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By applying the hypervirial relations with the Hellman-Feynman theorem to screened Coulomb potentials,
the authors derive the energy levels of atoms correct to the sixth order of the perturbation parameter A
explicitly without any calculation of perturbed wave functions. The energies of atoms up to the twentieth
order of A are also calculated by computer. In the case of the Yukawa potential, the authors demonstrate by
explicit calculation that the K-shell energy converges, at least for Z > 5, with the value of A, = 0.85, and
that the L-shell energy converges, at least for Z > 24, with A, = 0.70.

I. INTRODUCTION

The problem of screened Coulomb potentials is
of great importance in the atomic phenomena. It
has been treated analytically and numerically with
several procedures such as the WKB method,! the
quantum-defect method,? the analytic perturbation
theory,® and the nonperturbative approach.* The
usual Rayleigh-Schrédinger perturbation theory
applied to screened Coulomb potentials is rather
complicated, requiring numerical work. However,
in the analytic perturbation method,® one can con-
struct the screened wave functions, bound-state
energies, normalizations, and phase shifts in pow-
ers of a small parameter x characterizing the
screening. In particular, one obtains the energy
levels in closed form correct to the third order of
X. In the nonperturbative approach,* the analyticity
properties of the energy levels of screened Cou-
lomb potentials are analyzed for small values of
the perturbation parameter ), and the energy
levels of the atoms are calculated in certain ap-
proximation using dispersion relations.

It is the purpose of this paper to calculate the
energy levels and various expectation values of
screened Coulomb potentials in powers of the per-
turbation parameter ), using the hypervirial the-
orems® (HVT) and the Hellman-Feynman theorem
(HFT). The HVT and HFT have been applied to the
problems of anharmonic oscillators,® and of a hy-
drogen atom with perturbation x».” The energy
and expectation values of position coordinates can
be calculated in power series of the perturbation
parameter x without any calculation of perturbed
wave functions in this approach.

In this paper, we will apply the HVT and HFT to
screened Coulomb potentials. Using the hyperviri-
al properties of certain commutation relations in-
stead of solving the perturbed wave functions, we
will show that the energy and other expectation
values of position coordinates of an atom with
atomic number Z can be calculated, in principle,
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correct to any order of ». In Sec. II we will out-
line the hypervirial theorems and the Hellman-
Feynman theorem for screened Coulomb potentials.
In Sec. IIT we will apply the result of Sec. Il ex-
plicitly to screened Coulomb potentials and derive
formulas for the energy and the expectation values
(r%) of the atom with atomic number Z up to the

~ sixth order and the fourth order of the perturba-

tion parameter ), respectively. Finally in Sec.
IV we evaluate the values of the energy levels of
atoms up to the sixth order in X and also up to the
twentieth order in X and demonstrate that the per-
turbation series for the binding energies will con-
verge at least for some values of Z if the value of
Xo=A/Z'” is smaller than one.

II. FORMULATION OF THE PROBLEM

The Hamiltonian for a screened Coulomb poten-
tial V,(r) can be written
1 42 1 4
5727 dy+V.('V), (1)
where V(r) is the sum of the centrifugal term and
the screened central potential V,(»). Here we use
atomic units z=e=m,=1, so that distances are mea-
sured in the Bohr radius a, energies in units of
2R ,=21.212 eV. From Eq. (1) we obtain the basic
commutation relations”

H=-

1
|-G @)
[, H1= G + D2t AL 3)

where j are positive integers. The hypervirial
theorems require that ([»/(d/dr),H]) withj =0 van-
ish for the eigenstates of Eq. (1). Hence we obtain
the hypervirial relations between the energy E and
the various expectation values of (7% (Ref. 7),

HEG) =207V + (v )
Z3G -1 - 2)0) @
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where
Ve)=1(1+1)/2r2+V ) . (5)

The screened central potential V,(r) is assumed
to take the form®

v0=-Z 3 oot ©)
®=0

where Z is the charge of the nucleus and ) is a

parameter characterizing the screening (\=x,Z%).

The coefficients V, in Eq. (6) alternate in sign and
decrease with increasing k. The Hellman-Feyn-
man theorem states that if H=H(\), where X is the
perturbation parameter, then

§§=<%1>=<__3‘§<”> , )
A

The HVT and HFT given by Egs. (4) and (7) form
the basic equations for our.calculation of the en-

ergy and various expectation values of (% of
screened Coulomb potentials in Sec. III.

III. SCREENED COULOMB POTENTIALS

We consider an atom of atomic number Z with a -
screened Coulomb potential of the form?®

70=-2 3 %00, ®
%=0

where ) is the perturbation parameter. For the
Yukawa potential, the coefficients V, are

Ve=(=1%/R1. ©)
The term V() in Eq. (1) is then given by
VO)=11+1)/2r%+ V,0) - (10)

Substituting Eqgs. (8) and (10) into Eq. (4), we ob-
tain the hypervirial relations

(E+ZV )
jla+1) ..
=- —[J+1 Zri™y + (— lj(ijl )+;](]—1)>
™ 2 +k+1 o
X(Tj 2)+Z;7+—1——Z‘%Kk<’}”jkl>] . (11)

We assume that the energy and the expectation
values of (»?) can be expanded in power series of
the perturbation parameter )\ as

E= ) E®)t, (12)
k=0
(riy= kz; CIN®, (13)

where the energy of the unperturbed nth states

E{®=-Z?/21*is known. From the conditionof nor-
malization that (»%=(1)=1, we also get

CiO= 54« (14)

Equation (11) combined with Eqs. (12) and (13) pro-
vides us a connection between the coefficients E®*’
and the coefficients C{*’. With the aid of Eqgs. (7),
(8), (12), and (13), the perturbed energies E® are
found to be

kE"”——-ZZ mv,Ckm, (15)

m=1
m=1

To calculate explicitly the perturbed energies
E™® up to the sixth order of x, we proceed by
calculating the coefficients C{® from Eq. (11).
Equating the coefficients of 1° on both sides of Eq.
(11), we obtain

C(O)-— [?ﬂ——ZC‘O)
+<—--L;S_}l_—+i—1—)-+%j( 1)>c<_2], (16)

where n is the principal quantum number of the
atom. Here, in deriving Eq. (16), the energy E{®
of the unperturbed 5th state has been used. From
the condition that C{”=1, we find, from Eq. (16)

CP=2/n? - an

With the known values of C{?’ and C{”, Eq. (16) gen-
erates the f/ollowing results:

C{9=(1/22)[8n* - 1(1+1)], (18a)
CP=(n?/22%)[5n%+1=31(1+1)], (18b)
C© =(n?/82°%)[35n%+25%% —30,°1(1 +1)

+31%(1+1) - 61(1 +1)], (18c)
CO=(n*/82*)[63n*+1051%+12 — T01%1(1 +1)

+1572(1 +1)2 - 507(1 +1)]; (184d)

CO=(n?/162°)2312°%+ 135n*+2945>

—315,%(1 +1)+1052272(7 + 1)?
- 525121(1 +1)-513(1 +1)>+4072(7 +1)?
-607(1+1)]. (18e)
If we equate the coefficients of A on both sides of
Eq. (11), we find .
=0 for k>~1. (19)

Next we consider the coefficients of A% in Eq. (11).
With the aid of Eq. (15), we obtain the recurrence
relation for C{®,
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+1 -1572 2-10 21
cP= [?]L.H_ ZVZC;EH"*' 1 T—zc® 157%(7+1) (r+1)],  (21c)
2)_
~[3n2 = 1(1+1)] V,C{ CiP=(1%/162°)n*[231n°+5857n*+ 8472

- 135%°1(1 +1)-63%°12(1 +1)?
~1897%1(7 + 1)+ 157%(1 +1)?

Employing the condition that C{’=0, we find, from -307%(1 +1)2]. (21d)
Eq. (20), the following results:

+ (-6 -n) o). eo

CP=—(V,/22)3n% - 1(1 +1)], (21a) 3Similau‘%y, if we investigate the coefficie.nts of
A% and A* in Eq. (11) and employ the conditions

—_ 2 2]
CP=(V,/AZ)n¥ Tn*+5n? = 31%(1 +1)?], (21p) C®=C® =0, we find the recurrence relations for
C=(V,/8Z)n" 45n* + 63n® — 140%1(1 +1) € and C,
. d
n?l2+1 jla+1) .. % LZ
CP= ‘z‘f[?ﬁ—zc;-?{* (“-‘:1—%.7(]-1))05-2--Z*"nz[sn +1-310+ DI G425 2V, 05'2] ’ )
2241 +1
o= %[7]:1 ZC(4)+( 71(11 ) +15 (= >C§45+ ?L'ZVZC;E;'*‘ 2]4"‘ /V4C;f%+2(E(2)(‘}2)+E(4)C;0)).J. (23)
With the help of Eq. (15), we obtain then for €, ¢, ¢, C9, and C{¥,
CP=~(Va/22*)n[5x°+1 = 31(1+1)], 24
= (V,/82 Y 450"+ 63n® = 14n°1(1+1) - 1512(1+ 1)? = 101(1+ 1)] , (240)
C= (V,/82%)n"] 14355+ 3450+ 2822 — 90011+ 1) — 21121 2(1+ 1)? — 12602101+ 1)], (24c)
and
CP = =(n*/82°)(105V,+28V3)n*+ (15V,+20VZ)n? — 90V, %1(1+ 1)+ (9V, - 12V2)1%(1+1)% - 18V,1(1+1)], (25a)
C{M=(n*/162°){V,[231225+ 5851+ 84n? - 1351*1(1+1) = 632%12( +1)* — 189221(1+1)+1573(7+1)? = 3072(j+1)
+V997°%+225,% = 21,2121+ 1)? = 3073(7+ 1)°]}. (25b)

Combining Egs. (15), (18), (19), (21), (24), and.(25), the energies of the atom with atomic number Z
through the sixth order of » are found to be

EM=-2V,, (26a)
E®=—3[3n% - 1+ 1]V, (26b)
E®=— (n2/22)[5n2+1=31(1+ 1)] V3, (26¢)
EM=—n?/827(35V, + TV ) n* +(25V,+5V)n? = 30,°1(1+ 1)V,+ (3V, = 3V3) 12(1+1)% - 61(1+ 1)V, ], (264)
E® = —(n*/8Z3)(63V,+45V ,V;)n*+(105V;+ 63V, V) n+ 12V,

= (T0V+ 14V, V) 11+ 1)+ (15V; = 15V,V,)12(1+ 1)2 —(50V 5+ 10V, V) 1(1+ 1)], (26e)

E®=~(n*/162*)[(231V,+231V,V,+ 143V 2+ 33V3) 7 5+ (135V+ 585V,V,+ 345V2+ T5V3) 5 *
+(294V,+ 84V,V,+28V2)n? —(315V,+ 135V,V,+90V2) n%1(7+ 1)
+(105V, —63V,V, = 21V2 — TV3)n2712(1+1)% — (525V+ 189V, V,+ 126V2)521(1+ 1)
+(=5Vg+ 15V,V,, — 10V3)73(1+ 1)*+ (40V, — 30V,V,)12(1+ 1)? — 60V,1(1+1)], (26f)

where E/® is the kth perturbed energy to the nth state of the electron. Equations (26a)—(26c) are in agree-
ment with the result of the analytic perturbation theory.?

For completeness, the expectation values of {(»), (»™%), and (+* up to the fourth and third orders of x, re-
spectively, are given below:
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)=(1/22)[3n® = 1(1+ 1))+ (n?/4Z*)V,[ Tn*+ 5n® = 312(1+ 1)°]2*
+(n?/8Z)W,[45n%+63n? — 14n21(1+ 1) - 157%(7+ 1)% — 107(1+1)]2®
+(n%/162°}{V,[2317°+ 5855+ 8472 — 135141(1+1) - 63121 3(1+1)?
—1897%1(1+ 1)+ 157°(1+1)* = 307%(1+1)?]
+V39971°%+225n* = 212°17(1+1)° = 3073 (1+ 1°pa*+. - o, (272)
r'Y=Z /n-(V,/2Z)[3n* = 11+ D]A* =(Vo/2Z*) 050>+ 1 = 31(1+ 1)|X°
—(n2/8Z3)[(105V ;+28V2)n*+(T5V,+20V5)n® - 90V,»?1(1+1)
+(9V, = 12v2)12(1+1)? = 18V,1(1+ D] A *+. - -, (27p)
= (n2/222)[5n2+1 = 31(1+ 1))+ (Vo/8Z *)n*[45n*+ 635 = 14n°1(1+ 1) - 157%(1+ 1)* - 101(1+ 1)]2®
+(V,/825)n " 143 1%+ 3450+ 28n? — 90n*1(1+1) - 21121 2(1+ 1)?
= 1262277+ D] A%+. .. . ‘ (27¢)

From the above calculations, we show that with
the use of the hypervirial relations and the Hell-
man-Feynman theorem, it is, in principle, possi-
ble to derive the energy and the expectation values
of (v%) in power series of the perturbation parame-
ter » correct to any order of . The energy and
(r’y presented above are, effectively, expansions
in m?2/Z. Since x=)x,Z”3, where ), is a constant,
we find that the energy and (»?) are given as ex-
pansions in A,n2Z 2/3. However, it is hard to see
from Eq. (26) that the series for E is asymptotic*
in powers of (Z/am?). Therefore we expect Eq.
(26) to be valid for the K shell of all but the least-
Z elements and for other low-lying levels of high-
Z elements®. In additional to Eq. (26), one can
also employ the computer to calculate the energies
of atoms to higher order of A by solving Eqgs. (11)—
(15). '

IV. DISCUSSIONS AND CONCLUSIONS

We have derived explicitly the energy of the atom
with atomic number Z correct to the sixth order of

|

I

the perturbation parameter X in the previous sec-
tion. Equations (11)—(15) can also be used to cal-
culate the energies of atoms up to higher orders
of » if the computer is employed. For simplicity,
we confine ourselves, in this section, to the Yu-
kawa potential

V,)==-Z/r)e?™, (28)
where the perturbation parameter \ is given by
YW AL (29)

corresponding to the Z dependence of the recipro-
cal of the Thomas-Fermi radius of the atom.®? We
note that the model potential in Eq. (28) used here
is not entirely realistic, and other physical effects
such as relativistic corrections are known to enter.
Using Egs. (9) and (29), we find, from Eq. (26),
for the energy E, of the atom in the S state (7=0),

E,=—(Z2%/2n®)+Z ;= 3022222+ Fn2(5n®+ I3 — i (Tn?+5)Z 2 b+ shsn(1T1n"+ 24502 +4)2 7405

- 571 (4763 5%+ 1158022+ 1057)Z S+ . .,

where » is the principal quantum number of the
unperturbed nth state. We note that the first four
terms of Eq. (30) have been derived before,® and
that E, in Eq. (30) is an expansion in x,n°Z >/ and
may diverge for low-Z elements. In addition to
Eq. (30), we also calculate E, up to the twentieth
order of A by solving Egs. (11)—(15) using the com-
puter. '

Instead of comparing the results of our analytic
calculation with the experiments® or numerical
calculations with the same potential, we list in
Tables I-III some values of energy levels with

(30)
r -
n=1,2, and 3 for various values of Z. In this way
one is able to examine how the perturbation series
converges for different values of Z and x,. In
Table I, we list our calculated values of E; up to
the third, sixth, eighth, twelfth, sixteenth, and
twentieth orders of A for some values of Z with ),
=0.85. We see, from Table I, that the perturba-
tion series of the K-shell energy begins to converge
at least for Z=5, and that once the perturbation
series converges sufficiently quickly, the first
seven terms or even the first four terms of the
series will give a fairly accurate value of E;. In
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TABLE 1. Calculated K-shell binding energies E; up to the third, sixth, eighth, twelfth,
sixteenth, and twentieth orders of A for some values of Z with A;=0.85.

E (eV)
Z ~3 ~\6 ~\8 12 ~A16 ~\20
2 -11.2 -18.8 —24.6 —-129.4 -2507.1 —-88331.2
3 —-44.7 —49.2 —49.8 -56.6 -115.3 —-868.0
4 —-99.6 -102.9 -102.9 -103.9 -107.3 -131.4
5 -177.1 -179.9 -179.7 -179.7 —-180.1 —181.6
6 —278.0 -280.3 -280.2 —280.1 —-280.1 —-280.3
7 —402.6 —404.7 —404.6 —404.5 —404.5 —404.5
8 —-551.3 —553.3 -553.1 -553.1 -553.1 —-553.1
9 —-724.5 --726.3 -726.2 —726.2 —-726.2 -726.2
14 —1963.6 -1965.0 —1964.9 —1964.9 ~1964.9 —-1964.9
20 —4286.9 —4288.0 —4288.0 —4288.0 —4288.0 —4288.0

TABLE II. Calculated L-shell binding energies E, for some values of Z with A;=0.70.

Ez (eV)

VA ~A3 ~)\ 6 ~\8 ~p 2 ~p 16 ,‘,)\20

15 —-238.6 —-267.7 —268.6 —-282.2 —-352.1 -792.1
20 -555.9 -578.0 -576.9 -577.2 -580.4 —-592.2
21 —635.6 —656.8 —655.6 —-655.5 —657.2 -663.3
22 —-720.8 -741.3 —740.0 —-739.6 -740.5 —-743.7
23 —811.6 —831.4 —-830.1 —829.6 -830.0 —-831.7
24 —-908.1 -927.2 -925.9 —-925.3 -925.5 —926.4
25 -1010.1 —1028.7 -1027.4 —-1026.8 —1026.8 . =1027.3
26 -1117.9 -1135.9 —-1134.7 -1134.1 —~1134.0 —1134.3
30 —1606.6 —-1622.8 -1621.8 -1621.3 -1621.2 —1621.2

40 —3239.1 —-3252.5 -3251.9 —-3251.7 —-3251.6 —3251.6

TABLE III. Calculated M-shell binding energies E5 for some values of Z with A;=0,50.

E3 (eV)

z N}\S ~7\.6 ~A 8 ~A12 g N}\iﬁ . N}\ZO

30 —418.3 ~466.2 —-465.3 —473.1 -505.7 —640.9
34 -613.5 —656.1 —654.1 —655.4 -663.4 —-690.1
35 —668.2 -=709.7 -707.5 —-708.1 -713.7 ~731.7
36 —~725.2 -765.8 —-763.5 —-763.4 -767.3 -779.6
37 —784.6 —-824.2 —-821.9 -821.4 —824.1 —832.5
38 —846.4 —-885.2 —-882.7 —882.0 —883.8 —889.5
39 -910.7 —948.6 —946.1 —945.2 —946.3 —950.2
40 -977.3 —1014.4 -1012.0 -1010.9 —1011.6 —-1014.2
41 —1046.4 —-1082.8 —1080.3 -1079.2 -1079.5 —-1081.3

50 -1779.1 —-1810.4 -1808.3 —-1807.2 —1806.9 -1806.9
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Table II, we present our calculated values of the
L-shell energy E, up to various orders of x for
some values of Z with 3,=0.70. It appears from
Table II that the perturbation series for E, with
20=0.70 starts to converge at least for Z=24. We
note that the perturbation series E, will converge
for somewhat larger value of Z if 3, is chosen to
be larger than 0.70. In Table III, we present the
M-shell energy E; up to various orders of the per-
turbation parameter ) for some values of Z with
20=0.50. The energy series E, seems to converge
at least for Z=40 with 1,=0.50. As in the case of
E, and E,, the first seven terms of the perturbation
series for E, will give a fairly accurate value of
E, for Z>40 and 2,=0.50.

From Tables I, II, and IOI, we see that the K-
shell energy with X,=0.85, the L -shell energy with
20=0.70, and the M-shell energy with x,=0.50 will
definitely converge for Z>=5, Z>24, and Z>40, re-
spectively. Our calculation also indicates that E,
will converge at least for Z=6 if 1,=1.00, and E,
will converge at least for Z=29 if 2,=0.85. Thus,
for the Yukawa potential, the perturbation series
for the binding energies seem to converge at least
for some values of Z if the perturbation parame-
ter X, is smaller than one.

In conclusion, by employing the hypervirial the-

orems and the Hellman-Feynman theorem for the
problem of screened Coulomb potentials, we have
demonstrated that one can obtain, in principle,
analytically the energies and (»?) of the atoms cor-
rect to any order of the perturbation parameter )
as one wishes. In this paper, we have presented
the explicit formulas for the energies of the atoms
correct to the sixth order of A. We have also cal-
culated E, up to the twentieth order of A using the
computer. The perturbation expansion of E, in
powers of A seems to converge for almost all the
K-shell with x,<1, for the L-shell with Z=>24 and
20=0.70, and for the M-shell with Z>40 and A,
=0,50. Compared with other approximation meth-
ods of calculation, the present method using the
hypervirial relations is more straightforward.
Thus, the present method of calculation using the
hypervirial theorems and the Hellman-Feynman
theorem may play an important role in the descrip-
tion of screened Coulomb potentials.
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