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In this paper the variational cellular method is extended to the self-consistent calculation of diatomic
molecules. This extension is based on a new variational expression for the total molecular energy the
extremum of which defines the one-electron potential of the Schrodinger equation. The method was tested in
the calculation of N2 and CO and the results are very good: the binding energy and the equilibrium
interatomic distances were calculated to be within less than 10% of the known experimental results.

I. INTRODUCTION II. VARIATIONAL EXPRESSION FOR TOTAL
MOLECULAR ENERGY

In a previous paper, ' which will be referred to
as I, we proposed a general formulation of the
variational cellular method (VCM) for molecules
and crystals. As an example of the accuracy and
fast convergence of the method, computation of
the energy spectrum of the molecular hydrogen
ionH, 'was shown. Now we present the continuation
of our investigations of the cellular model as
applied to the study of molecular electronic struc-
ture of diatomic molecules. 'The aim of this paper
is to show the advantages of the VCM in calcu-
lating self-consistent potential curves and ion-
ization energies for the lowest states of N, and
CO.

The two major virtues of the cellular theory are
removal of the muffin-tin approximation, which
is inherent to the multiple-scattering-Xn (MS)
technique, ' and an arbitrary partition of the mo-
lecular space. Diatomic molecules are partic-
ularly well suited to guide our first self-consistent
calculations, since they are small systems and
the non-muffin-tin corrections to the molecular
potential are expected to be large. '

The paper is organized as follows: In Sec. II
we show how one can construct an accurate self-
consistent potential within the cells and evaluate
the molecular total energy. The details of the
mathematical development are left to the Appendix.
In Sec. III we return to the problem of choosing the
cells, but now aiming at making the total energy
stationary, and discuss some principles for the
choice of the basis sets for wave-function expan-
sion. 4 The results for the ground-state potential
curves of N, and CO and the ionization spectrum
of N, computed by the VCM are reported in Sec.
IV. Our conclusions are summarized in Sec. V.

A. Total-energy functional

In our general formulation of the variational
cellular method in I two important items are
missing: that of the definition of the potential for
the Schrodinger equation and that of calculating
the total energy. At the time of writing thatpaper
our only experience was with the H, ' molecular
ion, for which both questions are irrelevant.
%hen we came to the problem of applying the
cellular method to other molecules, we had to face
these two questions for which we had no ready
answer.

The two questions of how to define the potential
and how to calculate the total energy are actually
a single question. Indeed, the total energy should
be calculated according to a variational expression
whose extremum defines the potential. Thus the
real question is what should be the variational
expression for the energy? There is not a unique
answer to this problem. For instance, in the MS
method one adopts an expression which has built-
in approximations of the charge density and po-
tential in the muffin-tin form. ' In the cellular
method we could proceed analogously and make
averages for fixed radii r in the cell. As a matter
of fact, we tried this procedure, and with results
much better than those of the MS method for the
N, molecule, but worse than those obtained with
the procedure to be explained below.

The variational expression we adopted is the
following:

Z = gSC[y, , y,*. ]+Z„[n]+V[n P, c]

-S[P]+ v(p —n) .
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The terms of which require explanation. First
of all, P(r) is the proton density, that is, a col-
lection of 6 functions at the nuclei. Second, one
distinguishes the zeal electronic density

which is a sum over the occupied states of the
squared wave functions P;, from the assumed
electronic density n(r). In any method for elec-
tronic-structure calculation, when integrating the
Poisson equation one cannot avoid simplifying the
charge density. That is the reason why we assume
a density n(r) possibly different from the real
density p(r).

The terms in Eq. (1) are defined as follows:
(i) The first term

is the kinetic energy functional, normally written

everywhere, we introduce the I,agrange multi-
plier function U, and Eq. (5) is incorporated into
the variational expression, Eq. (1).

The expression for the total energy is stationary
for arbitrary variations in P, , g,*. , n, v, and c.

a. Variations in P;. An arbitrary variation in

g, leads to the Schrodinger equation, or Eq. (3)
of I. In each cell the wave function that makes
E stationary satisfies

In other words, the I agrange multiplier function
e is none other than the one-electron potential.

b. Variations in e. An arbitrary variation in
v leads to

p-n =O.

Thus E is stationary when the assumed and real
electronic densities coincide.

c. Variations in n. Variations in n lead to the
equation

6E„OU —a=0.

but which, in the cellular method, has surface-
integral contributions as in Eq. (2) of I. (ii) The
second term, E„[n], is the exchange functional.
The existence of such afunctional was provedby
Hohenberg and Kohn. ' Normally, this functional
would be written as a local approximation. (iii)
The third term, U[n —P, c], is an electrostatic
Coulomb energy functional; c is the Coulomb po-
tential, which, if written

The first term is the exchange potential. Since
v is the one-electron potential, 6U/5n must be
the Coulomb potential c. Thus the electrostatic
energy functional U must be such that

d. Variations in c. Since E is extreme, the
functional U must be extreme at the true solution,
or

(
n(r') —P(r')

I r —r'I

reduces U to the form

nr --pr crdr.

(3)

(4)

when c equals the expression given by Eq. (3). In

that case U must equal the expression of Eq. (4).

The electrostatic energy functional in the MS
method is simplified to a version with a muffin-
tin average of n(r). This simplification is a pos-
sible source of uncontrollable errors in the MS
method. In our case we chose a different policy:
we adopted a functional which reduced to Eq. (4)
if the real potential of Eq. (3) was used. But in
this functional we used a potential suited to the
needs of the cellular method instead of the exact
potential of Eq. (3). (iv) The fourth term, S[p],
is the self-energy of the nuclei, which must be
discounted from the electrostatic energy of the
distribution n -P. (v) The last term, j v(p —n),
makes it possible to deal with two densities: the
real density p and the assumed density n. Instead
of satisfying the equation

n=p

B. Electrostatic-energy functional

and c, such that its extreme in c coincides with
the true value [Eq. (4)], c coinciding with the
expression given by Eq. (3). Second, the func-
tional U must be such that

=c. (7a)

Restricting ourselves to functionals that are
quadratic in q and c in the sense that, for any
given number x,

U[xq, xc] =x' U[q, c],

As seen above, the electrostatic energy L/ must
be a functional of
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then the above requisites become mutually de-
pendent. Indeed, letting x be a small positive
number (x «1) then

U[(1+x)q, (1+x)c]= (1+x)'U[q, c]
6U 5U= U[q, c]+x q +x c
5q 6c

But

1

16m „„, dS(c,. —c,)(s„c,—a„c,.)

+ —g f rtS (c —c,.) '.,e„c,'. ,8~ spheres

outer cell), we choose the following functional:

. 1
v[q, ej=f qc — ve ~ ve

16m

(9)

and

6U

6q

5U
6c (8a)

at the extreme. Thus

U[q, c] = —, qc.

~ ~ ~ ~ ~ gf —~ —~ ~X
I

Oi

. -~. —.—.-~~ —.—~ —~ —x 2.

/

The requisites described above are still in-
sufficient to define U completely. From now on
we cannot proceed without a definite choice of the
form for the functional. In Fig. 1 we show a
partition of a diatomic molecule in cells. For
each cell we dram an inscribed sphere. For the
atomic cells, these spheres are centered at the
nuclei. For the outer cell, the sphere is centered
at any chosen point. We choose different expres-
sions for c within each cell and within each in-
scribed sphere. Letting c; denote the Coulomb
potential at a cell i outside the inscribed sphere
(or inside the inscribed sphere for the outer cell)
and c,'. the Coulomb potential inside the inscribed
sphere of cell i (or outside, in the case of the

which resembles the functional we used to define
the variational cellular method in I. The first
two terms in Eq. (9) are volume integrals in the
whole space. The last two terms are surface in-
tegrals. The third term are integrals in the cell
surfaces, while the fourth are integrals in the
inscribed spheres. The meaning of the normal
derivatives B„has been explained in I.

Equation (9) satisfies all the requisites for U.
First, Eq. (7a) is obviously satisfied. Second,
when finding the extreme of U we must consider
arbitrary variations in c; and c';. From Eq. (9)
one readily sees that the variation in U is null if

~'c = -8mq (10)

C. Choice of n, v, and c

As explained in I, in the cellular method, it is
easy to determine the spherical average of the
electronic density n,.(r) in the inscribed sphere
of cell i. Further, without much computational
effort, one can determine the total electronic
occupation for each cell, and thus one determines
an average density n,. in the space of cell i outside
its inscribed sphere. Thus, without any special
techniques of space integration, one can define
a function which is spherical inside the inscribed
spheres and flat outside, but with the constant
value n,. depending on the cell. The first question
to answer is how this choice of n(r) limits the
precision of the calculation and the quality of the
results. According to Eq. (1), a deviation 5n(r)
from the exact value p(r) produces a first-order
change in the energy given by

everywhere, and c is continuous and has normal
continuous derivatives at the cell surfaces and
at the spheres. Equation (10) is the Poisson equa, -
tion the unique solution of which in the unlimited
space is given by Eq. (3).

+C —V

FIG. 1. Partitioning of the space for diatomic mole-
cule. The dots are the proton sites. The two atomic
cells are spheres not centered at the protons and have a
plane surface of contact.

When one reaches self-consistency

v =c+ 5n"

showing that the error inn(r) has no first-order
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effect on the total energy F..
The exchange potential 6E„/5n we used was the

Xn exchange' with the parameter n =0.75 in each
cell. This value is slightly different from the
atomic Hartree-Fock values, 0.75197 for N,
0.75928 for C, and 0.74447 for O.' However,
the modifications in the calculated results intro-
duced by the use of more accurate values of n
do not change the conclusions of this work. More
elaborate forms of the local approximation'"
could have been used but the Xn exchange is con-
venient for purposes of comparison with Hartree-
Fock results.

We chose a Coulomb potential c satisfying the
Poisson equation [Eq. (10)] everywhere and, in
each cell, direction independent. Inside the in-
scribed sphere we use

(12a)

the constants A,- p can be shifted equally without
affecting the value of U. Thus we choose to shift
these constants so that at the sphere of the outer
cell the potential is continuous.

Summarizing, we can say that the constants
A,', A,. „A;,are chosen so that U is extreme
and c is continuous at the inscribed spheres, even
for the outer cell. These conditions determine
the values of the constants uniquely. The po-
tential outside the spheres is shifted so that one
obtains continuity at the outer sphere, and the
potential inside the inner spheres is shifted so that
the continuity at these spheres is assured. We
leave to the Appendix the details of the mathe-
matical development.

To conclude this section, we return to the prob-
lem of calculating the total energy. Now, the cal-
culation of all terms in Eq. (1) has been explained.
When one inserts the Coulomb potential, defined
above, in U we obtain

but for the outer cell

c,'(r) = ——' r'n, (x)dh+ Bv rn, (r)Ch.
r r'

Outside the spheres we use

(12b)

In the above equations A', , A, » andA, , can
assume any values and Eq. (10) will remain valid.
Their values will be determined by making
U[n —P, c] extreme Now the. form adopted for
the functional U[Eq. (9)] has the special feature
that

1 — =0
BA'

BU

A, , o
=0

for any values 'of A, „A, „A',. This means that

independently of the values of A'„A, » &,„That
is to say, the potential. c inside the inscribed
spheres can be shifted at will without affecting
the value of U. This permits us to force the con-
tinuity of c at the inscribed spheres, except at the
sphere of the outer cell, for there we have no
freedom to shift the potential, as one sees from
Eq. (12b). It is intuitive that, whenever possible,
forcing continuity should be better than not forcing
it. Mathematically, one sees from Eq. (9) that, if
c,' satisfies the Poisson equation and is continuous
with c,, U is extreme with respect to any var-
iation in c,'-, that

This is a logical consequence of assuming a po-
tential e suited for the solution of the Schrodinger
equation by the cellular method. The fact that
Eq. (4) does not hold should not matter as long
the total energy and the one-electron energy spec-
trum are calculated well. We must also add that
the energy thus calculated is not necessarily a
minimum for the ground state but just an ex-
treme. Because of the last term in Eq. (1) and
the second term in Eq. (9), one cannot. prove that
the ground state is a minimum.

III. CELL SHAPES AND BASIS SETS

In Fig. 1 we show the shape of the cells for
diatomic molecules. The surfaces are two calottes,
not necessarily centered at the nuclei, and one
plane. In each cell we draw an inscribed sphere
(dashed lines). Here a, and a, are the coordinates
of the nuclei. The points x, and x, of the calottes
were chosen so that

In the case of N, the plane is obviously in the
middle of the segment joining the nuclei. Thus
the only cell parameter that can be varied is the
coordinate p of point P. In the case of CO, the
position of the plane should also be chosen.

In Sec. III of I we presented a proposal for cell
construction. In this paper, after obtaining the
variational expression for the total molecular
energy, we ean do better than following the guide-
line established in I, for we can vary the cells
to make the energy extreme. This new policy



20 SELF-CONSISTENT CALCULATION OF THE ELECTRONIC. . . 693

was used for N» where we varied the value of
the coordinate p. The results of this study are
reported in the Sec. IV. In the case of CO we
found that obtaining the energy extreme was very
time consuming, for we had to play with two cell
parameters: the position of the plane and the
parameter p. Thus we decided to construct the
cells putting the plane in such a way that the inter-
atomic distance was divided proportionaly to the
covalent radii of the atoms. As for p, we chose
to make the surface bounding the outer cell coin-
cident with the inscribed sphere. Thus the G and
0 cells were limited by a single sphere. The fact
that this simple recipe works informs us that cell
construction can be made based on such simple
procedures of the muffin-tin methods as the multi-
ple-scattering and augmented-plane-wave tech-
niques.

A word must also be said regarding the charge
density. In Sec. II we have distinguished between
the assumed density n(r) and the true density

p(r) = Q4g*4g ~

We have developed the theory by assuming n(r)
muffin tins per cell, that is, n(r) is spherical
in the inscribed spheres and constant outside the
spheres but inside the cell boundaries. The values
n; of these constants may be cell dependent.
Coming to the actual calculation of CO, we found
that permitting n, to be cell dependent leads to
slow self-consistent convergences. Thus for
CO we made the charge density muffin tin.

Regarding the choice of a basis set for the cel-
lular method we must report the following results.
First of all, the secular matrix [Eq. (4) of I] is
such that it has zero along the diagonal. In the
case of a diatomic molecule AB with three cells,
namely A, B, and the external cell E, the form of
the matrix is sketched in Fig. 2. QThen inverting
the matrix to find I»M (see Sec. VI of I) or when
calculating the determinant, one verifies that it
is identically zero if the number of degrees of
freedom in a certain cell (the number of basis
functions in that cell) is larger than the sum of the
degrees of freedom of neighboring cells. For
instance, when the blocks EA and EB in Fig. 2

form a rectangle with a height larger than the
base, the determinant of the matrix is null. In
this example the height of the rectangle is the
number of basis functions in the cell E, while the
base is the number of functions of A plus that of
B. Furthermore, if the two blocks EA and EB
form a square matrix, the determinant of the
total matrix becomes the square of the deter-
minant of the blocks. This determinant does not
depend on the matrix elements of blocks AB and

the zeros of the determinant are double. Of
course, this is an unfavorable situation that must
be avoided. Thus the basis set must be such that

(16)

where I',. is the number of degrees of freedom
(number of functions in the basis) in the cell i
and the sum extends over the cells bounding cell

Equation (16) needs reinterpretation when one
considers the reflexion symmetry in a molecule
such as N, . After reduction of the secular matrix
by symmetry, it acquires the form sketched in
Fig. 3. Now the block AA at the diagonal is no
longer null and Eq. (16) is not necessary for i =A.
On the other hand, for i, =E, Eq. (16) becomes

+a~&~ ~ (16a)

FIG. 2. Secular matrix for a molecule AB with three
cells A, B, and E. There are nine blocks, the three ly-
ing along the diagonal being null.

In the case of N„adopting the policy of using
in the external cell the maximum basis compatible
with Eq. (16a), we constructed the following bases
for the many irreducible representations presented
in Table I. In the actual calculation we used the. '

bases with five degrees of freedom.
In the case of CO, we construct bases with equal

numbers of functions in the two atomic cells and,
in the external cell, a number which is the maxi-
mum allowed by Eq. (16). Such bases are in Table
II. In the actual calculation we started from the
bases with eleven degrees of freedom and reduced
the number of functions in the external cell, aiming
at minimizing the value of the criterion C of Eq.
(20) of I. We were contented when we found a
value of G on the order of+0.1 or less, because,
from our experience, a further reduction of C
below this value has negligible consequences for the
the calculated values of the energy. Table III
illustrates that experience.

In a calculation by the VCM the criterion C
seems to be a safe guide for the choice of the
basis set. In the cellular method it is not enough
to have a large basis set but it is also necessary
to balance the number of functions in each cell.
To see this point, consider expanding C in cell
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FIG. 3. Secular matrix
for a homonuclear diatom-
ic molecule after reduction
of the matrix sketched in

Fig. 2 by reflexion sym-
metry.

TABLE I. Bases for N& with the maximum number of
angular momenta in the external cell, compatible with
Eq. (16a).

Total degrees Angular momenta l
Symmetry of freedom Atomic cells External cell

components

0, 1
0, 1,2
0, 1,2, 3

0

0, 2

0, 2, 4

where

C;, (17) 0, 1
0, 1,2
0, 1,2, 3

1 2
123
1,2, 3,4

1
1,3
1,3, 5

2

2, 4
2, 4, 6

After a bit of algebra one obtains

1 2
123
1,2, 3,4

1
1,3
1,3, 5

Thus the components C,. of criterion C may orient
the search for a well-balanced basis set for which
C would be minimum.

where the symbols in the right-hand side are ex-
plained in I: Now assume that cell i has a small
number of degrees of freedom and the neighbors
have huge numbers. Then it is very likely that

a„g,. + s„g,. and g,.—(I(, are very small for the simple
reason that there are enough degrees of freedom
in the neighboring cells j to guarantee the smallness
of these differences. In this case, according to
Eq. (18), C,. is small. On the other hand, there
are no guarantees that the other C; are equally
small for they correspond to surface integrals
where one has competing degrees of freedom.
Thus, when one of the C, is much smaller than the
others, it is likely that we will lackbasis functions
in the corresponding cell. Analogously, a C,. much
larger than the others very likely indicates an
excess of basis functions in that cell because the
functions of neighboring cells are unable to match
the wave function of cell i at the cell surfaces. .

IV. RESULTS

This Section gives the results «»ur VCM self-
consistent calculations for N, and CO- We are
interested in the ground-state potential curves,
and therefore in the lowest energy-dissociation
limit.

Near equilibrium N, in the ground state has
paired spins in a molecular closed-shell con-
figuration (1o~)'(lo'„)'(2v )'(2o„)'(lm„)~(3v )'. Ac-
cording to Hartree-Fock calculations, " the mol-
ecule will dissociate into two neutral atoms at
infinite separation with total energy -217.60 Ry.
A free nitrogen atom in its lowest energy state
is an open-shell system which has a ~S config-
uration. In Fig. 4 the curve of the total energy
E of N, as a function of the interatomic distance
R, obtained by using Eq. (1) to define the energy,
is shown. This curve is. labeled VCM and lies

TABLE II. Bases for CO with equal number of functions in the atomic cells, and the maxi-
mum number in the external cell compatible with Eq. (16).

Symmetry
Total degrees

of freedom
Angular momenta l

0 External

7
11
15

0, 1
0, 1,2
0, 1,2, 3

1 2
1 2, 3
1,2, 3,4

0, 1
0,1,2
0, 1,2, 3

1,2

1,2, 3
1,2, 3, 4

0,1,2

0, 1,2, 3,4
0, 1,2, 3,4, 5, 6

123
1,2, 3, 4, 5
1,2, 3,4, 5, 6, 7
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TABLE III. Self-consistent one-electron energies and total molecular energy (Rydbergs)
for N2 calculated with different bases and/or different number of points for the surface inte-
grations. The interatomic distance was 2.04ao.

Basis
Number of

points
Electron

state

5 degrees of freedom

Eigenvalue

7 degrees of freedom

Eigenvalue

10

Eigenvalue C

7 degrees of freedom

2 (Tg

3cd
2~u

17ru

Total
energy

—1.832
-0.562
-0.950
-0.865

-217.959

-0.147
-0.104

0.022
-0.076

-1.851
-0.597
-0.971
—0-.865

-218.109

-0.094
-0.011
-0.029
-0.066

-1.851
-0,581
-0.954
—0.864

-218.015

—0.091
-0.029

0.004
-0.071

below the dashed line, which denotes the atomic
dissociation limit. For comparison, the results
of a MS-Xn calculation (labeled MS) are also
shown. " Our results were obtained by partitioning
the molecular space into three cells (see Fig. 1),
assuming that the ato~ic ones are equal and x = p
=2a, where 2a is the interatomic distance. The
computations were performed using the bases
with five degrees of freedom in Table I.

It is well known that the MS method, within the
framework of the standard muffin-tin potential
approximation, is unreliable for predicting the
equilibrium conformation of diatomic molecules. "
The non-muffin-tin corrections to the potential

play a fundamental role in these cases. ' On the
other hand, the cellular method leads to a ground-
state potential curve, shown in Fig. 4, which dis-
plays a minimum very close to the experimental
bond length, 2.073a,." 'The arrow in the figure
denotes the location of the minimum, at 2.10a,.
In order to obtain a more accurate value for the

N, dissociation energy, we performed a study
of the molecular total energy as a function of the
cell parameter p (see Fig. l). ln this study we
suppose that the atomic cells are equal, where
&=2a = 2.10a,. The calculations were carried
out assuming that the constant values of the av-
eraged charge density outside the inscribed spheres

%IS.S

-2I795

-2I8.00—

-2I72

MS

-2I8.05—

-2I7A-
-218.IO—

MI7$-
-2IB.I5—

I
3.0

-2I4.2 I

S,O 7.0
I I I

I.O 2.0 40 IO
R(ao)

FIG. 4. Total energy of N2 as a function of the inter-
atomic distance. MS refers to the MS-Xn results (Bef.
12). VCM refers to the variational cellular method cal-
culation. The arrow indicates the minimum of the VCM
curve. The dashed line denotes the atomic dissociation
limit.

-218.25—

I.3

(ao)

I

I.7

FIG. 5. Total energy of N2 as a function of the cell
parameter p, as calculated by the VCM Method. The
arrow indicates the minimum total energy.

2.1
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TABLE IV. Equilibrium separations R~ and dissocia-
tion energies. &, for the ground state N2.

TABLE V. Comparison of the theoretical and experi-
mental ionization energies of the ground state of N&, R
is the interatomic distance and energies are in eV.

Data source

EXP
VCM
MS-NMT
RHF

See Ref. 13.
This work.

R (ao)

2.07
2.10
2.20
2.01

D, (eV)

9.91
9.13
7.71
5.27

'See Ref. 3.
See Ref. 14.

10',u

20'
30,
20
17TQ

409.9
37.3
15.5
18.6
16.8

404.8
30.3
13.0
18.6
16.7

407.6
31.5
14.1
18.3
18.2

426.7
40.1
17.3
21.2
16.8

VCM" MS RHF"
Orbital EXP R = 2.lao R = 2.068ao R = 2.068ao

are dependent on the cell. Thus, in general, n, is
different from n, . From Fig. 5, where the results
are shown, one observes that the functional total
energy as a function of p has an extreme. It is a
minimum at p=1.452a, and corresponds to a total
energy equal to -218.271 By. Therefore VCM
predicts a dissociation energy for N, very close
to the experimental value of 9.91 eV."

In Table IV we list the bond length and the
dissociation energy for ground-state N„obtained
from our calculations, along with the experi-
mental results" and two other theoretical predic-
tions for comparison. MS-NMT refers to the
calculation carried out by Danese with the MS-
Xn method, including linear and second-order
corrections in the non-muffin-tin (NMT) charge
density. ' RHF refers to the restricted Hartree-
Fock results, obtained from an ab initio mo-
lecular-orbital-linear-combination-of- atomic-
orbitals-self-consistent-field (MO-LCAO-SCF)
calculation. " VCM results for R, and D, are in
good agreement with the experimental ones. The
VCM bond length for N, compares well with those
calculated by MS-NMT and RHF methods. How-
ever, VCM predicts the best value for the mo-
lecular dissociation energy. Sambe and Felton
reported the value R, =. 2.07a, for N, obtained
through an alternative approach to the NMT prob-
lem. " The so-called intersecting-sphere model
developed recently by Antoci and co-workers was
also applied to calculate the potential curve of this
molecule. " It leads to the results R, =2.34a, and

D, =8.46 eV, this last value taken in respect to the
spin- restricted dissociation limit.

In Table V are the orbital binding energies for
N, . It includes the results obtained from the elec-
tron-spectroscopy-f or- chemic al- analysis exper-
ments" (Exp), followed by our calculations
(VCM). The third column (MS) refers to a MS Xn-
cal.culation assuming the standard muffin-tin ap-
proximation to the molecular potential, and the
fourth to the RHF results. The transition-state
concept' was utilized to calculate the VCM and
MS entries. The RHF values were obtained ac-
cording to Koopman's theorem from orbital ener-

See Ref. 17.
This work. Calculated according to transition-state

concept.
'See Ref. 12. Calculated according to transition-state

concept.
See Ref. 14. Calculated according to Koopman's

theorem from orbital energies listed in Table IV.

gies listed in Table IV of Ref. 14. Our calcula-
tions were carried out considering the atomic
cells equal and x= p= 2a = 2.10a,. The two other
calculations used the value 2.068a, for the bond
length. The greatest discrepancy between the
VCM and the experimental values is 7 eV and re-
fers to the lower valence state 20,. The highest
valence states 20„and 1z„are very well described.
Both VCM and MS predict that the highest oc-
cupied molecular level should have 0. symmetry,
in agreement with experiment, whereas RHF pre-
dicts that should have m„symmetry. However,
we must bear in mind that electron relaxation
effects were neglected in the LCAO calculation.
We could improve the VCM description of the low-
er valence states further by assuming the value
1.452ao for the cell parameter p. We point out
that this corresponds to the minimum value for
the molecular total energy.

The CO molecule in the ground state has paired
spins in a molecular closed-shell configuration
(1o)'(2o)'(So)'(lv)4(5o)'. The free carbon and oxy-
gen atoms in their lowest energy states are open-
shell systems which have a 'P configuration. The

'

molecule will dissociate into two neutral atoms
at infinite separation with Hartree-Fock total
energy -224.996 Ry

Figure 6 shows the behavior of the cellular total-
energy functional E given by E l. (1) as a function
of the interatomic distance R for CO. The curve
is labeled VCM and refers to a non-spin-polar-
ized calculation. The effects of the spin align-
ments are considered small near equilibrium. For
comparison the MS-Xn results, obtained from a
spin-polarized calculation, are also shown. ' The
cell parameters used in our calculations were
(see Fig. 1) x, = 2a„x0=2a„and p= (2a,ao)'~'.
The parameters a, and a, refer to carbon and
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-22I.O TABLE VI. Equilibrium separations R, and dissocia-
tion energies D, for the ground state of CQ.

-222.0— Data source R (ao) D, (eV)

"223.0—

-224.0—

CL

-225.0

M5

EXP
VCM'
MS-NMT'

'See Ref. 19.
This work.' See Ref. 3.

2.13
2.27
2.43

11.1
12.9
5.33

-2260

-221$—

2.0 2.2 2.4 2.6
R (ao)

I

2.8
I

3.0
I

3.2

levels. However, both methods lead to one-elec-
tron orbital energies quite different from BHF re-
sults.

FIG. 6. Total energy of CO as a function of the inter-
atomic distance. MS refers to the MS-Xa results (Ref.
3). VCM refers to the variational cellular method cal-
culation. The arrow indicates the minimum of the VCM
curve. The dashed line denotes the atomic dissociation
limit.

oxygen cells and are proportional to the covalent
radii of carbon and oxygen"; a,+a, is the inter-
atomic distance R. The basis sets used had nine
degrees of freedom, evenly distributed among
the three cells. '

Only for the 4o level we used the
basis with eleven degrees of freedom listed in
Table II. All the calculations were carried out
assuming, for each interatomic distance, the
same value for the average charge density outside
the inscribed sphere of each cell (muffin-tin
charge density).

The VCM curve in Fig. 6 displays a minimum at
R = 2.27a„which corresponds to the molecular
total energy -225.667 By. In Table VI the equil-
ibrium separations and dissociation energies for
ground-state CO as calculated by VCM and MS-
NMT' are compared with the experimental val-
ues." Agreement between VCM and experimental
results similar to that for the N, molecule is
found here. The MS-NMT method gives approx-
imatively half of the molecular binding energy.

Table VD shows the one-electron energies for
CO as calculated by VCM. The MS-Xo."and
RHF" results are also included for comparison.
Since the relaxation effects were neglected in
these calculations, the experimental results for
the ionization energies mere not shomn. The or-
dering of the levels is the same for the three cal-
culations. The discrepancies between the VCM
and MS results are small: approximately 6 eV
for the core level lo and 1 eV for remaining

CONCLUSIONS
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TABLE VII. Orbital one-electron energies of CO; R
is the interatomic distance and energies are in eV.

Orbital
VCM ~

R = 2.132a0
MS'

R = 2.132a0
RIIF'

R = 2.132a0

10
20'

30'
40.
17I

5a

509.86
274.99
26.11
12.65
11.69
7.21

516.1
276.1
27.2
13.5
12.8
8.1

562.2
309.1
41.4
21.9
17.4
15.1

This work.
See Ref. 20.

'See Ref. 21.

The variational cellular method seems to be a
very precise and fast method, at least for diatom-
ic molecules. Its speed is comparable to that of
the standard multiple-scattering method but it is
much better in the calculation of the total molecu-
lar energy. From the theoretical point of view
one can expect more precision from the VCM
than from the MS, as one does not use a muffin-
tin, potential or an approximative expression for
the total energy.
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APPFNDIX: CALCULATION OF COULOMB POTENTIAL AND TOTAL ENERGY

20

When c satisfies the Poisson equation, the functional U reduces to

C[B-S,B)= ,' f (B -S)B -'g— dS(C(B C( ~ C(B C()B g dS(C( CI)B C(n i i n

+ ~ dSC, (s„C(+B„C().
1

syhex es
(A1)

We consider the equations

8U
A

(A2)

Rj
Q, = Z, —4p x'n, (r)dh

0
(A3a)

with n=0, 1 according to Eq. (13). Defi ni ugly, as
the radius of the inscribed sphere,

(ASf)(i, 1 (i, 1) = ——,'s,R, ,

1 br
( ~ ). (ASg)

r'jr~ rp'j
Equations (A5) are not independent, owing to

the possibility of shifting all the A. «by the same
amount. Equation (15) implies that, summing
Eqs. (A5) for n = 0 over all the cells i, one obtains
an identity. This can be readily verified. From
Eqs. (ABa), (ASb), and (ABc) one obtains

= -4p r'no(r)dr (oute r sphe re),
0

= -1 (outer cell),

(A3b)

(A4a)

(A4b)

Q (l, o~j, o)+Q (z, o~j, 1&=o.

From Eqs. (A'7a) and (AVb) one obtains

we obtain the following set of linear equations for
A~„.

g (i, n ~g, m) A
~ +g n z „~n&+ P, „Q,= 0, (A5)

p f 3~ 4Spry~ ry 3 7+gsy

V' r~ ——mR s =0

j, m

where the coefficients of Q, n, and A are

~j,p=&

P, , = -1/ft„

B I . I
=-', Q fdS I(BIB„r(—-', BR)BI,

0 g 6 4S jf rg ~f(fr/ j

B( ( — Q fdS((B„B(——IIR(B(,

1 r
1$ 6 QS

i

(A6a)

(A6b)

(AVa)

(AVb)

(A7c)

where 0& is the volume of cell j outside the in-
scribed sphere. Then the sum of Eqs. (A5) for
n = 0 becomes

Q)n~ — j = 0,

which is satisfied owing to the charge neutrality
of the molecule.

'The above result implies that one can eliminate
one of the equations for n =0 and choose at will
one of the A, o So we solve Eqs. (A5) in terms of
one of the parameters. Later we fix the free
parameter by imposing the continuity at the outer
sphere; thus

o, o+d4o, z/ Bo s vno

(i, o[j,
&z, o[i,

r2
dS j~, &„yj j4i

0) =0,

1)=--,'s„

(A7d)

(ABa)

(Asb)

(AB c)

X'no(r)dr+ Sn rno(r)dr.
&0 Z, Rp

(A9)

Having determined the A. j „, we impose the con-
tinuity at the other sphere to find A j..

2~, 8~ Bj
A', — '+— r'n, (r)dr —Bv rn, (r)drRj, 0

(i, 1~i, o) =-—,'s, , (ABd) 1 4 — 2 (A10)

(ABe)
A short calculation gives the following expression



20 SELF-CONSISTENT CALCULATION OF THE ELECTRONIC. . .

for the electrostatic Coulomb energy:

U[n -P, c] —~lP]
d$ ff P frf 8 r f z P j (A12b)

= —,
' Q A( „c((„(n(+ —,[(Q n, R'(Q( ——,'Q Z(A',

.—;Pf 4vr'v, (r)C[(r)dr P E,vvvl, (411)

Finally, Eq. (1) for the total energy can be calcu-
lated by means of the one-electron energy eigen-
values E„

vrhere

4)
g ]= 45 77 A)S g

—
gg & ~ d$ O &&en&i

64 2 5 3

f
(A12a) E=g 4, ,E,[v] [Cv Ev] —E-[E]—f vv. (A13)
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