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Electric dipole polarizabilities' and electron-molecule static and adiabatic polarization potentials are
calculated by means of ab initio molecular-orbital theory. Nine different basis sets involving 18-48
contracted Gaussian basis functions are used. The authors show that bond-centered basis functions are very
efficient for polarizability calculations: a 46-function calculation yields a spherically averaged polarizability

ao within (6-7)% of the 56-function calculation of Morrison and Hay and the 76-function calculation of
Schneider. As compared to Schneider's calculation, 18 functions underestimate eo by 39% and two 26-
function calculations underestimate it by 26% and 31%. These small basis sets 'may be useful for qualitative

purposes, but the results show that the adiabatic polarization potentials at small electron-molecule distances

are not less sensitive than polarizabilities to basis-set variations and truncations. Full adiabatic polarization

potentials are reported for both 18-function and 47-function basis sets,

I. INTRODUCTION

This paper presents a study of the static elec-
tric dipole polarizability and the adiabatic polari-
zation potential (APP) for electron scattering for
the molecule N, at the self-consistent-field mol-
ecular-orbital level using the finite-field approach
in which the molecular wave function is variation-
ally optimized in the presence of a negative test
charge. In earlier papers in this series we have
presented ab initio self-consistent-field (SCF)
molecular-orbital -calculations of the static elec-
tric dipole pole, rizabilities and adiabatic electron-
scattering polarization potentials for H, (Ref. 1)
and I.i, .' There are several previous ab initio cal-
culations of the electric-dipole polarizabilities of
N, .' " Early calculations used perturbation the-
ory' "'; finite-field approaches, like the pres-
ent one, have been applied to this problem more
recently. ' ' " ' There has been only one ab initio
study of the electron-scattering adiabatic polari-
zation potential for electron scattering by N, (Ref.
14); it is not yet published, but the emphasis is on
large electron-molecule separations. " Our emph-
asis is on smaller electron-molecule separations.
Gready, Bacskay, and Hush" have examined the
interactions of N, and CO with whole and fractional
positive charges and with charge patterns repre-
sentative of crystal surfaces. These studies are
complementary to the present study involving a
negative test charge, but although the electrostatic
interactions of single test charges with unperturbed
molecules are just proportional to the perturbing
charge, when adiabatic relaxation is included the
results for positive and negative perturbers are no
longer related by a sign change.

Since N2 contains two atoms from the important
C-N-0 group, it may be considered a prototype for
many other molecules of interest, e.g. , O„C,H„CO,

NO, CO„N,O. For this reason we report anexten-
sive study of basis- s et var iations employing contrac-
ted Gaussian-type functions and includingboth large
and small bases; we hope the conclusions about
what levels of accuracy are attainable with differ-
ent size bases will be applicable to both polariz-
ability calculations and scattering calculations for
other similar systems. In order to treat the prob-
lem accurately, the basis set must be sufficiently
complete to account for not only the charge-density
difference between isolated atoms and a molecule
(bond polarization of the atomic densities) but also
the pertrubation of the molecular charge density
by the perturbing test charge. We have tested a
variety of augmented double zeta-basis sets and
focus on the use of bond-centered functions" to
describe both the bond polarization and the polari-
zation of the diffuse portion of the total charge dis-
tribution induced by the negative charge. (Bond-
centered functions are basis functions positioned
on the axis joining two nuclei but not centered at
either of the nuclei. ) We also discuss the use and
limitations of very simple basis sets derived from
the standard STO-SG (Ref 17) and. 4-31G (Ref. 18)
basis sets proposed by Pople and collaborators.
The former basis set consists of two s functions
and one p function on each nuclear center; the lat-
ter consists of three s functions and two p functions
on each center. We augment both basis sets with
bond-centered functions.

The motivation for the present studies is the use
of the adiabatic polarization potentials as one step
in the development and understanding of realistic
optical potentials for calculations of electron scat-

, tering cross sections. "'0 Scattering calculations
using approximations to the adiabatic polarization
potential based on the intermediate neglect of dif-
ferential overlap (INDO) and intermediate neglect
of differential overlap without intra-atomic terms
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(INDOXI) semiempirical molecular-orbital approxi-
mations20 have already been carried out, and the cal-
culated diff erential cross sections" are in qualitative
agreement with experimental" results. However,
the present results s how that the accurate adiabatic
polarization potential is significantly mor e attractive
than the INDO and INDOXE approximations to it.
Since the polarization potential at large electron-
molecule separations is determined by the static elec-
tric-dipole polarizability, we compare the present
calculations of this quantity to experimental and
previous theoretical results in order to test the
adequacy of various basis sets and to develop
schemes for constructing computationally efficient
basis sets for future work on polyatomic mole-
cules. Finally we study the orbital energies of
the target molecule as perturbed by the scattering
electron at various locations in order to develop
a better physical picture of the detailed response
of the target during a collision.

II. THEORY AND CALCULATIONAL DETAILS

The theoretical approach is the same as de-
scribed elsewhere. ' 'O' " Briefly, the procedure

is as follows. Given a one-electron basis set, we
perform a self -consistent-field molecular -orbital
calculation on the isolated molecule to obtain the
zero-field energy E, . Then the electrostatic inter-
action with a fixed test charge (of charge -I) is
added to the molecular Hamiltonian and the molec-
ular orbitals are reoptimized to self-consistency
in the presence of the test charge. The initial and
final energies in these new self-consistent-field
iterations correspond to the original unperturbed
molecular orbitals and fully relaxed molecular or-
bitals, respectively, and we denote these energies
E, and E, . The location of the test charge is spec-
ified by its distance ~ from the center of the mole-
cule and the angle y between the molecular axis
and a vector from the center of the molecule to the
test charge. The static potential V, the adiabati-
cally polarized potential V ~~, and the adiabatic
polarization potential V~~ are defined for a given
internuclear distance 8 by

(I)

(2)

(~)

and effective electric dipole pola, rizabilities

TABLE I. Basis sets.

Starting
contracted

basis
Basis set

Additional basis functions
Shell Center a

Whole basis set
Composition ' Size

(95)/[53]

(95)/[53]

(95)/[53]

S
P
S
P
S
P

(95)/[53]

S
P
D
S

P
D

(95)/[53] S
P
D

STO-3G
STO-3-2 I6
4-31G

4 (95)/[53]

B
B
B
B
B
N

B
B
B
N
B
B
B
B
B
N
B
B
B

1.13, 0.30, 0.07
0.68, 0.07, 0.03
1.13, 0.30, 0.07
0.68, 0.24, 0.08, 0.03
1.13, 0.30, 0.07
0.0515
0.68, 0.24, 0.08
1.13, 0.27, 0.065
0.68, 0.19,0.0515
0.11
0.065
1.13,0.27
0.68, 0.19, 0.0515
0.11
1.13, 0.065
0.68, 0.0515
0.16
0.9, 0.1
0.9, O.l
0.9, 0.1

(95/33) /[53/33]

(95/34) /[53/34]

(96/33) /[54/33]

(95/331)/[53/331]

(10 5/231) /[63/231]

(951/22) / [531/22]
(63/22) /[21/22]
(63/22) /[32/22]
(84/22)/[32/22]

40

43

46

18
26
26

' (XYZ/ABC)/[xyz/abc] means that there are X(x) primitive (contracted) S shells, Y(y)
primitive (contracted) P shells, and Z(z) primitive (contracted) D shells on each nucleus and
A{a) primitive (contracted) S shells, B(b) primitive (contracted) P shells, and C(c) primitive
(contracted) D shells at the bond midpoint.

Size is the total number of contracted functions.



20 AB INITlO SELF-CONSISTENT-FIELD. . . , III. 869

o.(r, y, B) and and effective electric quadrupole mo-
ment 8(r, y, R) are defined by

and

8(r, B) = (-', ~') [V'(r, O', R) V'(r, 90,B)] . (5)

The actual static electric-dipole polarizabilities
o. (y) and the electric-quadrupole moment 8 are
the (r ~) limits of these quantities. (Note that
an alternative definition of the electric-quadrupole
moment Q =28 is sometimes used. ) Finally, the
isotropic and anisotropic components of the static
electric dipole polarizability tensor are defined
as no = 3(o'(i + 2+i) and o.'2 = s(o.)i

—o. ), where o'ii

=n(0 ) and o.,=n(90 ).
The calculations were performed using the"HONDO V6: closed-shell Gaussian" computer

program. "'" All calculations were done at the
experimental internuclear distance for N, , 2.068a, .
[la, =1 bohr =052917706&10 "m; we use hartree
atomic units (a,.u. ) in this paper. ] We employed
nine different basis sets which are summarized in
Table I. The first six basis sets consist of a
Huzinaga-Dunning (95)/[53] contracted Gaussian
set" ' "augmented by additional uncontracted Gaus-
sian functions. In the notation of Ref. 23, the ad-
ditional functions were S, P, or D shells with ex-
ponential parameters a~ and were either nuclear-

centered (N) or centered at the bond midpoint (B).
An S shell is a 1s Gaussian function, a P shell is
a set of three 2p Gaussian functions, an I. shell is
an S shell and a P shell with the same orbital ex-
ponent, and a D shell is a set of one 3s and five
3d Gaussian functions. Details of the additional
functions are given in Table I. The motivations
for choosing these particular functions will be
given in Sec. III. Bases V-9 consist entirely of
S and L, shells, again using the notation of Ref. 23.
Basis set 7 is the widely used STO-3G basis"
augmented by two I, shells at the bond midpoint.
Basis set 8 is the same except the valence L, shell
of the STO-36 set is contracted into two functions
instead of one (the functions with exponential pa-
rameter 0.285 715 are left uncontracted). Basis set 9
is the same as 7 except that the 4-31G basis set"
replaces the STO-3G set.

III. RESULTS AND DISCUSSION

The zero-field energies and quadrupole moments
for all nine bases are summarized in Table II
where they are compared to other theoretical de-
terminations'" """"and the experimental
value. '4 Basis 5 yields a very good energy for a
Gaussian basis; the only basis sets in Table II
that yield better energies are the Morrison-Hay
basis and the basis sets composed of Slater-type

TABLE II. Zero-field properties.

Basis E() (a.u. ) 0 (a.u. ) Ref.

1
2
3
4
5
6
7
8
9
Dunning (95)/[43]
Dunning (95)/[53]
Gready- Bacskay- Hush (10 61)/[541]
Vladimiroff (95/11)/[43/11]
Dunning (951)/[431]
Dunning (952) /[432]
Morrison-Hay (10 62)/[6421
Nesbet
Cade-Sales-Wahl '

Hartree- Fock limit
MCSC F calculation
Exper imental value

-108.971 01
-108.972 99
-108.973 04
—108.973 ll
-108.973 25
—108.972 07
-107.634 37
-107.682 41
—108.817 87
—108.887 7
—108.889 0
-108.906 16
—108.964 4
—108.966 6
-108.973 2
-108.974 2
—108.97143
-108.992 8
-108.993 9

-1.18
-1.03
—l.05
—0.976
-0.974
-0.961
-1.41'
-0.911
-0.911
—1.79
—1.79
-1.15
-1.25
—1.245
-0.992
-0.897
-0.886
-0.947
-0.940
-0.91
-1~ 04+ 0.07

b
b
b
b
b
b
b
b
b

26
26, 27
7 12
16
28
27, 28
11
29
30, 31
32
33
34

Effective value at 15ao.
This work.
See footnote a in Table I.
Multiconfiguration self-consistent-field calculation.
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TABLE III. Effective polarizabilities.

&(r, g) (a.u. )

r = 10ap 15ap 25ap

X=0'
Basis 1
Basis 2
Morrison and Hay (Bef. 11)

14.8
15.5
16.4

12,6
13,2
15.5 15.1

X=90'
Basis 1
Basis 2
Morrison and Hay (Ref. 11}

6.7
7.0
9.8

6.7
7.0
9.8 9.7

orbitals. We also note that basis 1 which contains
three sets of s and p bond functions gives an ex-
cellent energy as compared to a (951)jf431] basis
and gives almost as good an energy as a (952)/[432j
basis. It thus appears. that multiple-bond functions
can span the space very well, and, based on the
energetic criterion, they improve the description
of the bond polarization. The results for the quad-
rupole moment provide an even better test for the
need for additional functions to adequately describe
the molecular charge distribution. For example,

basis 4 includes a set of diffuse d functions at the
center and it yields a'more accurate quadrupole
moment than bases 1-3. We also note a marked
improvement in the quadrupole moment in going
from basis 1 to basis 2 with the inclusion of a
tighter P bond function. Thus for a good descrip-
tion of the molecular quadrupole, it is necessary
to have a flexible enough basis set.

Table III presents effective polarizabilities cal-
culated at 10ao and 15ao with basis sets 1 and 2.
Table III shows that n& is converged with respect
to increasing ~ by these distances but that n~~ con-
verges more slowly. However, the calculations of
Morrison and Hay indicate that e~~ at 15', is only
2% larger than at 25a, . We considered this devi-
ation acceptable so we calculated the effective
polarizability at 15a, for the other basis sets. We
note that a similar problem occurs in finite-field
approaches using uniform fields proportional to
Fx and Ily, where E is the field strength and x and

y are Cartesian coordinates. In such calculations
the results should be converged with respect to
decreasing I'.

Table IV presents the effective polarizabilities
at 15a, for all nine basis sets and compares these
results to other determinations including the ex-

TABLE IV. Electric-dipole polarizabilities (a.u.).

Finite-f ield calculation

Basis 1
Basis 2

Basis 3
Basis 4
Basis 5
Basis 6
Basis 7
Basis 8
Basis 9
Gutschick- McKoy {Ref. 6)
Gready-Bacskay-Hush {Refs. 7, 12)
Schneider. (Bef. 10}
Morrison and Hay (Ref. 11)

Perturbation theory

Kolker-Karplus (Ref. 3)
O'Hare-Hurst (Bef. 4)
Sinfailam- Thompson (Bef. 5)
Lamanna-Guidotti-Arrighini (Bef. 8)

Experiment

Bridge and Buckingham (Ref. 35)
Zeiss and Meath (Befs. 35, 37)

12.6
13.2
13.4
13.4
13.3
13.2
9.5

12.2
11.1
15.0
14.5
14.9
14.8

31.5
27.3
16~ 6
13.2

15.1
14.82

6.7
7.0
7.1
9.3
9.4
9.7
5.2
6.6
6.3
9.5
9.5
9.7
9.7

8.6
13.2
11.7
8.2

10.4
10.20

8.6
9.1
9.2

10.7
'10.7
10.9
6.6
8.5
7.9

11.3
11.2
11.5
11.4

16.2
17.9
13.3
9.9

11.9
11.74

3.9
4.1
4.2
2.7
2.6
2.3
2.9
3.8
3.2
3.7
3.3
3.5
3.4

15.3
9.4
3.3
3.3

3.1
3.08

Present calculations are effective values at 15ap, Schneider's. are effective values at 20ap.
See Bef. 36.
These values are obtained by combining the most accurate available &p, from Ref. 37, with

G.'2 from Bridge and Buckingham (Bef. 35).
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TABLE VI. Interaction potentials {a.u. ) for e -N& at g = 90'.

r (ao) Basis 1 Basis 2 Basis 5 Basis 7 Basis 8

0.01

0.25

0.50

0.75

1.25

1.50

2.00

2.50

3.00

3.50

4.00

5.00

10.00

15.00

—0.254
—0.141
-0.394

-0.101 9
—0.075 9
-0.176 9

—0.044 0
—0.045 0
—0.089 0

—0.000 56
-0.000 33
-0.000 89

—0.000 17
—0.000 07
-0.000 24

-0.094 1
—0.083 7
-0.177 8

—0.000 48
-0.000 35
-0.000 83

-0.000 15
-0.000 07
—0.000 22

-1.886
-0.481 b

—2.367

-1.376
-0.410
—1.786

-Q. 974
-0.342
—1.316

-0.403
-0.207
—0.611

—0.248
-0.158
-0.406

—0.094 8
—0.095 4
-0.1902

-0.038 9
—0.060 2
—0.099 1

—0.017 8
—0.038 4
—0.056 2

-0.009 43
-0.024 55
-0.033 98

—0.005 82
—0.015 90
-0.021 71

—0.003 03
—0.007 10
—0.01013

-0.000 14
—0.000 09
—Q.000 23

-2.076
-0.383
-2.459

-1.904
-0.389
-2.293

-1.492
—0.383
—1.874

—1.039
-0.333
-1.373

-0.427
-0.170
-0.597

—0.270
—0.110
-0.381

-0.1153
-0.053 2
—0.168 5

—0.053 8
-0.031 6
—0.085 4

—0.027 6
—0.020 3
-0.047 9

-0.015 78
—0.013 24
—0.029 02

—0.009 96
—0.008 72
—0.018 68

-0.004 92
-0.003 97

- —Q.Q08 89

-0.000 20
-0.000 05 '

—0.000 25

-2.0Q3
-0.423
—2.425

-1.447
—0.400
—1.847

-1.017
-0.342
-1.359

-0.431
—0.188
—0.619

-0.278
-0.132
-0.410

-0.120 3
—0.070 8
-0.1911

-0.054 7
-0.041 7
—0.096 4

—0,026 2
—0.026 0
-0.052 3

—0.013 66
-0.016 81
—0.03047

-0.007 83
—0.01107
—0.018 90

-0.003 40
-0.005 05
—0.008 45

—0.000 13
—0.000 07
—0.000 20

Top entry is static potential V (y, g).
Middle entry is adiabatic polarization potential V (x, p).
Bottom. entry is adiabatically polarized potential V (r, p).

Table IV provides 8, useful guide as to what kinds
of basis functions are necessary and sufficient
for various levels of accuracy for the parallel and
perpendicular polarizabilities. Before we consider
our basis sets in order we first consider the prev-
ious finite-field SCF calculations. Gready, Bac-

skay, and Hush' took their basis from Gutschick
and McKoy, ' who augmented a Huzinaga-Dunning
(95)/[43] set with nuclear-centered s, p, and d
sets with exponents 0.08, 0.08, and 0.2. These
added functions are all diffuse functions whose
inclusion was motivated by the fact that they are
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0.0

-0. 1

-0.2

-0.3

-0.6

-07

-O.S
0

r (a, )

FIG. 3. Electron-N2 adiabatic polarization potentials
for collinear and perpendicular-bisector approaches
calculated with several bases.

TABLE VII. Adiabatic polarization potential (a.u. ) for
e -N2 with basis 5 at x = 2.0ao.

y (deg) Calculated Predicted (+,„=2) Error (%)

0
43.954 94
73.646 93
90

—0.4729
-0.2757
-0.1157
-0.0954

-0.4729
-0.2910
-0.1253
-0.0954

5.6
8.3

V ~=—-0.2213 —0.2516 P2(cosg) determined from cal-
culations at X, =O and 90 .

needed for adequate representation of the perturbed
orbitals. They can be called diffuse polarization
functions. This basis does not contain bond-polar-
ization functions, such as nuclear-centered d func-
tions with larger exponents or bond-centered s or
p functions with larger exponents. Such bond-po-
larization functions are necessary for a good de-
scription of the unperturbed wave function (see the
previous discussion). Nevertheless the added
functions do improve the zero-field properties
considerably (see Table II) and this basis set yields
good polarizabilities. A safer approach is to be-
gin with a basis already containing good bond-
polarization functions and to augment it with dif-
fuse polarization functions. Schneider" and Mor-
rison and Hay took this approach by starting with
Huzinaga-Dunning (951)/ [631] and (951)/ [531j

bases, respectively, and adding diffuse functions
to improve the polarizability. Sehneider added many
such functions and optimized them for the atomic
polarizability. A similar approach was applied
successfully to first row hydrides by Werner and
Meyer. -" Morrison and Hay were able to get good
results for N, with only one extra S, P, and D
shell at each nucleus. They determined the ex-
ponential parameters of the added S and P shells
by applying a geometric series extension to the
two smallest 8 exponential parameters (0.7 and
0.2133) and the two smallest P exponential param-
eters (0.5314 and 0.1654) in the Huzinaga (95) set
yielding 0.065 and 0.0515, respectively. Essential-
ly following a suggestion of Werner and Meyer, "
who were generalizing about the exponential pa-
rameters they optimized for polarizability cal-
culations on a series of first-row hydrides such as
NH3 M orr is on and Hay set the exponential param-
eter of their added D shell equal to the smallest P
exponential parameter (0.1654) in the Huzinaga (95)
set.

Bases I -5 and 7-9 represent our attempt to in-
clude boih bond-polarization functions and diffuse
polarization functions without using nuclear-cen-
tered D shells. The reason we try to avoid nu-
clear-centered d functions is economy. As ex-
plained above, a D shell contains six functions so
using nuclear-centered D shells for both bond po-
larization and diffuse polarization effects requires
24 functions. The Schneider and Morrison-Hay
calculations used 5-function d sets rather than
6-function D shells. Even so, using nuclear-
centered d sets led to quite large basis sets.
E.g. , the Schneider calculation involved 82 con-
tracted functions and the Morrison-Hay calcu-
lation involved 60 contracted functions; calcu-
lations with that many functions require very
time-consuming self-consistent-field iterations.
In contrast none of the basis sets 1—5 and 7-9
which avoid nuclear-centered d sets involves more
than 47 contracted functions while the Gready-
Bacskay-Hush basis and our basis 6, both of which
use nuclear-centered diffuse d functions but no
nuclear-centered bond-polarization functions, in-
volve 46 and 48 functions, respectively. Since we
do represent bond-polarization effects reasonably
well we expect our polarizabilities to converge
from below.

Basis 1 involves only 40 contracted functions.
In this basis bond polarization is accounted for by
the Vladimiroff" bond-centered S and P shells with
exponential parameters 1.13 and 0.68, respective. —

ly. One diffuse S shell, two diffuse P shells, and
a "filler" S shell are also added at the bond mid-
point. The filler S shell has an exponential param-
eter which is roughly the geometric mean of the
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other two. Our motivation in putting the diffuse
functions at the bond midpoint is that the spatial
extent of these functions is so great that placing
separate functions at each nucleus should be large-
ly redundant. Tables II and IV show that, pre-
sumably because of the filler 8 shell, this calcula-
tion considerably improves Vladimiroff 's E, , but
6 and the polarizabilities are still rather inaccur-
ate.

Basis 2 is like basis 1 except that a filler P shell
is added at the bond midpoint. This considerably
improves e, and o.

~~
and n increase by about 5%.

Basis 3 is like basis 2 except that the exponential
parameter of the most diffuse P shell is raised to
0.0515 and this P shell is moved to the nuclei,
which adds three more functions. The zero-field
properties are essentially unaffected by this, but

n~~ and e are improved very slightly. This con-
firms our belief that the calculations are not sen-
sitive to the precise values of the exponential pa-
rameters or origins of the diffuse functions.

In basis 4 we used three S and P shells (one S
and P for bond polarization, one diffuse S and P,
and one S and P "filler ") at the bond midpoint and
one D shell at the bond midpoint. The exponent for
the D shell is the polarizability-optimized value of
Werner and Meyer for NH, . ' Inclusion of this D
shell considerably improves the perpendicular
poiarizability, bringing it within 3% of the values
found by previous workers"' "with larger basis
sets.

Basis 5 is identical to basis 4 except that the
most diffuse S shell is moved to the nuclei. This
has a negligible effect, confirming that, just as
for diffuse P shells, no accuracy is lost by center-
ing these diffuse polarization functions at the bond

midpoint.
Basis 6 is identical to basis 4 except the filler 8

and P shells are dropped and the D shell is moved
out to the nuclei and given the Morrison-Hay ex-
ponential parameter. Now n~ is essentially iden-
tical to their value but n, ~

is still not improved.
It is difficult to understand why the Gready-Bac-
skay-Hush and Morrison-Hay bases give more ac-
curate values than basis 6 for n„.

Basis 7 is an attempt to be as economical as
possible consistent with inclusion of bond-polar-
ization functions and diffuse functions. Basis 7
augments an STO-3G minimum basis set with one
bond-centered L, shell for bond polarization and
one diffuse bond-centered L shell. The exponential
parameter 0.9 is the mean of Vladimiroff's opti-
mized values of 1.13 and 0.68. The exponential
parameter 0.1 for the diffuse functions is deter-
mined by the geometric mean extension of the two
smallest exponential parameters (0.8V8 495 and
0.285 V15) of the STO-3G primitive set. E, for

basis V (as well as bases 8 and 9) is poor because
the inner shell is not well represented, but that
may be unimportant for polarizability calculations.
For basis 7, 8, n]], and e~ are all much worse
than for bases 1-6. It should be pointed out though
that basis 7 is much more accurate than the semi-
empirical molecular-orbital method INDO which
yields 8 = -3.1V a.u. (Ref. 2V) and n~~

= V.O a.u. ,
o.', =2.6 a.u. (Ref. 20). Yet, like INDO, the STO-3G
method, even augmented with two L, shells at the
bond midpoint, would be economical enough to
apply even to moderately sized polyatomic mole-
cules at a number of geometries.

In basis 8, the outermost valence L, shell of the
STO-3G calculation is uncontracted. This con-
siderably improves 6, n~~, and e . An STO-3-
21G-type basis without additional bond-centered
functions has been applied to calculate the polar-
-izability of ethylene by Mulder et al."

Basis 9, the 4-31G basis, is an attempt to re-
tain the physics included in basis 8 but to treat the
inner shell more accurately. Disappointingly, al-
though 0 is hardly changed, n~, and n, are 9% and
5% worse, respectively.

We ean draw several conclusions: (i) There is
no loss in accuracy in centering diffuse s, p, and
d functions at the bond midpoint; (ii) bond-centered
functions provide a more economical way to in-
clude bond-polarization effects than do nuclear-
eentered functions; (iii) diffuse d functions as well
as diffuse s and p functions are required for ac-
curate calculations of o. ; (iv) it is hard to con-
verge o.„ to better than 10/0 accuracy without using
very large basis sets; and (v) small-basis-set
ab initio calculations underestimate the polariz-
ability by on the order of 30/0 and are sensitive to
the exact choice of functions, but they are signifi-
cantly more accurate than the semiempirical INDO
method. These results also suggest that diffuse
bond-centered functions would be useful for cal-
culations on Hydberg states or on negative ions
where significant diffuse character is needed to
properly describe the state.

Next we consider the interaction potentials for
electron-molecule scattering. %e selected basis
5, which yields the best zero-field energy of the
nine bases tried for our most accurate calcula-
tions. Since it yields the lowest E„ it is least
likely to overestimate the adiabatic polarization
potential due to basis set deficiencies. Further
the static potential computed with this basis set
is in excellent agreement with that computed earl-
ier" for the (952)/[432] basis. The interaction
potentials calculated with basis 5 are shown in
Figs. 1 and 2.

Table V and Fig. 1 show that for collinear ap-
proach of the electron the static potential greatly
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dominates the adiabatic polarization potential with-
in 0.5a, of the nuclei (the nuclei are at x =1.034a,).
At &=2.0a„V still exceeds V"~ by a factor of
2.5. At 1.5ao and 2.0ao the test we performed with
augmented double-zeta bases showed that the value
for V ~ at these distances is less sensitive to the
choice of set than is the value for a~~ (see Table V
and Fig. 3). We computed V~~(r, y =0') over the
whole range of r for both bases 5 and 7. As com-
pared to basis 5, basis V underestimates n~~ by
28%. In the range 1.5-2.5a, , it underestimates
V~~ by 18/g or less, as compared to basis 5, but
at both smaller and larger x the relative differ-
ences in V & are comparable to or larger than in

n~~. Thus adiabatic polarization potentials do not
seem to be less sensitive to basis-set variations
at small and medium t' than at large r.

Next consider the center of the molecule. Table
VI includes a point 0.01a, from the center of the
molecule. The adiabatic polarization potential
there is calculated to be -0.38 to -0.48 a.u. , de-
pending on method. This is an appreciable con-
tribution and is much larger than calculated previ-
ously by the INDO method. " Since the adiabatic
polarization potential is not negligible at the center
of the molecule, it will be important to study non-
adiabatic effects, which may be important there
(as they are known to be important in electron-
atom collisions4' "). In particular, the present
results show that the common assumption "
that the effective polarization potential is zero at
x =0 cannot be justified in terms of an adiabatic
model. The leading long-range nonadiabatic cor-
rection to the spherically averaged polarization
potential for N, at 8 =R, has been calculated by
Dalgarno et al."

Table VI and Fig. 3 show the sensitivity of V & to
basis set for the approach of the electron along the
perpendicular bisector. As for the collinear case,
the sensitivity of the adiabatic polarization poten-
tial to basis is comparable to the sensitivity of the
polarizability and is greater than the sensitivity
of the static potential. Thus the smaller basis sets
are useful for qualitative predictions but cannot be
trusted for quantitative accuracy. It is interesting
that the adiabatically polarized potential V~~ is al-
so less sensitive to basis variations than the adi-
abatic polarization potential, i.e., there is often a
cancellation between the change in V~ and the
change in V~~ when the basis is changed. However,
there are important exceptions, e.g. , compare
bases 7 and 8 in the range 1.25-2.5a, .

It is common to represent semiempirical polar-
ization potentials as

P
~max

V (r, X)= g V~(r)&~(cosX), (6)
) =0
Re~en

0.0 I
i

1 j I
I

I

-0.1

d)

U -0.2

FIG. 4. Electron-N~ orbital eigenvalues for the three
highest occupied molecular orbitals for the collinear and
perpendicular-bisector approaches calculated with basis
5. The orbitals are described in Table VIII.

where P~(cosy) is a Legendre polynomial and

X,„=2. "'"" The motivation for this is that V~~(r)

decreases faster than r 4 at large r for Xw0, 2.
If this representation is accepted Vo (r) and V~ can
be calculated from results at y =0' and 90', and
other angles of approach need not be calculated.
To test this we performed calculations at two other

y values at x=2.0a, . The results are compared in
Table VG to what would be predicted using A~,„=2
and Eg. (6). Thus the assumption of X~,„=2 seems
reasonable at least for r~2a, . This means that
V~~(r, y) could be calculated reasonably accurately
by performing SCF calculations at only two values
of y for each ~.

In Table VIII and Fig. 4, we present the per and

pm orbital eigenvalues as a function of the position
of the negative charge. Table VIG also includes
the other orbital eigenvalues. The orbital eigen-
values give a physical picture of a hypothetical col-
lision in which the scattering electron moves in-
finitesimally slowly. As the electron approaches,
the general trend is an increase in the eigenvalues.
The ionization potential obtained for the highest
occupied molecular orbital using the Koopmans
theorem decreases from 16.78 eV with the charge
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TABLE VHI. Orbital eigenvalues (a.u. ) for e -N2 with basis 5.

x (ao) &(20)
X=0

0.)
a &(40 ) e(50)

0.50
0-75
1.25
1.50
2.00
2.50
3.00
3.50
4.00

15.00

-15.2768
-15.2641
—15.2770
-15.3509
-15.4252
-15.3929
-15.4088
-15.4516
—15.4752
-15.6246
-15.6896

-14.7042
-13.4863
—12.9313
-14.6158
-15.4079
—15.3872
-15.3545
-15.3578
—15.3906
-15.6168
-15~ 6860

-0.8573
—0.9216
—1.0388
-1.1491
-1.2156

1~ 1737
-1.1788
-1.2048
-1.2327
-1.4131
-1.4800

-0.4133
—0.3707
-0.3585
-0.4191
-0.4745
-0.4529
-0.4675
-0.4751
-0.5086
-0.7100
-0.7773

-0.1427
-0.1767
-0.1439
-0.0771
—0.0355
—0.0899
-0.1821
-0.2846
-0.3414
-0.5662
-0.6338

-0.1842
—0.1899
—0.2317
-0.2868
-0.3386
—0.3075
-0.3167
-0.3405
—0.3687
-0.5450
-0.6168

~(1$() c ~(2g() a g(4 )
tl

0.01
0.50
0.75
1'.25
1.50
2.00
2.50
3.00
3.50
4.00
5.00

15.00

—15.2661
-15.3116
-15.3359
—15.3450
-15.3439
-15.3567
—15.3828
-15.4116
-15.4386
-15.4624
-15.5006
-15.6232
-15.6896

—15.2637
-15.3089
-15.3329
—15.3417
-15.3406
-15.3533
-15.3793
-15.4080
-15.4350
-15.4588
-15.4971
-15.6196
—15.6860

—0.8044
-0.8751
-0.9320
—1.0169
-1.0463
-1.0982
—1.1444
-1.1842
-1.2174
—1.2450
-1.2871
-1.4135
-1.4800

-0.4353
-0.4465
-0.4494
-0.4415
—0.4398
-0.4521
—0.4767
—0.5040
-0.5299
-0.5530
-0.5902
-0.7110
-0.7773

-0.1916
-0.2430
-0.2694
-0.2908
—0.2964
-0.3154
-0.3416
—0.3687
-0.3935
-0.4153
-0.4506
-0.5676
-0.6338

—0.0891
-0.0647
-0.0594
-0.0841
-0.1114
-0.1787
-0.2418
—0.2933
-0.3344
—0.3672
-0.4156
-0.5501
-0.6168 8

—0.1916
-0.2140
-0.2277
—0.2409
—0.2475
-0.2716
—0.3034
-0.3353
-0.3639
-0.3886
—0.4276
-0.5505
-0.6168 ~

The general atomic-orbita1. character of each molecular orbital is given in the footnotes.
The e -N2 system lies in the xz plane with the molecule on the z axis.

b ls bonding.
1s antibonding.
2s bonding.' 2s antibonding.
2P~ bonding.

~ 2p~ bonding. I

Linear combination of 2p„and 2p~ bonding.
2py bonding.

at infinity to 2.43 eV with the charge near the bond
midpoint. The highest-occupied-molecular-orbital
(HOMO) switches from a pv orbital for the charge
at infinity to a po orbital for the charge closer in.
A similar physical effect is also seen in the value
of the final electronic energy, defined as in Ref. 1,
which increases from -132.6674 a.u. with the
charge at infinity to -121.495 41 a.u. with the
charge 0.01a, from the bond midpoint. These re-
sults suggest that the bonding electrons are being
destabilized due to the repulsive interaction with
the negative charge. However, the total e -N, en-
ergy is lower than the value for the electron at
infinity due to the attractive interaction of the neg-
ative charge with the positive nuclei.

The changes in orbital eigenvalues with r depend
strongly on the angle of approach of the charge.
This contrasts to the results for H, (Ref. 1) where
the dependence of the orbital eigenvalue on angle
was found to be essentially independent of the angle
of approach. Thus, for 8, we were able to con-
clude that the interaction of the negative charge
with the nuclei provided the dominant portion of the
angular dependence of the polarized potential. For
N, this is clearly not the case. As the electron
approaches along the perpendicular bisector, the
orbital eigenvalue for the HOMO (4a,) increases
until it peaks near 0.75ap The p~ orbitals split
due to the lowering of the symm. etry in this ap-
proach. For the charge approaching along x, pw„,
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and po, orbitals (Sa, and 4a, ) interact and also
split apart with the pm, (1b,) orbital lying between
the interacting pair. In the collinear approach,
the pm do not split and both the pg and pm orbital
eigenvalues show a complicated dependence on ~.
The 2', 4o, and 5o orbitals show a decrease in
orbital eigenvalue for the test charge in the re-
gion of the nucleus. The 1g, 3g, and 1m orbitals
also show such a decrease, but at larger x. These
decreases presumably correspond to a core polar-
ization effect.

The adiabatic polarization potential computed
here cannot be compared directly to experiment.
The effective polarization potential for an actual
electron-molecule collision contains nonadiabatic
effects."'" Since a molecule, however, has less
time to respond to a test charge with a nonzero

velocity, it is reasonable to assume that the adi-
abatic polarization model gives an upper limit to
the amount of charge polarization. Thus it pro-
vides a good starting point for further work.
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