
relations for each class of atoms, where the g
are obvious generalizations of (8) for the tu)o-atom
SJSt8PB:

I 2 t - 2

g(&1 m2 Pl 22 )(ulm2 2122) (2)

= 5(M', +m', +P, +P, -M, —m, -P', —P', )g(i),

g (hf y~2 PyP2 )(Mlm22PyP2)
(/ )%

=g(ulm2 2122)(ulm2 21 2) (i) (24b)

g(+1m' 2122)(slm2'2122) =g(2122 elm2 (21 2'ulm2) (i) (24c)
g(el™2Pl 2)O221m2 2122) (i)

g ~1+1')2 2)(~1 1 )2 2 (1 +2) = 0
J',e~,)2m)

As (24d) comes from the effect of reflection, this
relation will not be valid in the case of decoupling
of L and S due to the field, si.nce (22) no longer
holds.

(25)

III. QUANTUM-MECHANICAL TREATMENT
AND DETAILED BALANCE

The interpretation of the relations is as in (11).
For excitation transfer, one obtained the relations
by substituting M] p$ m2 p2 Mg py and m2
=P, into (24). For the relaxation of the whole
ensemble of atoms, one has, moreover, the con-
servation law

(-u~-m2, -p~-p2) (-e,-m2, -p, -p2)' i i (24d)
A. Derivation of symmetry properties

n = ZJi -ZMi .
The (J,j) indices have been omitted for simplicity.

Among the various relations established in the
previous section with semiclassical arguments,
some have a very simple interpretation using a,



20 COLLISIONAL EXCiTATION TRANSFER IN HIGH. ~ ~

quantum- mechanical treatment. Only one relation
[(Qd) or (lid)] connecting the evolution of the
u and g states under exchange in A*-A
collisions or the evolution in the + V and -V po-
tentials in A*-X collisions does not have a quan-
tum-mechanical analog. Of course a fully quan-
tum-mechanical treatment of the + V and -V po-
tentials does not give the same result as a rule.

The establishment of the properties due to
statistical rotational invariance and Hermiticity
of the density matrix is nearly obvious, " and
leads to the semiclassical results Secs. IIIA1 and
IIIA4. One can demonstrate the last property
(9b) concerning the invariance in the product of
XOZ -plane reflections and the time- reversal
operation with a few additional hypotheses. " Our
notation will be p, for the density matrix of the
bath I and E for the Hamiltonian and the collision
matrix of the system K for the time-reversal
operator T for the XOZ-pl. ane reflection operation,
and A =ET for the antilinear operator product of
these two operation@. The. following relations are
then verified:

Ap, A'= p„AHA. ' =H,

and

(26)

The relaxation rates for the populations are given
by

g"""»&= 6„,—TrOJm&&Jm IZIJP)&JP lp, xt). (27}

Using (26), one obtains with A IJm)&J'm IAt
= IJm)&Jml:

g'""""'=6-.—»&(A'~'l~)&~ l»~)(A lm&&m I)&

AO»Ag (29)

which expresses the equality of the diffusion am-
plitudes for the direct process and the process
deduced by the product of time-reversal operation
and XOZ-plane reflection, for the same total ener-
gy E of the whole system.

The number of particles scattered per second in
a unit solid angle in the Tc, direction for a unit
incident flux is then

a
(30)

where p, =mSk, /(2wk)' is the final-state density
around E. For the inverse process, one has

usual demonstration. The transition matrix T
which is used for this purpose is defined by'

T = —,'(i/v)(Z —1).
We specify the initial state a of the whole system
by the ensemble of the internal variables &, and
the external degree of freedom (k, being the wave
number of the, ingoing wave) and, similarly for the
final state b, so that (a~, Tc~ ) is the final state of
the system.

The main problem in establishing detailed ba-
lance in a strong magnetic field arises from the
lack of invariance in the system under the time-
reversal operation. But this difficulty is easily
overcome by noting that the Hamiltonian H of the
system is invariant in the A operation defined in

Sec. IIIA.
As the mathematical properties of A and K are

the same, one can use the demonstration of
Messiah with A instead of K. It follows that

and by permuting the two antilinear operators in
the trace

dg I„ I Ab Ac I PAa(- (31)

g' """'=6„,—Tr(lp&&p Iz lm&&mls'p, ],
To obtain the semiclassical equation (9b}, one

more approximation is needed viz. , [5,p,] = 0,
which means that both the perturbation of the bath
and the coupling with the system are weak. This
is true, e.g. , for a structureless perturber when
the motion is modified weakly by the collision
process, and for elastic collisions without energy
transfer with perturbers whose internal and ex-
ternal states are isotropic. One then deduces

where v~ is deduced from v~ by the A transforma-
tion and then is just the transformation of (-v~) in
XOZ- plane reflections.

Using (34) and the explicit expressions of p(E),
one obtains

(32)

v'o „(E)= v2e, (E) . (33}

(vs~v:)" ~a-w=(v, /vo)" g o~-
The distribution of %, wave vectors being supposed
isotropic, one obtains after angular averaging

( 4 md m)( J'pZp) (EpJ p)( Jm Jm) (28)
'The total energy E is

'This does not hold when the condition @w«k'E is
not fulfilled.

B. Detailed balance

Detailed balance with strong magnetic fields
can be established with some modification of the

E=E'(a ) + ~mv', =E'(a ) + 2mvf, , (34)

where E'(&,) and E'(a~) are the internal energies
of the atoms before and after the collision process
when the interaction potential is negligibly small.
Relation (33) is just the analog of relation(XIV-
150) of Messiah, ' provided one replaces K by A.
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The mean rates of transfer between the internal
state a, and &~ of the particles are deduced from
(33) by summation over the moments, of the in-
going waves. Since f(v, ) is the Maxwell-Boltzmann
velocity distribution function of the atoms in the
vapor, one has

g( &" "= v, v,a, „dv. .

which is of course reduced to (28) when If&0«kT.
This permits one to fix the limit of validity of the
semiclassical relations deduced in Sec. II.

a. Remarks. For excitation transfer between
two sets (Jm) and (8'm') of levels separated by
'the energy difference &&, in zero field time-re-
versal invariance leads to

—( J' m' J' m' ) ( Jm J m) -PE(J' )-E(J ) j/ (ar)=e
X (1-mI-m)& J" m' 1'-m' ) -(38)

which is not equivalent to (36). If the system
possesses rotational invariance or invariance in
plane reflections, this gives

—( J''m" J ' m' ) ( J m J'm ) ( J'' -m' J' ' -m' ) ( J'm J m ) (39)

The combination of (38) and (39) produces a new
relation equivalent to (37), although the hypotheses
of the demonstration are different and the two pre-
vious relations do not hold separately in a strong
magnetic field.

C. Symmetrizing semiclassical results

For small values of h{d (If{d (&»kT) and to avoid a
totally quantum-mechanical treatment, one may
try to extend the validity of the semiclassical ap-
proximation by introducing proper correction of
the transfer rates in order to obtain a, set of co-
efficients approximately verif ying detailed balance.
We describe such a possibility of symmetrization,
adapted frpm the wprk pf Bates and of Jamieson
and Reid, "which allows the deduction of velocity-
averaged transfer rates satisfying detailed balance.

But this method of symmetrizing is not unique, "
and the main arguments for its use are its simplic-

Then using (33), (34), and E'(Ao() =&((&), one
obtains

{-f E( (n) nE&(n -)0)/ &AT)) ~ &Ann)(Ann) (36)g (afy) (~(2) r

which is detailed balance for a system submitted
to an external magnetic field. This derivation
supposes an isotropie Maxwell-Boltzmann velocity
distribution function, i.e. , that the collision pro-
cess does not strongly perturb the velocity of the
atoms.

With (n ) = (Zm) and (n,) = (O'P), (36) gives
—( J &ZAN)( Jm J m) -(P-m)has/(PT) ( Jm Jm)( JPJP)

ity and accuracy for electron-atom collisions. "
Some aspects of the extension of the validity of the
semiclassical approximation require a, fully quan-
tum-mechanical approach.

Semiclassical results are obtained for a given
velocity v of the atoms. 'The principle of the
method described here is to introduce into the
semiclassical result for the probability of transi-
tion between m and P Zeeman sublevels a, factor
which takes into account the fact that the velocities
v and v~ are different before and after collision.
The simplest choice is to take v /vp as a correc-
tion factor. Associated with the velocity v used in
the semiclassical calculations, v and v~ are
determined by energy conservation in the m -P
process and by assuming the mean value is v. The
symmetrized cross section is then

o'pp)' "' (v ) = (v /'v„)o&pp"" '(v), (40)

and, using o'PP" '(v) =o' "PP'(v), one obtains

V2O(mm)(PP)(V ) +2O(PP)(mm)(V )P
=

m m (41)

which is just equivalent to (33) for the total energy
After velocity averaging, the g'" "~~' coef-

ficients then satisfy detailed-balance expression
(37).

To relate the g and g (unsymmetrized) velocity-
averaged transfer rates, an approximate expres-
sion can be obtained at the limit@~«kT by de-
veloping the Maxwell-Boltzmann distribution
function. So doing one obtains

(PP) (mm) ~-&~ (P-m) / (2& &) (PP) (mm) (42)

which is of course an obvious way to correct the
results.

Symmetrization does not strongly affect rela-
tions (9) and (ll). For A*(Z= 1)-X collisions, one
has g~"""'n-'g' ' "'""" Then with (42)

(ill(001/ ( 1-1)(00) e bin/{2T) (11)(00)/ ( 1 1)(00) (43)

Following the attractive or repulsive character of
the potential which governs the behavior of g'"""'j
g' ' '" ","symmetrization will increase or de-
crease the effect of the magnetic field on the ratio
of the transfer rates. " Of course, the separation
into two kinds of effects is in some aspects ar-
bitrary, and will not exist with a fully quantum-
mechanical treatment of the problem. However,
if hen«kT, the effect of detailed balance is always
sn1all and g'"""'/g' ' "'"' can be observed al-
mpst free frpm cprrections. ' Npte that in zerp
field the ratio (43) is just 1.

For A*-A resonant collisions (J = 1-j= 0 transi-
tions) the semiclassical results obey an additional
relation, (lid). In this case one obtains after
symmetrization through (42)
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{11){00) {00){1 1) e-&tAt/ {20~) {ll) {00)
7

showing that the mean transfer rate —,'(g ""'"'
+g' ' "'"~) from m = 0 to m =+ 1 is given by

ed'""" in terms of the Fourier transform f(7))
of the symmetrical correlation function" S(x, x')
of the interaction potential V(x) given by

S(x, x') = 'Tr[V(x)V" (x')]
g(m = 0-m =+ 1)= eh[No&/(2kT)]g'""oo', (44)

and is only weakly modified by the symmetrization
procedure. "

with

=Q (-)'iU', (x)U.', (x'),
1

IV. APPROXIMATE SEMICLASSICAL THEORY

The basic ideas of the method have been develop-
ed by Anderson, ' by Tsao and Curnutte, " and by
Omont. '"" They are in fact very similar to those
adopted in the general theory of relaxation and
correlation functions, " and so it is not surprising
that some of the results we derive in the following
have a very simple interpretation within the gen-
eral framework of this theory.

[+OO + OO

f(q) =
J

dxdh'e'"'" *'S(x,x'),
«OO «OO

f(o) = 1.

(48)

'The asymptotic values of the relaxation rates are
expressed in terms of f(r)) and their imaginary
parts (shifts of the lines) in terms of Cauchy's
principal value of f(rl). For large impact para-
meters, the transfer rates for the population then
take the form

A. Relaxation matrix for large impact parameters II" (b) = nq'f(q), (49)

The collision matrix 5 is given by"

T = T exp[- te'"O'V„(t)e-'"o~],

where H, is the unperturbed Hamiltonian (including
the Zeeman term, L ~ S structure, etc. ), V»(t) the
t-parametrized interaction potential, and T the
chronological operator. In general, a second-
order expansion of (45) in V» is sufficient for both
accuracy and simplicity. But higher-order terms
may give evidence of some peculiar properties,
such as, for example, the lack of invariance under
time reversal. " The second-orde" expansion
valid for large impact parameters is given by

dte~H0~y e-~~0t
«OO

dtdt'e' 0'V t e '~0'
«OO «Cgk

x V„(t')e-~So~' (46)

the diagrammatic interpretation of which is quite
obvious. For A*-X collisions, (46) gives exactly
the approximate collision matrix. For A*-A. col-
lisions, owing to the peculiar symmetry properties
of dipole-dipole interaction it is easy to draw from
(46) the expressions of the 5, and T, collision
matrices for each class of atoms. '"" The terms
with an even number of interactions make up Z
while E, is composed of terms with an odd number
of interactions.

The asymptotic expansion of the relaxation ma-
trix (6R(b, v)) for a given velocity and large impact
parameter is then obtained by retaining the terms
jn gpZ consistent with the degree of approximation
in (46) and after angular averaging. The relaxa-
tion matrix (9tt(b, v)) can be completely express-

where q is the strength of the interaction depend-
ing in reduced variables on b and v, and g= &E
b/v, where &E is the energy difference between
the two states considered in the process.

B. Cutoff approximation for small impact parameters

To calculate transfer rates one uses Eq. (49) for
b &b, and for b &b„ the value 'Il constant with b

which may be determined by various approxi-
mations, ""for example, total redistribution of
excitation, adiabatic approximation. The deter-
mination of the %eisskopf radius b, in zero field
is done by writing

AS
(b ) oil ~A oil q2 (50)

'Then q', lL(,
"=1, where p, is an angular factor which

depends on the process under consideration. ""
For dipole-dipole interaction" (q oo 1/b'v) the
transfer rates for population are proportional to
the E coefficient defined by'

(51)

C. Cutoff radius in nonzero field

The II value may be determined either from
physical arguments or by assuming that the K(0)-
computed transfer rate (when available) coincide
exactly with (51). For not-too-strong magnetic
fields, one can admit that the II value is not
modified by the effect of the field. As II" depends
on the field strength, the cutoff radius will be
modif ied, and is given b y

IIAS oil &A qaf(& ) oil
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Then b, or, equivalently, q, is given by the im-
plicit equation

f(n, ) =1/(q', ) ") (52)

For dipole-dipole interaction, (51) then becomes"

4 (&) =K(&)/K(o) = 2lf(n. )]"'[1+F,(n.)/f(7). )], (53)

TABLE I. Values of the Fourier transform of the cor-
relation function f (x) [Eq. (48)] and field dependence of
the transfer rates for R+ dipole-dipole interaction. The
solution of the set of implicit equations (52) and (53)
giving the field dependence is obtained by first identi-
fying x[f& (x)] ~~4 and the field parameter ~ [giving Eq.
(52)] and then computing 4 through (53).

where E, is the integral of f(t)) over q. The field
dependance of the rates of transfer with B are
completely determined by (52) and (53). The
functions f and F, have beendetermined analytically
for a great variety of potentials. "'"" For dipole-
dipole interaction, they are explicitly (the K, being
modified Bessel functions")

f(rj) = 4n'[K2(n) + 4K,'(n) + 3K'.(n)],

&, (7)) = 4 n'[K, (rI)K, (n) + 4K.(n)K, (n) -K'. (7))

—K', (7)) —3K', (q)],

and are tabulated with 4 in Table I. For the A '
Van der Waals interaction, f(q) is just a combina-
tion of exponential and powers. '"'""

2. Case of several evolution frequencies with the field

In general, the physical quantities of interest
are combinations of elementary processes i which
evolve at different frequencies with the field. '
These various processes cannot be distinguished
in zero magnetic field, which means that only
one cutoff radius has to be used. We suppose,
for example, that we have

(5) —
q ~~g ll (11 —0) ~g d, f(,q), (54)

D. Some remarks

1. Remarks on symmetries

As the method is based on second order per-
turbation theory, one can easily show that the
symmetry properties of (OR) are greater in num-
ber than those predicted in the preceding sections. 4'

Some anisotropy effects already exist, but coupling
between tensorial components of the density ma-
trix occur in general at higher orders of the
development. "

x[yj (x)]

0
0.1
0.199
0.296
0.393
0.488
0.582
0.676
0.771
0.867
0.964

1.065
1.169
1.275
1.386
1.502
1.623
1.749
1.882
2.020
2.167

2.319
2.481
2.651,
2.829
3.018
3.216
3.425
3.646
3.877
4.120

4.380
4.641
4.941
5.242
5.560
5.896
6.261
6.629
7.030
7.448

0
0.1
0.2
0.3
0 4
0.5
0.6
0.7
0.8
0.9
1

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
4.0

0
1.01
1.02
1.05
1.07
1.10
1 13.
1.15
1.16
1.16
1.16

1.14
1.11 .

1.08
1.04
0.994
0.945
0.892
0.837
0.782
0.726

0.672
0.618
0.567
0.518
0.471
0.427
0.386
0.348
0.313
0.281

0.251
0.224
0.199
0.177
0.157

, 0.139
0.122
0.108
0.0947
0.0832

E( (x)

1
1.02
1.05
1.07
1.08
1.07
1.05
1.02
0.974
0.924
0.869

0.811
0.750
0.690
0.631
0.574
0.519
0.467
0.419
0.374
0.333

0.296
0.262
0.231
0.203
0.178
0.156
0.136
0.119
0.103
0.0898

0.0780
0.0675
0.0584
0.0504
0.0434
0.0374
0.0374
0.026
0.0237
0.0203

1
1.010
1.025
1.034
1.039
1.035
1.025
1.012
0.991
0.967
0.942

0.914
0.883
0.852
0.819
0.786
0.753
0.719
0.686
0.654
0.621

0.590
0.560
0.530
0.501
0.473
0.446
0.420
0.396
0.372
0.350

0.328
0.308
0.289
0.270
0.253
0.237
0.221
0.206
0.192
0.179

with

gd,.=nfl'(0)/ P ll'(O)
~
=1,

Q d, y(o. ,q) = 1/(q'. p, "), (55)

instead of (49). The method of Sec. IVC gives in
this case

by defining only one cutoff radius for the whole
process in strong field, and then insuring self-
consistency with the zero-field treatment.

There is nevertheless another way to evaluate
the relaxation rates, by defining a cutoff radius
for each elementary process, i giving then

(57)

and
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I ~ (~')"' 'll'[f(~ n')]"'C(B)=- g (&gP/20llt

„(, ~,(~,n.') (58)
f(&,n,')

Of course these two evaluations are not equivalent,
and give different predictions for B=G and BWO.
One can only demonstrate that (56) is a maj orant
of (58) for B=0. In practical cases, calculations
show that the predictions of (56) and (58) are not
far from each other.

II
' II
I

&e t

W & W

~s

P

3. Conclusions

'The method discussed in this section has some
interest, as it avoids such very complicated pro-
cedures as those involved for collisions in strong
magnetic fields. In some cases, it gives very bad
predictions, such as for the excitation transfer
between two isotopes'" (the 'II values are then

strongly dependant on the energy difference &&

between levels). But, as will be shown in the
Sec. V and paper, "it gives in general a good es-
timation for the variation of the transfer rates
for resonant collisions in strong magnetic fields.
In spite of a systematic overestimation of the
cross sections and its multiform character (point-
ed out in Sec. IVD 2), it permits in some special
cases a good understanding of the experimental
results, and is very useful for qualitative pur-.
poses. For example, the interpretation in terms
of correlation function makes clearer the notion
of correlation time 7', associated with the potential.
Varying the field is then in some aspects equiva-
lent to making a Fourier analysis of the potential.

V. EXACT SOLUTIONS FORA*-A AND A*-X

The solutions of various classes of problems
have been obtained by solving Schrodinger's equa-
tion with appropriate methods for J =1-J =0
resonance transitions in the case of identical
atoms" (R ' dipole-dipole interaction) and for the
interaction via R 6 Van der Waals potential of a
J =1 excited atom with a, structureless pa.rtner. "' '

Symmetries have been checked for each (B, b,
u, 8, y, .y) value used in numerical integration.
They are at each step in exact agreement with the
predictions of Sec. II and of Sec. IV for large im-
pact parameters and ultimately provide tests of
Accuracy and methods for considerable reduction
of computation time.

A. Anticrossing of energy levels

Some results of the numerical studies need to
be stressed. In zero magnetic field, the collision
process is equivalent in some aspects to the for-

FIG. 1. Correlations between transition probabilities
and potential-energy curves during the collision. The
situation corresponds to R 6 anisotropic Van der Waals
interaction with a sign such thatE&& E~ in zero magnetic
field. The field belongs to the collision plane and is
parallel to the second bisector plane of (b, v) (9 =~ r,
y = 47t). The strength of the field corresponds to a
Zeeman splitting of about 27 ~~, and the impact para-
meter is about four times the Weisskopf radius. At

g = —~~ (t = —~) the system is in the m =0 substate.
The Pp ~ &

full curves represent the probabilities of find-
ing the system in the m = + 1 substates during the
collision. The dashed curves (arbitrary units) represent
the eigenvalues of the time-dependent Hamiltonian. At

g =+/ z they correspond to the purely Zeeman case.
Potential-energy curves anticrossing partly explain
the strong value of Ppg at the end of the collision
process, but the increase of Pp~(II)) is notwelllocalized
near this point.

mation of a quasimolecule. For a J =1 atomic
state, the associated molecular states are II
states and one Z state. Due to the symmetry of
the electrostatic interaction, the two II states ar e de-
generate for all internuclear distances. The evo-
lution of the II state "perpendicular to the collision
plane" is not coupled to the evolution of the II and
~ states belonging to the collision plane. ' More-
over, the potential-energy curves are invariant
in the X- -X transformation.

When a magnetic field is applied to the system,
this fundamental Kramers degeneracy no longer
exists. Potential-energy curve anticrossing ap-
pears as in Fig. 1, where the curves are no longer
invariant in the X- -X transformation. This re-
sults from the breaking of Kramers degeneracy
due to the Zeeman Hamiltonian. The spectrum is
then characteristic of a Zeeman effect at large
internuclear distances and of a Stark effect for
X = 0. Correlation studies of potential-energy
curves and transition probabilities between Zee-
man sublevels have been done. 4' They reveal that
the presence of anticrossings is not always corre-
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. FIG. 2. B dipole-dipole interaction between identical
atoms. Field variations (logarithmic scale) of the
m =0 m = + 1 and m= + 1 m=. + 1 transfer rates for
the whole 1+2 ensemble of atoms (reduced to the zero-
field value). The parameter 7' is just g&p~Bp' ' v"
where p is proportional to the oscillator strength of the
resonance transition. The predictions of Eg. (53) using
the symmetrical correlation function for the potential
are represented by + for the M=O M= +1 and by
for the M= +1 M= +1 transfer rates.

lated with a strong increase in the transition prob-
ability between the unperturbed atomic sublevels.
But on the other hand the very special shape of the
energy diagram is connected with the existence of
strong anisotropy effects at the end of the colli-
sion process between, e.g. , the populations of the
m =+1 and m=-1. Zeeman sublevels of the atoms
(Fig. 1). These effects do not exist in zero mag-
netic field. Such effects are also properly taken
into account by an asymptotic expansion of the
(%) relaxation matrix" of third order in V. These
features are of particular interest for beam-
beam experiments for which very strong aniso-
tropy effects can be predicted. They also present
a very strong analogy with the behaviors observed
in collision-induced rotational transitions between
molecules and atoms for odd values of the varia-
tions hj of the rotational quantum number. 4'

B. Results

The field variations of the Zeeman transfer
rates (reduced to the zero-field value) are given
in Figs. 2 and 3 for, respectively, R ' dipole-
dipole interaction and R ' Van der %aals interac-
tion. The proper definitions of 7 are given in the
figure captions. For R dipole-dipole interac-
tion 7 i»roportional" to Bv 3 2 and for R ' in
teraction to Bv"' '." Physically the parameters
are proportional to the product EEr,Pg and directly
measure the importance of the resonance defect

FIG. 3. R anisotropic Van der%'aals interaction.
Field variations (reduced to the zero-field value) of the
m=0 m = +1 and m = +1 m= +1 transfer rates. The
parameter v is just g& p&Bp v",where p is the
anisotropy parameter of the potential related to the
product of the polarizability of the perturbers and to the
mean value of (r 2) for the J = 1 excited atom: (a)
m =+1 m = +1, (b) m=O m= —1, and (c) m =0 m =1.
The situation corresponds to a zero-field position of
potential-energy curves such that 8& & E&. The inverse
situation E& & ED is obtained by interchanging only the
signs of m in (b) and (c) because of scaling laws for the
problem.

compared to the width of the Fourier transform
of the correlation function of the potential, which
for these slowly varying potentials is approxi-
mately the inverse of a mean collision time.

1. R potential

The semiclassical (m=0- m= + 1) transfer rates
are identical for all field values, . a phenomenon
connected with the (u, g) separability of Schro-
dinger's equation. In zero field, the rates are
velocity independent for a semiclassical straight-
line trajectory formulation. 'O' This is almost
true in a quantum-mechanical approach to the
problem. " In a nonzero magnetic field, the rates
are velocity dependent via the T parameter. ' "'

In Fig. 2'we have plotted the predictions obtained
with the method of Sec. IV. At some field values
this leads to a 20%%-100%% overestimation of the
transfer rates, especially for m= + l -m= + 1
transitions. For m=0-m =+ 1 transitions the ap-
proximation is not too bad and gives a first esti-
mate of the variations with the field.

2. R potential

The semiclassical (m =0-m = + 1) transfer rates
are different as a result of the action of the mag-
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netic field during the collision process. "'" As
the effect depends on the sign of the anisotropic
part of the potential, i.e., on the relative positions
of the ~ and II potential-energy curves during the
collision, this is a way of determining the sign of
the anisotropic part. Experimental ver if ications
of this behavior for Hg* (6'P, )-rare gas collisions
in 200-kQ magnetic fields have been reported"
and have shown qualitative agreement with pre-
dictions, "'"allowing one to determine the quali-
tative distribution of potential-energy curves for

. such collisions at thermal energy. Experimental
verification of detailed balance has also been re-
ported. "

VI. CONCLUSION

Some theoretical aspects of the use of high mag-
netic fields for probing inelastic-collisional ex-
citation transfer have been described for thermal
collisions in a vapor, in conditions of broad line
excitation of the atoms. It will be of interest to
extend the analysis to the case of monomode nar-
row-laser-line excitation for the study of weakly
inelastic velocity-changing collisions, " as the
magnetic field seems to provide a convenient tool
for testing the velocity kernel and the memory
function.

2. Relations between semiclassical collision matrices

~(v ~ v)

& (cp, 8, y) = &(w+ rp, 8, y) . (A1)

b. Transformation (y8y)- («« —cp, 8,—y, —x).
There U', (w- rp, 8, —y, —x)=U', (q&8, yx)*. AS the

sJ' (a )representations of T' 'operators are real
matrices in a standard basis, one deduces that

P ( x, m —q),—8, y) =P (x, qr, 8, —y) +,

Using the projection of (5) on a standard Og
basis and the properties of fU,'}coefficients, one
deduces several relations between collision ma-
trices associated with various orientations of the
collision planes relative to the field. Of course,
we do not consider the transformations that leave
U"' invariant but associated with the same colli-
sion process either by changing only the set (cp8y}
of Euler angles into an equivalent one of different
determination. ' or by changing the sense of the
collision frame. This does not lead to any new
relations, and I' is now'the representation of P
defined in (6) in the standard basis.

a. Transformation y-y+ m, P(x, m+y, 8, y)
=P(x, cp, 8, y). The two physical trajectories are
connected with a parity operation, leaving the
magnetic field unchanged. This together with (5)
gives

APPENDIX: RELATIONS BETWEEN SEMICLASSICAL
COLLISION MATRICES

1. Explicit form of the interaction potential

and after elementary algebra

Z(q&8y) =Z(m —q), 8, —y) (A2)

The (u, (x)) coefficients associated with a given
coliision process (q&8y) satisfy the following re-
lations:

u,'(x) =u'*, (x) =u', (-x) =-,' (1 +ix)'/r',

u'„(x) =0, u', (x) =- 1/~6,
with x =vt/&, and are characteristic of the assum-
ed symmetries of the potential. The explicit form
of the (U', (y 8yx)j in (3) is then given with U', +

= (-)' U', (the Hermiticity of V) by

U,'(@8yx}=-,'e "«[(1+cos'8)cos 2(g —cp) —sin'8

+ 2i sin2(( —y)cos8],

'U(rp yx8) = —~e '«[cos2($ —cp)cos8+cos8

+i sin2(P —y)],
Uo(q8yx) = —, M6 [sin'8cos2(g —y)+sin'8 ——,],

where g = arctanx is the angle of rotation of the
internuclear axis during the collision. When there
is no L S decoupling by the field, Schrodinger's
equation in the interaction picture is just given by
Eqs. (5) and (6).

or equivalently with (Al)

Z (q), 8, y) = & (2 v —q), 8, —y).

These relations correlate the results of two colli-
sions with trajectories corresponding in XOZ-
plane reflections at reversed time x. Note that in
each transformation the field is not invariant but
only in the product.

c. Og rotations. The rotation R, (J3} around the
Z axis leads to

&. (tl)P( ~xy)ft.'(ti) =P(., y, 8, y- S),
then to

~(q, 8, y- P) =R. (P)~(y8y)&.'(P), (A3)
expressing the fact that the physical problem does
not depend on all three angles, but only on q and 9.

d. g0$ plane reflections-. With j the vector of
polar angle ( in the XOY' plane and T(g) the matrix
repx'esentation of the operator associated with
g0$-plane reflections, one has

T(g)Zk Tt(~) ( )%+a 2gqKTk

leading to

T(&)P(xq 8y)T'(&) =P(., p, 8, y+2&)*
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Algebraic manipulation of Eq. (15) then produces

Z (+, q, 8, y) = 7'(t)Z(+, p, 8, y +2 $)*7'(h), (A4)

where the (a) refer to the cases in which the po-
tential is +P or -I'. Equation (A4) permits the
relation of solutions of Schrodinger's equation for
two opposite potentials. Physically, this means
that within the above-mentioned approximations,
(A4) offers the possibility of obtaining collision
matrices for potentials of opposite anisotropy
in the case of A*-X collisions (inverse relative
positions of the potential-energy curves) when the
soIution is known for one sign. For A*-A colli-
sions between identical atoms Schrodinger's equa-
tion is invariant under atom exchange. Knowing
the solution of (5) for the symmetric states, for
example one can solve the collision problem com-
pletely by obtaining from (A4) the evolution of the
antisymmetric states under exchange.
e. Unitarity. From V =Y, one deduces

Z ~ Z~=I . (A5)

3. Comparison to the zem-field case

Assuming statistical spherical symmetry, one
can express the collision matrix in zero magnetic

field by

Z(y8y) =R(@8y)Z(0, 0, 0)R~(rp8y)

with Z(0, 0, 0) =Z(0, 0, 0) resulting in the same
standard basis from invariance under the time-
reversal operation and reflections in the trajectory
plane, '7 Z(+) = Z(v)* and other, accidental symme-
tries in some cases as decoupling of (5) into two
independent subsets of differential equations due
to the particular form of V, which only allows
coupling between ~ =0, +2 states. "

For nonzero magnetic field, the breakdown of
rotational invariance formulated in (A6) is par-
tially mitigated by other kinds of relations, which
connect different collision processes in space and
are closely related to the symmetries of the in-
teraction potential and Zeeman Hamiltonian. But
except in some special situations (e.g., when the
collision planes are perpendicular to the field)
one cannot in this situation find any relationship
(except A5) for a given collision (cp, 8, y) which
permits simplification of the computation of
Z(y, 8, y)
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