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Most theoretical calculations of cross sections for low-energy electron- and positron-molecule collisions
include the important induced-polarization effects in the interaction potential by means of a semiempirical
adiabatic approximation based on the known asymptotic form of the potential. In order to examine the
validity of the assumptions implicit in this procedure, ab initio adiabatic polarization potentials have been
calculated at the self-consistent-field level of accuracy for the e-N, -and e-CO, systems. The resulting
potentials deviate from the asymptotic form for intermediate electron positions outside the molecular charge
cloud. In addition, the angular dependence of the potentials differs from that assumed in the semiempirical
form.

I. INTRODUCTION

Long-range electron-molecule interactiohs' play
an important role in the theory of electron-mole-
cule collisions at low impact energies (below a
few electron volts)." For polar molecules with
sufficiently large permanent dipole moments,
the qualitative behavior of the cross section with
energy is largely determined by the electron-
dipole potential energy. ' For electr on collisions
with nonpolar molecules, both the permanent-
quadrupole and induced-dipole interactions are
known to be important. Indeed, for certain types
of low-energy excitation processes (e.g. , j=o
—j =2 rotational excitation) these long-range in-
teractions are the dominant ones." Similarly,
long-range interactions must be accurately incor-
porated into theories of low-energy positron-mole-
cule scattering. ' For these collisions, the short-
range electrostatic interaction potential is re-
pulsive and exchange effects involving the scatter-
ing particle are absent. Hence significant distor-
tion of the scattering wave function of the positron
takes place in the region well outside the molecular
charge cloud, where the polarization and quadru-
pole terms dominate the interaction potential.

The electron-quadrupole interaction' arises from
the permanent quadrupole moment of the target
molecule; it contributes a term (-q/r', )P, (cos0,)
to the interaction potential energy for an electron
at position r„8, in the region far from the target.
In contrast, the induced polarization interaction' "
is a second-order effect. Roughly speaking, this
interaction arises from the distortion of the mo-
lecular charge distribution by the electric field of

the scattering electron. The energy of the pertur-
bed molecule is lower than that of the undistorted
molecule, giving rise to an additional attractive
term in the potential energy. Asymptotically, the
additional term has the simple analytic form

Vp. ) (r, ) = —o.,/2r,' —(n, /2r', )P, (cos8,), (I)
where cv, and. a, are the spherical and nonspheri-
cal (anisotropic) polarizabilities of the molecule,
respectively. For smaller values of r„ the polar-
ization potential deviates from the simple form
(I) and, in general, depends on the velocity of the
scattering electron as well as its position. " The
accurate determination of the induced polarization
potential for electron-molecule scattering in this
region of space poses a considerable theoretical
challenge.

Such second-order polarization effects have
long been known to be important in low-energy
electron-atom collisions and have been the focus
of considerable attention. "" Most calculations
of electron-atom scattering make the adiabatic
approximation" for the scattering electron. ""
In procedures based on this approximation, V „(r,)
is calculated by fixing the electron at position r,
and calculating the energy lowering due to the dis-
tortion of the target wave function. The molecule
is not permitted to respond dynamically to the
scattering electron, and the perturbed molecular
wave function depends parametrically on the co-
ordinates r„not on the electron velocity.

Alternatively, induced polarization effects can
be described by virtual electronic excitations, "
i.e. , by including closed channels in an eigenfunc-
tion expansion of the electron-molecule system
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C(r, ) =1 —exp[-(r, /r, ) ] . (3)

The "cutoff radius" r, and exponent P are chosen
in such a way that C(r, ) effectively removes the
polarization potential inside the charge cloud of
the target. The cutoff radius r, can be determined
by "tuning" the potential" "so that the calculated
cross sections reproduce some well-established
experimental feature of the scattering (e.g. , a
resonance). In a sense, this cutoff procedure is

wave function. Adopting this approach, Castillejo
et aL" showed that for e-H scattering at impact
energies below the inelastic threshold the adiabatic
theory is valid as r, -~. However, it is not cor-
rect for small r„as Martin et al."demonstrated
for the e-H system by showing that the theory
overestimates the effects of the perturbation.
Several investigators have tried to rectify this de-
fect in the adiabatic approximation for the electron-
atom problem. """"For example, in Temkin's
polar ized-orbital method, "nonadiabatic effects
are partly taken into account in an approximate
way by cutting off appropriate terms in the e}.ec-
tron-atom potential energy whenever the scatter-
ing electron is within the charge cloud of the mole-
cule. This method has also been applied to low-
energy e-H, ' collisions. ' Still another approach to
the problem of including the effects of polarization
is through the use of pseudostates. "

On the whole, much less attention has been given
io the determination of accurate polarization poten-
tials for low-energy electron-molecule collisions.
A few studies of adiabatic polarization potentials
for e-H, collisions have been reported' """and
the resulting potentials used successfully in
scattering calculation. In addition, Truh1. ar and
Van-Catledge" have recently reported a calcula-
tion of approximate polarization potentials""
for e-N, scattering using the intermediate neglect
of diatomic overlap (INDO/ls) method.

In their studies of e-H, scattering, Lane and
Henry" calculated an ab initio nonadiabatic polar-
ization potential and fit it to a reasonably simple
analytic form, which they subsequently used in
scattering calculations' (see also Refs. 31 and 32).
For more anisotropic targets, accurate polariza-
tion potentials have not been available, and less
precise treatments of polarization are implement-
ed. The standard stratagem"" "is to add to
the electrostatic interaction potential energy a
"semiemperical" adiabatic form (AF) for the po-
larization potential. This term is given by Eq.
(1) modified by a spherical cutoff function, viz. ,

Vg(r, ) =[-o.,/2r,'- (o.,/2r', }P,(cos9,)]C(r,), (2)

where C(r, ) is most commonly taken to have the
form

a (very crude) attempt to account for nonadiabatic
effects.

This procedure is predicated on two assump-
tions: (i) that the adiabatic approximation is valid;
and (ii) that the adiabatic polarization potential can
accurately be represented by the form given in
Eq. (1) for all values of the electron position r,
from the asymptotic region to the near vicinity of
the target, where it is removed by the cutoff func-
tion. Because of the importance of the polarization
interaction and the very wide usage of the semi-
empirical form (2), it is necessary to examine
the validity of these assumptions. In particular,
while these assumptions appear to be reasonable
for the e-H, system, "'"they should be studied for
systems involving more anisotropic interactions,
in which the character of the induced distortions
is quite different from that of the nearly spherical
H, molecule.

In the present paper, we study the validity of the
second assumption [i.e. , the use of Eq. (1) to rep-
resent the adiabatic polarization potential beyond
the "cutoff radius" ] for the highly anisotropic e-CO,
system and for e-N, interactions. We include the
latter case because of its widespread interest in
current theoretical research in electron-molecule
collisions. "" Polarization is known to be impor-
tant for low-energy collisions in both systems, ""
and all scattering calculations" reported to data
that take into account polarization effects in this
way use a semiempirical adiabatic form like Eq.
(2)

In order to address this question, we have cal-
culated ab initio adiabatic polarization potentials
at the self-consistent-field (SCF) level of accuracy
for the e-N, and e-CO, systems. The approach
used entails solution of the Hartree-Pock equations
for the molecule in the presence of the fixed ex-
ternal electron; it is described in Sec. II. The cal-
culated potential energy functions are presented
and discussed in relation to Eq. (2) in Sec. III.
.Unless otherwise stated, atomic units are used
thr oughout.

II. THEORY AND PROCEDURES

A. Calculation of polarization potentials

We shall treat the molecule as a rigid body with
its nuclear configuration frozen at the equilibrium
geometry. 4' Our calculations are performed in a
body-fixed reference frame with the z coordinate
axis coincident with the internuclear axis. ' To
implement the adiabatic approximation, we fix
the position of the scattering electron at r, and
solve the (nonrelativistic) Hartree-Pock equation
for the N-electron molecule in the presence of the
external electron. Thus, for the stationary state
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labelled by quantum numbers n, we minimize the
var iational energy

E„(r,) = (4„(1,2, . . . , iV'; r,) IH I Q„(l, 2, . . . , &;r, ))

(4)

using a SCF procedure. The Hamiltonian is X
=X + V, , where K' is the usual Har tree- Fock
Hamiltonian for the isolated molecule" and V, is
the potential energy due to the Coulomb interac-
tion of the molecule with the scattering electron
at r„ i.e. ,

(5)

In Eq. (5), the first sum runs over the nuclei of
charge Z at positions H, and the second sum
runs over the molecular electrons at positions r,

The polarization potential energy at r, is defined
to be the energy lowering due to the distortion of
the molecule. It can be calculated from the ground-
state (n =0) variationally determined energy of
Eq. (4) as

where E,' and 4', = 0,'(l, 2, . . . , N) are the Hartree-
Fock ground-state energy and wave function of the
isolated molecule. The term (+', IV, I+,') in Eq. (6)
is the electrostatic electron-molecule interaction
potential energy (5) averaged over the ground-state
target wave function, i.e. , it is the first-order
correction ' to the zeroth-order energy F', .

The Hartree-Fock equations for E„+,and for
Eo and +,' are solved self-consistently for the un-
perturbed and perturbed grourid-state energies,
respectively. The POLYATQM computer programs
are used in these calculations; details of the com-
putational procedures implemented in these pro-
grams are available elsewhere. " We use basis
sets of nucleus-centered contracted Gaussian func-
tions to describe the undistorted target. These
sets are described in Sec. IIB below. Then the ex-
ternal electron is introduced as an additional
(negative) nuclear center; no basis functions are
centered on the electron. In the structure cal-
culation for the perturbed molecule, the afore-
mentioned Gaussian basis set is appropriately
augmented with uncontracted functions chosen to
allow for the distortion of the target in response
to the external field. " We then calculate the adia-
batic polarization potential from Eq. (6).

Once Vp, ~' has been computed for a sufficient
range of values of r, and I9, it can be expanded in
Legendre polynomials, viz. ,

where the prime denotes that only even-A. terms
are present for N, and CO, . In practice, of
course, this expansion is truncated at some A.

In the asy'mptotic limit, the semiempirical adia-
batic form (2) for the polarization potential cor-
responds to ]]. ,„=2 and vt, (r) =-a„/2r4 for X =0
and 2. Thus we can conveniently study the suit-
ability af the semiempiz'ical form as a represen-
tation of the polarization potential by examining
the deviation of v~ from the form g~" for X. =0
and 2 and by considering the magnitude of higher-
X terms in Eq. (7).

In practice, to obtain the expansion coefficients
vz~' at a particular value of r„we need only
calculate V„] (r„8,) at a few angles; the num-
ber of angles is determined by A.,„,„. We ean use
an pf-point Gauss-Legendre quadrature" to fit
Eq. (8) in order to determine the desired coef-
ficients v„(r,) at a specified r„viz. ,

where x,. =cos9~' are the quadrature points and
9",. the corresponding weights.

Because of the computer time involved in the cal-
culation of V „"', it is desirable to use a small
number of electron angles 8~'] in (8). In this vari-
able, the integrand V~g'P), is a polynomial of
order ~2K,„. Since an N-point quadrature of an
integral is exact for an integrand which is a poly-
nomial of degree less than or equal to 2& —1, we
can implement the expansion of Eq. (7) exactly
using Ã=A. +1 values of the integrand. Si.nce the
molecules of interest here belong to the point
group 0„„;we need only consider angles in the
interval I0, v/2j. This reduces the number of dis-
tinct values of t/p f that must be calculated" at
at each r, to —,'X,„+1. From the resulting expan-
sion coefficients, it is a simple matter to calculate
V„]' for any desired angle 6, from Eq. (8).

B. Description of the calculations

All calculations were carried out at the equilib-
rium nuclear geometry. For N„ the experimental
equilibrium internuclear separation" is 2.068@,.
For CO„ the equilibrium nuclear geometry" is
linear and symmetric (D„„), with an oxygen-carbon
separation of 2.1944a,. The orbital occupancies
of the ground electronic states of these molecules
are

N, (X'Z'): lg' Ig'„2g22g'„3g21v4,

CO, (X 'Z~): 1g,' lo'„2g,' 2g'„3g,' 3g', 4g,' 1v41v4.

To generate a basis set for calculation of the
e-N, polarization potential, we begin with a(9s5p/
5s3p) contracted basis set that is augmented by a
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d-symmetry polarization function with exponent"
0(d) =0.98. The contracted functions were con-
structed from the primitive Gaussian basis sets of
Huzinaga" using contraction coefficients recom-
mended by Dunning. " This basis set was further
augmented by the addition of one uncontracted
Gaussian on each nuclear center of s-, P-, and
d-symmetry with exponents &(s) =0.06, &(P) =0.05,
and g(d) =0.16. Thus we use a (10s6P2d/6s4P2d)
basis. In this basis set, our calculated Hartree-
Fock energy of N, is -108.97419 Hartree as com-
pared to the near-Hartree-Fock result of -108.9928
Hartree of Cade et al."and the exact Hartree-
Fock energy -108.9939 Har tree of C hr istiansen
and McCullough. " %e obtain a quadrupole mo-
ment q =-0.897eg, while Cade ef al. report q
=-0.939eg and Christiansen and McCullough
give q =-0.940eg.

The construction of a basis set for the e-CO,
calculations proceeds along similar lines. %e
begin with a (9s5P/3s2P) contracted basis as des-
cribed by Dunning and Hay' together with one
polarization d-function" on each center, with ex-
ponents g(d) =0.75 on the carbon atom and g(d)
=0.85 on the oxygen atoms. To supplement this
basis set, additional s, P, and d functions on each
nucleus are added to the original bases with the
following exponents:

C: g(s} =0.05, g(P} =0.04, g(d) =0.11,
0: &(s) =0.09, &(p) =0.07, g(d) =0.21.

In the final (10s6P2d/4s3p2d) basis, we calculate
a Hartree-Fock energy for the ground state of
CO, of -187.68304 Hartree and quadrupole mo-
ment q = -3.837ecP. The correspondipg near-
Hartree-Fock results of McLean and Yoshimine"
are -187.7073 Hartree and q =-3.860eg,

The spherical and nonspherical static polariza-
bilities, n, and n, in Eq. (2), have been calculated
independently in these basis sets by Morrison and
Hay. " For reasons of internal consistency in the
comparisons of Sec. III, we use their results at
equilibrium,

nificant figures, we require energies accurate to
seven-to-nine decimal places, depending on the
location of the external electron.

III. RESULTS AND DISCUSSION

TABLE I. Comparison of e-CO2 polarization potentials
calculated from SCF theory fEq. (6) J and from AF of Eq.
(2) for (a) 0, =0 and (b) 0, =77/2. Note that for r, ~5.00p&

C(r, ) =1.0. The numbers shown are 10 U~, j{r~) in
hartrees.

z,(ap)

(a)
SCF

In this section we shall compare the e-N, and
e-CO, adiabatic (SCF) polarization potentials,
calculated using the ab initio procedure of Sec. II,
with the corresponding semiempirical adiabatic
potentials based on the asymptotic form (1) (AF).
In these comparisons, our emphasis will be on
values of ~, beyond the region of the charge cloud
of the molecule. For smaller values of r, the
nonadiabatic correction terms are quite impor-
tant. Moreover, the electrostatic contr ibution to
this potential energy begins to dominate the total
potential in the vicinity of the nuclear singularities.
We note that for r, beyond the charge cloud, C(r, )
= 1 in Eq. (2).

Using Table I, we can compare SCF and AF
polarization potentials for the e-CO, system for
the external electron located at various positions
on the z or x axis. These results correspond to
parallel (8, =0) and perpendicular (8, =90'} distor-
tions of the molecular charge cloud, respectively. "
The two forms for U„„(r,) agree quite closely at
large values of r, . However, discrepancies appear
as we decrease r„reflecting a breakdown in the
validity of the form (2).

The nature of this breakdown is more clearly
illustrated by considering V~,~

as a function of 0,
at several fixed values of ~,. SCF and AF polar-
ization potentials are compared in this fashion at
selected values of r, for the e-CO, system in

n, = 11.43/ and n, =3.36$,
CO, : n =15.76',' and n, =8.06g'

in calculating the polarization potentials from the
semiempirical form (2).

If the polarization potentials, as determined by
Eq. (6), are small, then the perturbed energy E,
and the quantity E', +(4', ~U, ~q', ) will be very nearly
equal, and care must be taken to ensure that the
Hartree-Fock energies are sufficiently accurate
to allow the determination of a reasonable number
of significant figures in Uag. Typically, to calcu-.
late polarization potentials accurate to five sig-

15.0
20.0
25.0
30.0

5.0
10.0
15.0
20.0
25.0
30.0

—26.21
-7.93
-3.19
—1.52

(b)
SCF

-766.19
-55.73
-11.32
-3.62
—1.49
—0.72

23 53
-7.44
-3.05
-1.47

AF

-938.40
-58.65
—11.59
-3.67
—1.501
—0.72
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Figs. 1-4 and for the e-N, system in Figs. 5 and 6.
In the former case, agreement between the two
forms is good for x, ~20.0a,. However, for smal-
ler values of r, significant deviations of the ac-
curate SCF potential from the asymptotic form
are evident. Typically, U„; is more attractive
(i.e. , deeper) than U„"„'I for angles 0, ~65 but less
attractive for larger angles. This effect, which
becomes more pronounced as r, is decreased, is
principally due to the influence of a P,(cos9,) an-
gular dependence in V,„I". Analogous behavior is
evident in the e-N, potentials of Figs. 5 and 6,
although it is considerably less pronounced at
"intermediate" values of r, (between 10.0 and
20.0a,).

The deviations of &'„," from 4 „",', are not ex-
clusively due to the presence in the former of
higher-order angular dependence. A second cause

is revealed by an examination of the expansion co-
efficients s ~" of Eq. (8). We have expanded the
ab initio polarization potentials at each r, in a
Legendre series, " including polynomials P&(cos8, )
for A. ~6, using the procedure described at the
end of Sec. IIA. The resulting coefficients are
given for the e-CO, system in Table II and for
e-N, in Table III. In Tables II and III ~„' ' and v,' '
are compared to their asymptotic limits vA&'(r, )
= —a~/2r', for X =0 and 2.

These results show that as r, is decreased,
higher multipoles v ' and v ~" contribute to 7'„„I".
In addition, v,' ' and v,' ' deviate increasingly
from their simple asymptotic forms. The contrast
is most pronounced for X =2. A further numerical
fit of these results to a power series in inverse
powers of r, demonstrates that this change is
principally due to an r, ' dependence in v2sc" (r,).
This behavior reflects the importance of higher-
order induced eff ects, such as the induced quadrupole
interaction, and may signal the breakdown of
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FIG. 1. Ab initio polarization potentials (SCF) and
semiempirical potentials (AF) for fixed values of r„
the radial coordinate of the scattering electron with res-
pect to the center-of-mass of the target. Potentials
for e-COq scattering at r, = 5.0ao. All potential energies
are in atomic units.
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TABLE II. Expansion coefficients of SCF polarization potentials for e-CO2 [cf. Eq. (8)) in hartrees for A. =0, 2, 4,
and 6. Values of r, are in atomic units (ao). For A =. 0 and X =2, the corresponding AF coefficients -a&/2y are shown
in parentheses with polarizabilities no and +2 as given in the text (1.0 =1.0 &10 }.

5.0 6.0 7.0 8.0 9.0 10.0 15.0 25 ~ 0

—1.657
( 1.261 ')

—7.512
(-6.080 )

—3.849
(-3.282 )

—2.175
(-1.924 3)

—1.323
(-1.201 8)

—8.524
(-7.880 )

-1.612 '
{-1.557 )

-2.O44-'
(-2.017 )

—2.216
(-6.448 )

—8.406 -3.698
(-3.11O ') (—1.6V8-')

-1.858
(-9.839-')

-l.034
{-6.142-4)

-6.219
(-4.030 )

—9.818 —1.121
(-V.96O-") . (-1.O32-')

-6.456 —1.775 —5.6o4 ' -2.OV1 ' -8.798 -4.168 -2.81 -1.99

-8.130 -1.391 —2.151 -1.91

the multipole expansion.
From the present results, we conclude that the

semiempirical asymptotic form of Eq. (2) is a
good approximation to the adiabatic polarization
potential for the e-N, system for r, «8.0a, . For
e-Co„ it is an adequate representation of VpP ('Y )
for y, «20.0a, . This case is to be contrasted with
the e-H., system, for which Lane and Henry found'
that the asymptotic form is good to 5% for r,
~ 2.5a, and to 3% for r, a 5.0a, . It appears that in

charged-particle interactions with more complex
and anisotropic targets than H„ there may be a
substantial range of radial values where the
asymptotic form does not accurately represent the

true adiabatic polarization potential. Such is the
case for the e-CG, and e-N, systems.

Fortunately the differences between vz " and v~'
are least pronounced for A. =0. Often it is precisely
this spherical term that is more important in
low-energy electron collisions. ' However, some
collision processes emphasize higher-order terms
for example, the coupling due to v, (r) is important
to j =0- j =2 rotational excitation of H, and N, at
low impact energies. '

IV. CONCLUSIONS

In this paper, we have presented the results of
ab initio SCF calculations of adiabatic polarization

TABLE III. Same as Table II for e-N2.

2.0 3.0 4 0 5.0 6.0 7.0

-2.275
(-3.5V2-')

-7.244
(-7.056 )

-2.597
(-2.232 2)

-1.064
(—9.114 3)

-4.984
(-4.410 ')

-2.619
(-2.38O-')

—2.661
{—1.O50 ')

-6.223
(-2.ov4 ')

-1.771 '
(—6.563 ')

—6.134
(=2.688

-2.478
(-1.296 ')

-1.160
{-6.997 )

-2.506

-4.59O-'

2.501

2.750

9.116

4.V22 4

2.944

8.500

1.386

2.374 '

6.983

8.22 '

8.0 9.0 10.0 15.0 25.0

—1.505
(—1.395 ')

-6.12V 4

(—4.102 )

—9.260
(—8.V11 ')

—3.544
(-2.561-')

-6.O09-4

(—5.715 )

-2.196
(-1.680 )

—1.155
(-1.129 )

-3.V55 '
(-3.318-')

—1.472
(—1.463 ')

-4.563
(-4.3O1-')

3.612 1.940 1.083

329 6 1.39 '
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potentials fo& the e-N, and e-CQ, systems. For
"intermediate" values of the radial coordinate of
the scattering electron, the SCF potentials differ
significantly from the simple two-term semiem-
pirical form usually used in low-energy scattering
calculations. We find (1) deviations of the X =0
»d ~ =2 expansion coefficients «r ~ -'i" from the
asymptotic forms -n„/2r,', and (2) the presence
of non-negligible coefficients v&

"' for X&4.
In preliminary scattering calculations using these

SCF potentials, we found that the results at low

impact energies are extreme/'y sensitive to the cut-
off function C(x,) in Eq. (2). (This sensitivity is to
be expected in light of the very large cross sec-
tions at these energies and the strength of the in-
teraction potential. ) For certain cases, we were
unable to implement the usual form for C(r, ), Eq.
(3), or a variety of other spherical cutoff functions
so as to obtain reasonable cross sections. The
principle source of the difficulty is that V„," is
very strongly attractive, much more so for inter-
mediate values of r, than is V"", . This fact places
great demands on the simple cutoff function, which
is crudely mocking the effect of the diabatic cor-
rection terms (and, perhaps, is also correcting
for our approximate treatment of exchange). Of

course, the "true" polarization potential, which
includes nonadiabatic effects, is likely consider-
ably weaker than V~'„~"', this is the case for the
e-He system. """

In the present study, we have calculated an ac-
curate adiabatic polarization potential. This po-
tential is only part of the more complicated com-
plete polarization interaction, which must include
dynamic terms. Our examination of the adiabatic

potential, alone and in scattering calculations,
suggests that the success of the semiempirical
form in low-energy electron-molecule collision
theory may be somewhat fortuitous. Apparently,
the cutoff function (2) corrects the adiabatic poten-
tial so as to account crudely for the absence of the
dynamic contribution.

It is possible that use of a more flexible (per-
haps nonspherical) multiparameter cutoff function
would mitigate this problem. " However, the
insight afforded by the present study into the na-
ture of adiabatic polarization potentials for low-
energy electron-molecule collisions strongly
suggests that at least for complex ashperical tar-
gets the dynamic correction terms should be con-
sidered. Our future investigations will pursue this
s uggestion.
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