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The study of the hyperfine structure of the rnuonic helium atom (a++p, e ) can provide a test of quantum
electrodynamics and yield precise values for the magnetic moment and mass of the negative muon. In the
lowest-order approximation the hyperfine structure interval hv is given by the Fermi formula. The principal
corrections, which contribute about 10 MHz to the splitting, arise from the relativistic, radiative, and recoil
effects. The theoretical hyperfine structure of the ground state of muonic helium is given as
hv = 4465.1+1.0 MHz.

I. INTRODUCTION

The need for a theoretical account of the hyper-
fine structure' ' of the recently observed muonic
helium atom' (o.'"p. e ) has been accentuated by
recently proposed microwave resonance exper i-
ments. ' The combination of the theoretical and
experimental values of the hyperfine structure in-
terval &v can yield precise values of the magnetic
moment and mass of the negative muon, which can
be compared with more accurately known values
of the positive muon as a test of CPT invariance.
In addition, a comparison of the hyperfine struc-
ture for muonic helium and muonium of sufficient
accuracy might detect the effect of axial vector
neutral currents predicted in gauge theories. '

In a muonic helium atom, the muon is bound
closely to the n particle, and the electron wave
function is approximately hydrogenic. Theref ore
the hyperfine splitting of the ground state is given
approximately by the Fermi formula' and has
about the same value as that of muonium, ' but is
inverted because of the different signs of the mag-
netic moments of p.

' and p, . However, the pseu-
donucleus (o'.p, )' is an oversized "nucleus" with its
charge and magnetic moment spreading over a
region having a radius about 10' times larger than
that of the n particle. Consequently, apart from
the usual reduced-mass correction, the principal
difference bet'ween &v for n p e and for p, 'e is
due to the penetration of the electron inside the
pseudonucleus (tt'. p)'. This gives a correction
term of relative order m, /m„and is an effect
similar to the hyperfine structure anomaly first
observed for deuterium, "where the electron
penetrates inside the distribution of magnetism
in the deuteron.

To compute the hyperfine structure of muonic
helium, we work first in the Pauli approximation"
and then consider high-order corrections. The
lowest-order hyperfine interaction operator
reads, " in atomic units,

m Bp
H =—~ ——o.o5'(r )hfS 4 ~ 3 8 P 8P

1 - - 3(v, r )(o, r )
r3 8 4 2

8Q 8P - (1.1)

= —', ti n'(m, /m, )(5'(r,„)), (1.2)

where (5'(r,„)) is the expectation value of the
spatial part of the wave function. Here we use
(&v)z to denote the lowest-order hyperf inc splitting.

'The lowest-order calculation is based on three
types of approximation. First, the muonic helium
atom is treated in Pauli nonrelativistic limit. By
using a proper relativistic wave function, a re-
lativistic correction term is obtained. Second,
the Dirac single-particle theory is used. By con-
sidering quantum field theoretical effects, radia-.
tive correction terms are obtained. 'Third, the
interaction between the electron and the muon is
approximated by the Breit interaction. " After
including two-photon exchange effect, a recoil
(or mass) correction term appears.

In Sec. II, we obtain the lowest-order hyperfine
splitting by using correlated wave functions which
explicitly contain interparticle coordinates. We
then consider the relativistic, radiative, and re-
coil and other effects in the subsequent sections,
III, IV, and V, respectively. In Sec. VI, we
summarize the results. Hydrogenic wave functions

where a is the fine-structure constant, m the rest
mass, o the Pauli spin operator, r,„the distance
between the electron and the muon, and 5'(r,„) the
Dirac 5 function in three-dimensional space. In
(1.1), the prime ( )' indicates that when ( )' occurs
in any integral over position space, replace ( )' by
zero for r&e, evaluate the integral, and then take
the limit of & -0. For spherically symmetric
states, only the first term of (1.1) survives; then
the hyperfine splitting of the ground state of mu-
onic helium is
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and their magnetic corrections needed in this
work are presented in the Appendix.

4485

II. LOWESTARDER HYPERFINE SPLITTING 4480

l+m+n» e
g(r„rg = P C, „U,„„, (2.1)

The calculation of the hyperfine structure of
muonic helium requires correlated wave functions.
Accurate variational. wave functions, which ex-
plicitly contain interparticle coordinates, have
been obtained"" for the ground as well as for
excited states of the muonic helium atom. There
is good convergence of matrix elements of radial
operators as the number of terms in the wave
function is increased.

'The correlated wave functions of the ground state
have the form' "
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FIG. 1. Lowest-order hyperfine splitting of the ground
state of the muonic helium atom for variational wave
functions with l + m + n ~ co.

U,„„=(1/4v) exp(-2ar, —,'br„)r,'„—r,"r", (2.2)

Here the parameters a and b and the coefficients
C, „are determined variatiorially. Hence from
(1.2) and (2.1), we obtain the lowest-order hyper-
fine splitting of the ground state of muonic helium
as

i ~cg l+ + cg
(ap)~= —n'i ' Ci, , „,C, „3 ~p ~0

(m '+ m+ n'+ n)!
(a b )III' sl 5' ll

We have evaluated (&v)z with correlated wave
functions of various choices of terms. With
l, +m+n( &u, we obtain (&v)r as presented in

able I and Fig. 1. Even with wave functions up

(2.3)

TABLE I. Lowest-order hyperfine splitting of the
ground state of the muonic helium atom for variational
wave functions with i +m+g —~.

Number of terms
(6 v)&
(MHz)

where + is chosen to have certain selected values,
and

to 455 terms, the lowest-order hyperfine splitting
is still converging slowly. 'To better account for
the correlation without increasing the number of
terms in the trial wave function, we include more
terms with high powers of x» and drop terms with
high powers of r, and x,; specifically, we choose
l+m+n- ur with e, n ~ 3. 'The convergence of the
total energy along this new sequence, about 10 ' ppm,
is as good as for the wave functions with E+ m+ n ~ co,

while (&v)r converges faster. Results from this
sequence of variational wave functions are pre-
sented in Table II and Fig. 2. A least-square
hyperbola fit gives the extrapolated value

(&v)r = 4455.2+ 1.0 MHz. (2.4)

TABLE II. Lowest-order hyperfine splitting of the
ground state of the muonic-helium atom for variational
wave functions with l + m +n ~ u and m, ~ ~ 3.

'The error estimate is based on the greatest possi-
ble variation of the fitting curve. We note that the
difference between the above extrapolated value
and our calculated value for the 496-term wave
function is about 5 MHz.

The large uncertainty in (2.4) may be understood
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FIG. 2. Lowest-order hyperfine splitting of the ground
state of the muonic helium atom for variational wave
functions with L + m+I —~ and m, I(3.

in the following way. Because of the singular
character of the contact operator 5'(r,~), its ex-
pectation value is very sensitive to the electron-
muon correlation. On the other hand, highly
correlated wave functions are very difficult to
obtain by the variational method using an energy
minimization procedure. 'The difficulty lies in the
fact that a trial wave function in error by O(t)) can
give an energy in error by O(5'). Therefore, to
obtain a wave function with 1 ppm accuracy, we
would be required to minimize the energy to an
accuracy of 10 ' ppm. Furthermore, the total

= 4517.0 MHz (2.5)

which differs f rom the more accurate value 4455. 2

MHz by 62 MHz.

III. RELATIVISTIC CORRECTION

Using nonrelativistic wave functions gives an

approximation to the 'hyperfine splitting which is
in error of relative order (Za)'. Thus to compute
the hyperfine splitting to this order we have to
consider an appropriate relativistic equation.

energy of the muonic helium atom is comparatively
insensitive to the. electron-muon correlation be-
cause the binding energy of the muon is the domi-
nant part of the total energy. Namely, the elec-
tron-muon interaction energy in the muonic helium
atom accounts for only 0.25% of the total energy,
while in the ordinary helium atom the electron-
electron interaction energy accounts for 37% of
its total energy.

Had we considered the composite system a"p, e
as an atom with a point nucleus (ay, )', we would
have been dealing with a muonium isotope. In
fact, it may seem to be a fairly good assumption
since in the Bohr model the electron orbit is 400
times larger than the radius of the pseudonucleus
(ai(, )'. We would then obtain the lowest-order
hyperfine splitting

(Av)~ =-', n'(m, /m, )Il+ m, /(m„+m )] '

A. Relativistic wave functions

Let 1 stand for the electron and 2 for the muon, and we can then write the Breit equation" for the muonic
helium atom as

(3.1)

(3.2)

+1/ 2rgp r)

where H«&=c(n& p,)+P,M,c are the Dirac Hamiltonians with reduced masses M&. By introducing two ef-
fective charges Z, and Z„we can rewrite (3.1) as

) (- I(z-z, )rr (z —z, )rr rr - (a, r„)(rr, r„))
I

(- -
)

l. 2 12 12 12

where Hp«& = c(B, p, )+ p,.M,.c' —Z, /r, We treat.
the right-hand side of (3.2) as a small perturbation
and solve for the left-hand side.

The unperturbed wave function is ())p(r„r,) = ())',g'„
where ())', and (I)', a,re solutions of the Lorentz-in-
variant Dirac equations

mi
=+(~;)

2 C,.l'„(n,.)
-v 2c,.y„(n,.)

(3.4)

(H(;) —&(;)jg', =0, i = 1, 2. (3 3)

The ground-state solutions of (3.3) have the form" -C; Y, (0;)
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where the radial part is
X/2

Z(y,.) = (M,Z, n)'&'~

x (2M,.Z,. c&y f~ '. e~ ' ' "' (3.5)

'(4 ))/2 ( ~i)1 377 g ]Q

r,.= [I—(~; o')')". (3.6)

Here m,. denotes the magnetic quantum number of
the total angular momentum, Y)„(A,.) the spherical
harmonics, and I'(f) the gamma function. In split
notation, "we have

a,. =C,.Y)0(Q,.), b, = —.MC&Y„(Q,.). (3.9)

(3.10)

triplet:

In the ground state of the muonic helium atom,
the total angular momenta j, and j, of the electron
and the muon, respectively, are coupled into
singlet and triplet states of the grand total angular
momentum J, i.e. ,
singlet:

&0&+))—g(~ )~

y'(+ )
Ai

(3.7)

Bl) BX2 ( 2 '(3 I I)

E1~
r1

y(-)
0

0 (

+ a*,.

where
P ]p(+)

~0
0

(t)&;) =a,. +b,
(3.8) &e now reduce the wave functions (3.10) and

(3, 11) into a form which is convenient for the sub-
sequent calculation. Consider first the singlet
wave function. This wave function depends on the
coordinates r, and r, and sixteen spinor compo. -
nents. In split notation, we can express it as a
four-component wave function:

~p(+) y(-)
1 2

M 1 p() ()
s'(), )z(~,)

0 0 V 2 y&+)(p(-)
1

y(+) y(-)

(p(-) y(+)
1

&&)(-)y(+)
1 2

y(-) y(+)

@(-)y(+)

(3.12)

In terms of the eigenvectors, ~SM,), of the total spin 5= s, + s„we can write the singlet wave function in a.
matrix form

—,'(a, + a,*) —,
' (a, + a,*) —,

' (a,a,*+a*,a, + b,b,*+b,*b,)

-(I/~2b,* (1/~2b,* -(I/~2(a, b,* —b,*a,)

k(&).* —&).)

-(I/)/2 )b, (I/v 2 )b, (1/)/2 )(b,a,* —a,*b,)

(3.13)

where the ith column is the ith component of (r~o~,"), expressed in the total spin eigenvectors ~00), ~11),
~

10), and
~

1 —1) in the descending order.
Following the same procedure, we can write the triplet in a similar form. Since any one of the triplet

states may be used in the calculation of the hyperfine splitting, we consider explicitly only
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0 (1/v2)b, -(1/v2)b, (1/u2)(a, b, —b,a, )

r =E(r, )E(r, )
Q2 a,a2 (3.14)

0 (1/~2)b, (1/~2)b, (1/v2)(a, b, +b,a, )

0 0 b, b2

We can easily show that in the nonrelativistic limit the singlet (3.13) and triplet (3.14) reduce to the famil-
iar Pauli-Schrodinger wave functions.

Q .- Q 'r12Q 'r2
HB- Q 'Q+

]2 ' l2
(3.iS)

B. Relativistic hyperfine splitting

'The residual Coulomb interaction and Breit in-
teraction in (3.2) are considered by a first-order
perturbation method. Since the residual Coulomb
interaction only contributes to Level shift but not
to the level splitting, we are left with the 8reit
interaction, namely,

0001

]2Q10Q12
1000

where 0's are the Pauli spin matrices. We now

take the eigenvectors of the total spin as bases and
express everything in a matrix form. We can show
that

J M
Ap=

0 0

(3.16)

which gives rise to the hyperfine splitting. The
relativistic hyperfine splitting of the ground state
of muonic helium can thus be written as

O'1 '0'2 =

-3000
100

0 010
0 001

(3.18)

'To calculate (3.16), we write Ha in split notation, and

1 12 2 12O12—:
12

~2t, (t„—it, ) (t„—it, )'

0 ~2t, (t„+it ) (t„'+t~ —t,') v2t, (t„—it~-)

-~2t, (t„+ tt, )

(3.19)

where t„=x»/r», t„=y»/r», and t, =z»/r» are direction cosines of the vector r».
'Therefore for the singlet, we have

0 0 0 0

0001

0 0 0100 (o„o,+o„)
0 0

(3.20)

1000

or in shorthand notations,

JM JM
0 0 0 0

d'v d'g
1 22+

12

x ~F(r, )F(r, ) ~'»
0 0 (3.21)

where () and Tr[) denote a matrix and the trace

of a matrix, respectively. Similarly we can ob-
tain for the triplet

JM JM
B

1 1 1 1

d'r, d'r, ~F(r, )F (r, ) ~'Tr . (3.22)
Q J M

12 1 1
To compute the relativistic hyperfine splitting
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(3.16), we first calculate the difference between
the traces in (3.21) and (3.22) and then perform
the integration. The difference between the traces
can be obtained more easily by making use of the
fact that the trace of two matrices is independent
of the order of multiplication.

Hence the hyperfine splitting (3.16) of the ground

state of muonic helium can be written as

&v=—"nm, ,* dh, dr, I'" r, I" x,
0 0

&( 3,33 33r(/3)3, (3.23)

which is expressible in terms of hypergeometric
function, E,. 'The result is

(1 —y, )(1 —y, ) 1 (2y, +2y, +1) a3"i 'b'"3 '
(Z,n)'(Z, n)' 1"(2y, + l)1 (2y, + 1) (a+ b)3 "&""3 '

&( [(y, + 1)+,(1,2y, + 2y, + 1; 2y, + 3; b/(a+ b))+ (y, + 1)3E,(l, 2y, + 2y, + 1; 2y, +3; a/(a+ b))] (3.24)

IV. RAPIATIVE CORRECTIONS

%e consider now the processes involving the
creation of virtual electron-positron pairs and
the emission and reabsorption of virtual photons
by the electron and the muon themselves.

A. External potentials for the muon and the electron

In order to find the radiative correction to the

hyperfine splitting it is necessary to specify the
forms of the external potentials observed by the
electron and the muon. %e consider first the four-
component external potential of the electron

xA}r} I- +-,x'"x~
I

ZQ Q 1

&$2
(4 1)

where a=2M, (Z, u), b= 2M, (Z, n), and y, were de-
fined previously in (3.6).

'To calculate the relativistic correction to the
desired order, we expand the expression (3.24)
in terms of (Z, u), (Z, n), and (1/M, ). After a,

little algebra we obtain

b v = (b p)~(1+3 (Z, n) 3 (Z, n)'+ 0((Z3u)'/M3)},

(3.25)

where we can identify the first correction term
—,(Z, n)' with the Brett term. " The second correc-
tion term -3 (Z,n)' gives the contribution due to
the muon.

n.Z„=(O~y eA" ~O&, (4.3)

I }

functiori. In calculations of other corrections to
the hyperfine structure, relativistic modifications
to the wave functions may be ignored'"" with an
error of order n(Zn)3(&v)~.

The four-component external potential of the
muon is given by similar expressions as (4.2).

B. Vacuum polarization correction

In this subsection we consider the corrections
due to processes involving the creation of virtual
electron- positron pairs.

The polarization potential can be regarded as
consisting of a Coulomb part, which is independent
of the magnetic moment, and a magnetic part,
which involves the magnetic moment linearly. The
magnetic part is simply a modification of the mag-
netic field and can accordingly be expected to pro-
duce a modification in the hyperfine structure.
There is, however, also an effect from the Cou-
lomb part which arises from the fact that the low-
er-energy hyperfine structure state are the more
tightly bound and, therefore, spend more time in
the region where the vacuum polarization potential
is large. These two effects are, in fact, exactly
equal" up to the order of n(Zn) and u3.

The energy shift due to vacuum polarization is
given by

where p, , is the muon magneton, and o, the muon
Pauli spin operator. The first component of (4.1)
is the Coulomb potential produced by the nuclear
charge and the muon charge while the rest are the
magnetic dipole potential produced by the muon
magnetic moment. On averaging over the muon
coordinates, we obtain

where the four-component potential A" is"

A'„'(q) =—CA„(q)

2v 3 4+ q'(1 —v'

(4.4)
eA'e'(r, ) = -Zn/r, + ( /rn, )[l —e "" (1+}-'br,3)],

eA'"'(r, ) = ep3a3)(0{1/r, )[l —e '"}(1+-,'br, )]]',

(4.2)
where b = 2M,Z, O. , and we have used the Pauli-'
Schrodinger wave function instead of Dirac wave-

Here the first term, which contains the infinite
constant factor C, is the well-known charge re-
normalization term and is henceforth ignored.
The last term M.'„' is finite and entirely free of
effects to be attributed to renormalization. It
is, however, at least a factor n(Zn) smaller than
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the leading term of A'„'(q). So the first and the
third terms of (4.4) will be ignored.

Now we calculate the vacuum-polarization con-

tribution of the electron in the field of the ~ parti-
cle and the muon. We can show that in position
space the Coulomb part of (4.4) has the form

2v2(l —2v2) " e-srl e-byy ] e-2ry e-br1A" r = — d Zo. &4O.
2v (1 —v') r 2b(s' —b') (s' —b')' (4.5)

wheres =2(1 —v') '~2. There exist spurious poles
in the above integral. We can see, however, the
integrand has finite limits at the spurious poles.
The divergent integrals due to this origin will
cancel each other when taken together. Hence in
the subsequent calculation, we will retain only
finite expressions. The total vacuum- polarization
energy shift of the electron can now be written as

(4 8)

where |)I is the adjoint (not Hermitian) conjugate of
As stated before, in the calculation of correc-

tions to the hyperfine structure, relativistic mod-
ifications to the wave functions may be ignored
with error of order n(Zn)2(&v)~ We w.ill thus use
the Pauli- Schrodinge r wave functions throughout
this subsection. 'These wave functions are given
in the Appendix.

Since the hyperfine dependence is taken from the
linear magnetic corrections to either wave func-
tions, we have

il, (Ay)" = 4 fA'y, y, y„eA;"a„g;, (4 7)

I

where 511$, is the S-wave part of the first-order
magnetic dipole perturbation to the wave function

The reason for taking only the S-wave part
is the following. Since we seek only terms linear
in the magnetic moment and the vacuum-polari-
zation potential A",'(r) is spherically symmetric,
only the S-wave part of the magnetic wave func-
tions can contribute. Consequently, in all expres-
sions we will retain only the S-part of the magnetic
wave function. The magnetic correction 6„P, to
the wave function g, is calculated in the Appendix.

Substituting (4.5) for A in (4.7) we obtain

1 v2(3 v2) 4 e st 1

6, (&v)~'= dv, n(Zn) —— g, b~g, d'r,
1 —v 37r

2 b' 4 y4 +-sr ~

4 y4 e-bye

(
2 b2)2 41 M(1 1

1
(4.8)

There are four integrals inside the curly brackets of (4.8). The first integral is evaluated with the result
tt' 4 e-sr ~

b~t)y, d'r,
(3m ' r,

8M, 't (a+ b)(b —a)s+ (2b —a)(a+ b)' a(a'+ ab+ 3b') (a+ b)(s+ a) 1 a'
32t j 2b(s+a)(s+a+b)' 2b(a+b) a(s+a+b) (s+a)' (s+a)'

(1 v2)[B A. 2(1 V2)1& 2]
(4 g)

where B= (1/2n)(M, /M, ) is a dimensionless constant. The second integral is

2I,'—= —b g, e '" 5 g,d'r,

4M, (b120a 2+8a3+2bg 3ab25+)b22ab (a+ b)'
32' (a+ b)'(a+ 2b)' ' (a+ b)' a(a+ 2b)

= (&v)~[-(5/12m)B+O(Z, n ln(Z, n))]. (4.10)

The third integral is the same as the first The fourth integral is
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1

BM, b(3a + 16a b+ 21ab + 3b ) a (a+ b)
32/ 2(a+ 2b) '(a+ b) (a+ b) a(a+ 2b)

=(av)~ 8+ 0(Z, n ln(Z, n))
2w

Define I,'= (av)zI„ I,'= (n.v)zI2, and I4= (~v)~I4. We can then rewrite

v (3 —v') ' v'(3 —v')
5f(/2v)z (~v)~ —o—.(Za. ) dv 2 Iq + n' I2 dV 1 2 2 b2

0 1 —v 0 ~ —v s —b

(4.8) in terms of I„ I„and I4 as

v'(3 —v') b'
v2 (s2 b2) 2 1

(4.11)

(4.12)

Since we want to calculate the correction up to the order of c/(Zo/)(av)~ or o/'(nv)~, we retain only lead-
ing terms in the above integrals. The final result obtained is

5((n.v)2 = (6v)~[&, + 0(o. )(Zg&)],

where

&,= o. (Zo') [—,'+ (14/ wS)B —282+ (4/m)82 —28 + (2/2/)B(2 —8' —284) Ls]
+a. '(—~ + 48'+ 2O 84 —(1/12') B(193/3+ 1088'+ 4(16 —158' —248')[1/(1 —8')]

-(68 —2208'+ 298'+ 1328")[1/3(1 —8') '1 + (70 —998' —22884)L

+48 (16 —15'8 —248 ) [Ls/(1 —8 )]+84(4'2 —178' —2882) [Ls/(1 —8') 2]}),

(4.13)

(4.14)

where L,~ is defined as

1 1 —(1 —82)~/2 l
B (1 82) 1/2 (4.15)

We consider now the vacuum-polarization contribution from the muon. By a similar procedure as in the
electron case, we have

v'(3 —v') 4 't -8r2
52(/2, v)~z —— dv, n(Zo. ) —

~ 2//2 5„2//2d'r2
(1 —v ) 371 & r,

2 2 Q++
2 2 42~ 52/ //2d. +2 2 2 2 P2 5//42d +2. Sm s —a 322 (s —a

3w s2 — '2 ' ~, ~2 rz

—
(/2 v)~[e + 0((y ) (Z((y)], (4.16)

5(n, v)~~ =-5,(sv) ~'+ 52(av) p
=(~ ),[e, + e„+0( ') (Z, )], (4.17)

where c, and z„are given in (4.14) and (4.16),
re spectively.

where the subscript 2 denotes the muon. The mag-
netic correction 5~t/j2 are defined in the Appendix.
Integrals in (4.16) can be evaluated similarly as
in the case of (4.8) by retaining only the leading
terms.

Therefore we can write down the total vacuum-
polarization correction to the hyperfine splitting
of the ground state of muonic helium as

C. Selfwnergy correction

In this subsection we treat processes involving
the emission and reabsorption of virtual photons
by the electron or the muon themselves. These
processes will alter the dynamic responses of the
electron and the muon to each other's magnetic
field and the results are the same as if they had
"anomalous" magnetic moments. For an external
field which is not magnetic but electrostatic, these
processes again change the responses from that
predicted by the single-particle Dirac theory, and
the principal effect is the so-called "Lamb shift. "'~

By using the effective charge Z& for the electron
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and simply assuming

eA(ri) =[-Z&~/r;, eug2 |(1/ri)] (4.18)

may consider the muonic helium as a muonium
isotope. Therefore, the recoil correction is sim-
ilar to that of muonium~' ' and is estimated to be

instead of the more detailed potential (4.1), the
self-energy contribution has the same form as
that of muonium, ~ i.e.,

5(av)r" = -(n, v)~(3o. /&) [m,/(m„+ m )1

x ln[(m, + m, )/m, ]. (5.1)

6, (av)~'= (bv)~[(n/2w) —0.328478(oE/w)'

+ 1.188(o/n') +o!(Z,o')(ln2 —'4 )].

(4.19)

where the last term in the square brackets has
been referred to as "binding correction. "

We now consider the self-energy contribution
from the muon. Because the muon is about 200
times heavier than the electron, the dependence
of the muon wave function on the hyperfine state
is expected to be about 200 times smaller than that
of the electron. Aside from the contribution by
the explicit appearance of a magnetic potential, the
rest part of the self-energy contribution would be
about a factor of 1/m, smaller than that of the
electron. Therefore the muonic contribution to the
self-energy contribution reads simply"

5&(&v) z' ——(6 )~v[n/ w2+ 0.765 782(o.'/w) 2

+24.448(a. /~) 3+ 66 x 10 '], (4.20)

where the last term is the hadronic contribution.
We summarize the results of this subsection by

writing down the self-energy contribution to the
hyperfine splitting of the ground state of muonic
helium as

~(r) = (Zn/R) (-,-" —,'r'/R'' ) for—r(R
Zo./r -for r &R

(5.2)

which deviates from a simple Coulomb potential by

Ze x — Zn A 2 —2x R for x~R
C

0 for x)R

We discuss now some of the effects which may
also affect the hyperfine splitting of muonic helium.
We first consider the effect of the finite size of
the 6 particle. We have treated the a particle as
a point nucleus in all our calculations. With a
nucleus of finite size, however, the lower-energy
hyperfine state (which is the more tightly bound)
spends more time inside the nucleus and therefore
sees a smaller effective nuclear charge. This is
expected to raise the lower-energy level and can
accordingly reduce the hyperfine splitting. Also
with a nucleus of finite size, the spatial integral
( '5(r„)) will be altered because the finite-size
effect modifies the wave functions. We will show
that these two effects do not contribute to the or-
der of interest.

Consider the n particle as a sphere of radius 8,
with the charge uniformly spreading over its
volume. This gives rise to the potential

5(av)~'= 5, (zv) ~'+ 5, (nv) ~'

=(b,v)„[n/w + 0.437 304(a/w) '

+25.636(o./m) + 66 x 10 '

+o.(Z, n) (ln2 ——")].

V. RECOIL AND OTHER CORRECTIONS

(4.21)

This small perturbation shifts the hyperfine states
by different amounts, depending on (g, i

5H,
i 5„g,),

where g, and 5~/, are the wave function and its
magnetic correction defined in the Appendix.
Since gR-'10 4 and bg-10 ', the wave functions
inside the nucleus assume the simple forms

Since we have correlated wave functions andhave
included exact nonrelativistic reduced mass cor-
rection in the lowest-order calculation, all the
nonrelativistic effects of recoil are absorbed in
(5 (r„)). By including quantum electrodynamics
we will, however, expect further recoil correc-
tions. These corrections are all produced by pro-
cesses in which the electron and the muon interact
tmice, either through the exchange of two trans-
verse photons or through one transverse photon
and one instantaneous Coulomb interaction. By
treating the core 0,"p as a pseudonucleus, we

g, - (a~/8w) 'i '[1+O(aR)], (5.4)

5„g,- —M, (2wa3) ' 'bE" [1+O(1/M, ) in(Z, o.)]. (5.5)

By using (5.4) and (5.5), we can show that the hy-
perfine splitting will be reduced by an amount
(n v)~O(aR)(bR), which does not contribute to the
order of interest.

We consider now the correction due to the change
in the spatial integral (53(r»)). We can show that
the ground-state solution of the Schrodinger equa-
tion for the potential (5.2) has the form

g,(r) = (A'/~)"'[1+ O(AR)"']exp[-.'(AR)'" —AR —-'(AR)"'(r/R)'] r R-
(A'/m)' '[1+ O(AR)' ']exp( Ar) r &R- (5.6)
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while for a point Coulomb potential it reads

(~3/7/) k/28 Ar- (5.7)

TABLE III. Hyperfine splitting of the ground state of
the muonic helium atom.

where A denotes ~g or ~b for the electron or the
muon, respectively. By assuming simple-product
wave functions for the muonic helium-atom, we
can show that

(5'(r„))&——(5'(r»))a[1 + O((aR+ bR)' ')] . (5.6)

Hence the finite-size effect of the e particle does
not contribute to the hyperfine splitting to the order
of interest.

By a similar argument, we can show that a mod-
ification of the wave functions due to nuclear po-
larization does not contribute to the order of in-
terest either.

Lowest-order HFS: (»)z
Belativistic correction
Badiative correction

Anomalous magnetic moment:
Electron
Muon

Vacuum polarization:
Electron
Muon

Binding
Becoil correction

Total calculation HFS: &&

4455.2 +1.0
0.040 8.9

5.166
5.195

1159.6
1165.9

0.088
0.096

-0.606
-0.037

19.7
21.6

-136.0
—8.3

4465.1+1.0

Contributions
(MHz) (ppm)

VI. RESULTS

For the ground state of the muonic atom, the
lowest-order hyperfine splitting (hv)z has been
given in (2.3) by using correlated wave functions
which explicitly contain inte rparticle coordinates.
The corrections to the lowest-order hyperfine
splitting arising, from the relativistic and radia-
tive effects have been calculated to order cv2, and
an estimate of the recoil effect has been given.
The theoretical expression for the hyperfine split-
ting can thus be summarized as

(~+) {1+ 5rel + grad ~ grec) (6.1)

Here the vacuum polarization contribution is

(6 3)

with q, and e„given in (4.14) and (4.16), and the
self-energy contribution is

where (Av)z has been given in (2.3), and the cor-
rections are

5'" = —,'(Z, a.)' ——,'(Z, a.)',
grad gvp+ use

7

&'"= -(3o./m) [~,/(~, + ~.)]»[(~.+ ~.)/~, 1 .

(6.2)

The fundamental physical constants used here are the
electron mass me= 0.5110034 MeV, the muon mass
m =105.65948 MeV, the mass of the & particle
m =4.002 603 arnu; 1 amu=931. 5016 MeV,
1 a.u. =27.211608 eV=6.57968413 x10 MHz, and the
fine structure constant G' = 1/137.035 982.

an uncertainty of about 1 MHz, which dominates
the accuracy in the calculated hyperfine structure
Ap.

As an improvement of the present calculation,
one may use variational wave functions of still
highex number of terms. Or correlated wave
functions of different types may be tried. How-

ever, the size of the computer and loss of signifi-
cant figures in the minimization procedure limit
the improvement that can be achieved this way.
Alternatively, the standard perturbative method
may be used. Or one may try to optimize the
variational wave function with respect to the hy-
perfine interaction Hamiltonian itself. These
other approaches are being probed by the present
a,uthors.
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5-= a/w + 0.437 304(n/w)'+ 25.636(o./w)
'

+66x10 + a(Z, o.)(ln2 —'~~), (6 4) APPENDIX: WAVE FUNCTIONS AND THEIR MAGNETIC
CORRECTIONS

where the first four terms are due to the anoma-
lous magnetic moments and the last term due to
the electrostatic binding effect.

High-order corrections in (6.1) are calculated
with effective cha, rges Z„=2 and Z, =1, and the
results are summarized in Table III with the total
theoretical value given as Av=4465. 1+1.0 MHz.
We see that even with variational wave functions
of up to 496 terms the extrapolated (Av)z still has

For the ground state of the muonic helium atom,
the uncorrelated wave functions of the electron
and the muon are

( 3/6v)1/2e ar~/2

($3/6&)1/2e ar&/2-
multiplied by appropriate spin wave functions.
Here g=2M, (Z, n), f/=2M, (Z', n), and the subscripts
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H', = P,' /2M. , —Z, o./r, ,

with eigenvalues

(A2)

1 and 2 refer to the electron and the muon, re-
spectively. The wave functions (Al) are eigen-
functions of the nonrelativistic Hamiltonians

where

H( = —gpss $2 0'g ~ 0'g) 5 rg2 pd7p ~ (A8)
rn2

Ef 3gtX g 2 Of 02 5 rf2 f /de d7 ~

m2

E~i= =2Mi(Z;o!), i = 1,2, (AS)
(A9)

(He Ec)6 q (EN HN) y (A5)

(A6)

where M, are the reduced masses with respect to
the n particle, and Z,. are the effective charges.

The magnetic corrections 6~$, are the first-
order magnetic dipole perturbation (linear in the
magnetic interaction) to the g,. given in (Al), due
to the perturbing Hamiltonian

p

4 m,

N~ ' "12I(i2 ' "t2))

(A4)

Here m, are the rest masses, and v& the Pauli
spin operators.

Writing H, = Hi + Hf and E, = E', +E", , then 5~.$,.
satisfies

Here the integrations in (A8) and (A9) include the
spin coordinates implicity.

Using the wave functions defined in (Al), we find
the solution of the inhomogeneous differential
equation (A7) to be

1/2
6 $=-M E e'"i

1 abx ——a y+ ln r& —Ei(-br, )a+6

a(a + 3ab + 5b ) a
2b(a+ b) 2

(A10)

where y is the Euler's constant, and Ei(x) the ex-
ponential-integral function.

Similarly we find the magnetic correction 5„$2
to the wave function g, of the muon as

1/2

biigi = -Mi 3 Ei e
wb

The action of the magnetic potential on the Cou-
lomb S state will introduce some D state which
cannot contribute to the hyperfine splitting. There-
fore only the S state part of b„g will be dealt with.
Furthermore, for spherically symmetric func-
tions only the first term of (A4) contributes. Hence
for the electron we have the following wave equa-
tion to be solved:

[-(1/2Mi)VI Zfo/r, + —,'Mi(Z/o) ]5Jygi —(Ei Hi)gi,

(A7)

1 abx ——b y+ln r —Ei(-ar )
r2 a+&

b(b'+ 3ba+ 5a') b'

2a(a+ b) 2

1 ~(a+5)'
I2a.

Note that E", = E2 = E~ and

)singlet (E )triylei (+~)F

(A11)

(A12)
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