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Autoionizing states of H2 and H2 using the complex-scaling method
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The complex-scaling method is applied to the study of molecular resonances within the framework of the
Born-Oppenheimer approximation. In this procedure only the electronic coordinates of the Born-
Oppenheimer Hamiltonian are scaled, and thus only the electron-nuclear attraction integrals need be
recalculated with explicit complex. arguments for each value of the scaling parameter. This method is applied
to the study of resonances of H, and H, . This represents the first successful application of a complex-
scaling procedure to the study of a molecular resonance.

The complex-scaling method' has been applied
successfully in a number of studies of resonance
states in atoms. ' In this method the internal co-
ordinates of the Hamiltonian are dilated by a com-
plex factor q =~e '~ such that

H(r) -H(x/q)=:H„(~) .

The spectrum of the Hamiltonian is affected in
such a way that the resonance states become iso-
lated in the complex energy plane with the imagin-
ary part of the energy equal to half the resonance
width I'

The success of this method in describing reso-
nances of few electron atoms has spurred inter-
est in extending its application to molecules' and
many-electron systems. ' In this work we will be
primarily concerned with the extension of the com-
plex-scaling method to molecular problems.

To date, the complex-scaling method has not
been used to study molecular resonances. The
reasons for this are twofold. First, it has not
been clear exactly how the Balslev-Combes theo-
rem, ' which is the foundation for the use of this
procedure in atoms, may be applied in conjunc-
tion with the Born-Oppenheimer approximation to
provide a tractable method for molecular calcu-
lations. Secondly, the use of "trajectory"' and
iterative' methods for the determination of reso-
nance positions frequently requires the solution
of variational problems for a large number of
scale factors. This is potentially a severe handi-
cap in molecular calculations where a large num-
ber of two-electron integrals may have to be re-
calculated and transformed for each value of the
scaling parameter. In this work we apply a
complex-scaling procedure within the Born-Op-
penheimer approximation in such a way as to avoid
the necessity of recalculating and retransforming

the two-electron integrals for each scaling factor.
While the Balslev-Combes theorem does not
directly apply in this procedure, the method is
shown to be plausible on other grounds.

The complex-scaling method, as developed by
Aguilar, Balslev, Combes, ' and Simon, ' is re-
stricted to a class of potentials described as dila-
tion analytic. Since the forces of chemical inter-
est which act within molecules are Coulombic,
it is clear that the molecular potential, considered
as a function of nuclear as well as electronic co-
ordinates, is dilation analytic. The application of
the complex-scaling method to this potential
(applying the Born-Oppenheimei approximation
after dilation) would, however, result in the de-
termination of electronic spectra for unphysical
complex internuclear separations. We choose to
examine the alternative, which is to first apply the
the Born-Qppenheimer approximation then the
complex-scaling method. In this method the elec-
tronic coordinates are dilated independent of the
nuclear coordinates.

The equivalence between dilation of the Hamil-
tonian and scaling the basis is easily seen by the
following relation:

(y(~, R) IH(~/q, R) I y(~, R))„
(e(., R) I e(., R))„

(y(q~, R) I H(~, R) I y(q~, R))„
(~(n~, R) I e(n~, R)),

where the bold-face parentheses denote integra-
tion over the electronic coordinates only. Here x
and B represent the set of electronic coordinates
and the set of nuclear coordinates, respectively,
and H(x, R) is the Born-Oppenheimer Hamiltonian.
For a complete basis, the stationary value of the
variational integral on the right-hand side of Eq.
(3) must be independent of the real scaling param-
eter, whereas the variational energy calculated
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in a finite basis will generally be a function of the
scale. The invariance of the eigenvalues to the
scaling of the basis is of course valid only for
real scaling parameters; unlike the case for a-
tomic problems, we cannot directly invoke the
Balslev-Combes theorem to justify continuing the
scaling to complex values. However, introduction
of a complex scaled Hamiltonian, in both the atom-
ic and molecular case, is equivalent to the analyt-
ic continuation of the basis, to yield a basis which
is more suitable for the description of resonance
wave functions. It is expected that variational
eigenvalues corresponding to molecular resonance
will converge to stationary complex values as in
the atomic case.

Tge application of complex-scaling methods to
potentials which are not dilation analytic is not
without successful precedent. The application of
this procedure to the Stark effect in H and H by
Reinhardt et al. ' proved profitable not only in the
results obtained, but also in that it fostered an
advance in the theory as well. ' These methods
have also been applied to a simple model Hamil-
tonian for predissociative processes. "

There is a significant computational advantage
to be gained by scaling only the electronic coor-
dinates. Since the kinetic energy and electron
repulsion are homogeneous functions of the elec-
tronic coordinates, the scaled Hamiltonian matrix
elements are given by

(4b)

and only the electron-nuclear attraction integrals
need be recalculated for each value of g. There
has apparently been some question as to the con-
vergence of this nuclear attraction integral:

(aI V„,(r, qR)I»= g +' +' dr (5)
Ir

-qual

for complex scale factors g =ze "," since the
integrand has a circle of square-root branch
points. This is only a conceptual problem, how-

ever, since this behavior disappears if one simply
rotates the radial path of integration by -8. This
is independent of the potential numerical problem
which arises in the evaluation of this integral. "

Despite this computational advantage, we must
be aware that scaling the electronic coordinates
independent of the nuclear coordinates is to effec-
tively move the basis function off the nuclear
centers. In a complete basis this presents no
problem, but in a finite basis this may signifi-

cantly affect the quality of the results if the mag-
nitude of the scale factor differs greatly from
unity. The diffuse nature of resonance wave func-
tions minimizes this effect somewhat.

In a finite basis the identification of a resonance
eigenvalue is made by requiring that the eigenvalue
satisfy the complex virial theorem"

dR' '

=2q, p, T+ V„+ V„,(q„,R)
"pt

(6)

(q„,= o.„,e ''»') as nearly as possible. In prac-
tice, the approximate locations of such resonances
are identified by examining several trajectories
of complex eigenvalues (variation of 8 for fixed o,

in the.factor q =o, e "). Pathological behavior
such as loops, eusps, or even inflections in these
trajectories may indicate the proximity of a sta-
tionary point. This point is further isolated by
minimizing

I
dW/dq

I
by a direct search algorithm. "

The molecules H, and H, represent the simplest
molecules exhibiting resonance behavior. Each
has been the subject of a number of theoretical
and experimental investigations. The resonance
positions and widths of H, are of particular cur-
rent interest since they are involved in the deter-
mination of the dissociative attachment cross sec-
tion of e +H, -H+H ." For both H, and H, the
resonance positions and widths were determined
at the near equilibrium (ground-state) geometry
of R =1.4 a.u. using a (5s, SP, ld/3s, 2P, ld) con-
tracted Gaussian atomic basis. " Approximately
45 configurations of natural orbitals were used
as the final basis for the complex-sealing proce-
dure in each case. In Fig. 1 the variation of
several eigenvalues of H, as a function of 8 for
z =1.0 is shown to demonstrate the characteris-
tic behavior of bound states, resonance states,
and scattering states in the molecular calcula-
tions. The fact that the bound-state eigenvalue
moves from the real axis is due to the limited
nature of the basis and the fact that this basis
was optimized (in the choice of natural orbitals)
for the resonance state. There are, however,
no stationary points with respect to variation of g
off the real axis for the bound-state eigenvalue.
In Fig. 2, a 8 trajectory for near optimal value
of n is shown for the 'Z(o', o„) resonance of H, .
In Table I the numerical results we have obtained
using the complex virial theorem are compared
with the resonance position and width for H, ob-
tained by Bottcher and Docken" using projectiori
operator techniques, and the resonance position
for H, obtained by Eliezer, Taylor, and Williams"
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FIG. 1. Variation of the H& Z~ eigenvalue s as a
function of 0 with e =1.0. 0 ranges from 0 to 0.24
radians in steps of 0.02 ~

FIG. 2. 8 trajectory with n-=1.21 for Hq Z'„(0~0„)
resonance.

using the quasivariational method.
These numerical results represent the first

applications of a complex-scaling procedure to
true molecular electronic resonance states. As
we have stressed, there is as yet no assurance
that the complex-scaling procedure we have im-
plemented is a formal extension of the original
complex-scaling method as developed by Balslev,
Combes, and Simon. However, we state our re-
sults for H, and H, as a demonstration that this
method can provide useful information about the
positions and widths of molecular resonances,
while remaining economically feasible. In par-
ticular, our procedure avoids the recalculation
of two-electron integrals which seems to be re-
quired in the Hescigno-McCurdy procedure. ' We

feel that the method presented here, as well as
other methods which extend the complex scaling
procedures to molecules, should be further in-
vestigated, and that the numerical results we
have obtained offer strong encouragement to this
pursuit.
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TABLE I. Resonances of Hz and Hz- at R=1.4 a.u.

-E„(a.u.) -E; (a.u.) O~t (rad) E~, (eV)~ I' (eV)

H~ ~Z~(0 ~) 0.0967 0.0222
Previous estimate

1.263 0.281 29.04
28.96

1.21
0.97

Hg ~Z„(o~~o„) 1.0995 0.0432
Previous estimate'

1.205 Ot;291 1.76
2.00

2.35

Results in eV relative to ground vibrational level of Hz X Z~. [For conversion factors see
T. E. Sharp, At. Data 2, 119 (1971)].

"C. Bottcher and K. Docken, J. Phys. B 7, L5 (1974).'I. Eliezer, H. S. Taylor, and J. K. Williams, J. Chem. Phys. 47, 2165 (1967).
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