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A unified interpretation of single-channel quantum-defect behavior is presented, and illustrated with the
example of a square well. As an application the quantum defects for the lowest three partial waves of
potassium are calculated and discussed as continuous functions of the energy above, near, and far below the
ionization threshold, with emphasis on their non-Rydberg spectral properties; results for other atoms are
discussed. The quantum defect for the radial motion of a 'P° electron pair of H™ is also calculated, thereby
combining Macek’s hyperspherical-coordinate approach with quantum-defect theory.

I. INTRODUCTION

The study of phase shifts has played an in-
creasingly important role in the unraveling of
complicated dynamics in diverse atomic process-
es. The energy dependence of scattering and
photoabsorption cross sections and especially
their resonant behavior have usually been inter-
preted in terms of the variations of a small num-
ber of contributing phase shifts. While the ap-
proximate evaluation of phase shifts for any given
potential has become a routine numerical task, a
unified view of their dependence on the potential
field and on the energy throughout the spectrum
is only beginning to emerge. A recent paper by
Fano, Theodosiou, and Dehmer' (referred to below
as FTD) has surveyed the zero energy (¢ =0)
phase shifts of atomic electrons, showing a num-
ber of prominent, systematic variations in the
dependence of §, on angular momentum / and on
the strength and range of the potential.

The present study has grown out of an attempt
to better understand the mechanisms contributing
to these and other properties. Additional sys-
tematics appear in the energy dependence of phase
shifts both above and far below thresholds, and
in their dependence on the type of long-range in-
teraction between particles. (FTD allowed only
for a long-range Coulomb field and € =0.) This
last item posed the new problem of comparing
different long-range fields on an equal footing. Its
solution required a substantial effort in its own
right and was reported quite recently in a paper
referred to below as 1.2

The main goal of this work is the construction
of a unified framework for interpreting properties
of single-channel phase shifts (or the equivalent
quantum defects p,=6,/m) as functions of energy.
This has required a lengthy introduction and de-
velopment of several new concepts. As illustra-
tive examples the quantum defects are calculated
for several different atomic fields and orbital

momenta in the Hartree-Slater approximation as
continous functions of the energy from -50 to +5
keV. This study, whose initial findings have al-
ready appeared in a preliminary report,® com-
plements the FTD' and other studies? of phase-
shift variations with atomic number. It further
identifies four characteristic energy regions
(I-1V) in which the quantum defect has different
qualitative features (see Fig. 1). For example,
region II of the spectrum contains the Rydberg
series. Our unified treatment thus serves to de-
scribe quite different dynamical systems. This
is illustrated by another, quite unrelated ex-
ample, which obtains the quantum defect for the
radial motion of a pair of electrons in H". The
calculation of H™ phase shifts complements the
studies of two-electron correlations by Macek,
Lin, and Fano® over the past decade, and rep-
resents the first explicit combination of their
hyperspherical-coordinate method with quantum-
defect-theory (QDT) methods.

Further motivation of the present work stems
from an inadequate understanding of the mech-
anism responsible for the termination of Rydberg
series at their lower end.® That is, while the
Rydberg formula (in a.u.) €, = —=3(n - u,)?isvalid
for arbitrarily large integers », it is not imme-
diately clear from the formalism why it “cuts off”
at some integer n (e.g., n=>4 for I =0 atomic po-
tassium). An initial study of this topic was made
by Seaton” long ago. Sections III and IV demon-
strate that the quantum defect can be constructed
as a continuous function of energy even far below
an ionization threshold, and secondly that the
series termination is often accompanied by a
dramatic stair-step dependence of u; on energy
[see Fig. 7(a)]. These rapid changes of the quan-
tum defect relate in turn to its » dependence as
described by the phase-amplitude method (PAM),%?
in which u, is regarded as the limit of a contin-
uous radial function p,(r) for » =. The earlier
studies®® showed that y,(r) often increases in a
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stepwise fashion as 7 increases, though they did
not account in detail for the rapid radial steps. A
major goal of Secs. III and IV is to describe the
mechanism causing the radial steps in p,(r), to
show that this same mechanism causes a stair-
step energy dependence of () far below thresh-
old, and more generally to show that the phase-
shift dependence on 7 gives valuable insight into
the short-range dynamics. This connection is
then developed one step further by plotting u,; as
a surface depending on both parameters € and 7,
showing at a glance the characteristic Rydberg
and non-Rydberg spectral properties of u,.

The paper is organized as follows. Section II
summarizes the relevant features of the extended
QDT presented in I and of the phase-amplitude
formulation. Section III describes characteristic
classes of quantum-defect behavior with special
reference to the illustrative example of anl=0
square well. These ideas are then applied to the
discussion of two quite different dynamical sys-
tems in Sec. IV. The atomic quantum defects are
calculated in Sec. IV A, primarily for neutral
potassium, but an indication of the dependence
of u,_, on atomic number and shell structure is
provided by results for sodium, aluminum, and
phosphorus. At the end of Sec. IV A the termi-
nation of the lower end of the Rydberg series is
discussed in the context of the earlier results.
Finally Sec. IV B combines QDT with the hyper-
spherical-coordinate approach® for analyzing the
levels of two strongly correlated electrons. Spe-
cifically, the quantum defects are evaluated for the
the 'P° “sp-” series of Feshbach resonances in
H™ which converge to the n =2 level of hydrogen.
Various properties of the resulting “dipole-field
series” are then compared and contrasted with
Rydberg-series properties.

II. FORMULATION SUMMARY

The starting point for both single- and multi-
channel QDT applications is the Schrédinger equa-
tion for a particle moving in a spherically sym-
metric potential (in a.u.),

10 +1)
272

1 a2
<—'§ a—,"’?+V(’i’)+ —€>P(€,l,1’)=0. 2.1)
For the interesting physical systems the large-»
form of the potential is a simple analytic function
which we denote by V,(r). As discussed in1I,
V,(¥) can be taken to be one of the three basic
fields:

Potential V()

Zero field 0

Coulomb -1/7

-3@*+3)/7*

2.2)

“Dipole”
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Any shorter-range potential than »™2 can be re-
garded (in first approximation) as an example of
zero field, because it does not have an infinite
series of bound levels. [Section IIE of I discusses
this point further. See especially the discussion
of Egs. (2.81) and (2.82) in I.] In the treatment
below we have assumed that beyond some core
radius 7, the potential V(») reduces exactly to

one of the large-» forms V,(r) in Eq. (2.2).

Three independent base pairs satisfying Eq.
(2.1) were discussed in I for each of the three
potentials in Eq. (2.2); the most important of their
properties are summarized in its Table I. Here
we summarize those base pair properties most
important to the problem at hand:

(i) The base pair (f°,g°) is normalized to be
independent of energy near »=0. Excluding the
dipole potential, this means that as » -0

fON,},hl, g0~,r'l’ and W(fo’go)=2/ﬂ'. (2-3)

Most important for our purposes, these func-
tions—as well as the phase shifts referred to
them—are analytic in the energy € at all finite 7.
The analytic base pair for the dipole field is also
energy independent near v ~0, but the simple
power laws of Eq. (2.3) are not realistic since the
roots of the indicial equations are complex.

(ii) The solutions (f*,f~) are chosen to be out-
going and incoming wave for €>0,

ft__. etikr ’V*E ,

kdadid

(2.4a)

where ¢ =i/k for the Coulomb field and vanishes
otherwise, and k?=2€. At negative energies
k—i/v and the effective quantum number v be-
comes the energy variable. Correspondingly
when € = -3v72<0,
f*;:: e¥r/u a

The Wronskian of this pair is W(f*,f")=2/v.

(iii) The base pair (f,g) is energy normalized
for € >0, and its members oscillate 90° out of
phase at large 7:

flel,7) = (2/mR)' 2 sin[ky — ig Inr +(k,1)],

(2.4D)

gle,1,7)— —(@2/mR)2 cos[kr — it lnr +m(k,1)],
where
~Ir/2 (zero field)
n(k,l) =) =In/2 + k' In2k +arg T +1 -i/k)
(Coulomb),
-1/4+¢(k,a) (dipole) (2.5a)

and where ¢ (k, a) is defined in Table I of I. [In
these expressions 7n(k,1) is meant to be inter-
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preted as n(k, a) for the dipole field.] At negative
energies, €<0, the energy-normalized base pair
(f,g) is related to the pair (v/7)'2(Df*,D'f") by
an orthogonal transformation:

fle, 1, %)= (v/m)¥sinB,(v)D"'f" - cosB,(v)Df '],
gle,l,7)==(@/m)"?[cosB,w)D1f" +sing, (v)Df *],

(2.5b)
where
m/4 (zero field)
B,(w)={m(v=1) (Coulomb field) ,
aln2v — argl'(1 —ia) (dipole field)
(2.6)

and where D(v,1) is defined for each field in Table
Iofl.

It will be convenient in Secs. III and IV to have
an explicit form for the transformation from
(f,g) to (f°%g°). The result is

f _ A1/2 0 f"

€<0 2.7
g A-1/29 A-l/z O ’

where A (v,1) is replaced at € >0 by a different
parameter B(€,l). The explicit expressions for
these coefficients are given in Table I of I.

Because V() =V, (r) for all » > »,, the solution
P(e,l,7) of Eq. (2.1) can be written in this range
as a superposition of any chosen base pair of in-
dependent solutions of the outer field; for example,
if (f,g) are used,

P(e,l,7)=v, [f(e,l,7) cosmp,,
-gl(e,l,v)sinmp,,], r=7,. (2.8)

The quantum-defect theory makes use of the fact
that u, completely characterizes the effect of the
inner field on the outer-field wave function. To
illustrate, the normalization is determined by

Yiz =1, €>0
p (2.9)
V-e,z,z:”-lﬁ[ﬁx(”)*'”“et]l , €<0,
€=En
where the bound-state eigenvalues are the so-
lutions of

Biw,)+mp, =n. (2.10)

This reduction of the single-channel problem to
the calculation of a single parameter p,, is the
essence of the quantum-defect method.

The quantum defect can be expressed formally
in terms of the three functions (f,g) and P using
Wronskians [recall W(a,b)=ab’ -a’b]:

tanmp , =W, (f, P)/W,(g,P), (2.11a)

where the Wronskians are evaluated at any radius
v 27, FTD' emphasized instead the calculation
of quantum defects by the phase-amplitude method
(PAM). This method may be regarded as ex-
tending Eq. (2.11a) to the range » <7, allowing

u,; to be a function of 7 in this range, and such
that

Hg:lim ”51(7)‘ (2.12)
r=7ro0

In the PAM formulation ., is generated by the
potential difference V,(»’) - V(r’) over the range
0 <7’<%, by solving the nonlinear integral equa-
tion |Eq. (6) of FTD]

To )= W—% [”dwlvo(w)_ V)

X[f@r") cosmp,(r') —gr") sinmp, (r")]2.
(2.13)

FTD noted that u, often increases in rapid steps
of magnitude close to unity; a main purpose of
Sec. III will be to unravel the mechanism respon-
sible for these rapid jumps in p,,.

Thus far we have described only the most standard
quantum defect ., referred to the energy-nor-
malized base pair (f,g). It is also possible, of
course, to define alternative quantum defects by
phase matching to different base pairs of solu-
tions. In calculating the quantum defect one should
probably use different base pairs in different en-
ergy ranges, so that the calculated quantity would
have a minimal energy dependence. For example
the energy-normalized base pair (f,g) used to
define u., in Eq. (2.10) is convenient because the .
bound state and normalization conditions in Eqgs.
(2.8) and (2.9) take such a simple form, and be-
cause at positive energies the short-range con-
tribution to the scattering matrix is simply

S =e?imer, (2.14)

On the other hand, complications arise from the
nonanalytic energy dependence of u.;, particularly
near € =0. When the long-range potential V(r)

is Coulombic, the nonanalyticity causes no serious
difficulty, since u ., remains smooth at threshold.
But for zero field, ., obeys the Wigner threshold
law ., <k?"*! a5 k-0, and even more seriously
for the dipole potential ., diverges as lnk as

k0. Thus the energy-normalized quantum defect
i; generally has an energy dependence which
should be removed in the spirit of obtaining “smooth”
quantities in the QDT. Another problem with the
quantum defect p,, for the (f,g) basis arises for

a Coulomb field only. Namely, when € falls below
the lowest Coulomb eigenvalue at v=1, the Coulomb



eigenvalue at v=1, the Coulomb functions (f,g)
become imaginary and the quantum defect assumes
an unphysical energy dependence. As discussed

in I, quantum defects referred instead to (°g°),
i.e., defined by

tanru, =W, (f° P)/W,° P), (2.11b)

are free from these anomalies. For the asymp-'
totic Coulomb field, p9, is the same quantum defect
which was denoted £ in Ref. 9, whereas for zero
field (tanmu%),., is the negative of the conventional
scattering length. A third quantum defect will be
useful in later sections for analysis at energies

far below threshold and is referred to the base
pair (f*,f7),

ta.mru’;,=WE,(f*,P)/WE,(f;,P). (2.11¢)

III. GENERAL PROPERTIES OF PHASE-AMPLITUDE-
METHOD PHASE SHIFTS

While the spectral behavior of quantum defects
depends strongly on the potential several funda-
mental classes of behavior occur irrespective of
the specific atomic fields. This circumstance
allows us to illustrate the dominant features of
1% @) with a prototype—the I =0 square well. This
square well is shown in Fig. 1, with four regions
in energy (I-1V) which exhibit qualitatively distinct
properties: ’

(i) In region I both P(») and the pair (f°,g°)
oscillate with wavelengths that approach eachother
in the limit € ==, where 5, = 0;

(ii) Region II covers a narrow energy range
about € =0 within which the nodal structure of P(r)
and (f° g% changes very little for » <7,, allowing
us to relate high-lying bound states to low-energy

)
"y t
0 4 II
11
v kR
SQ
IV
v

FIG. 1, Four characteristic energy regions for a
square well and =0, In the calculations of Sec. III,
Vsg=—1.4 a.u., 7p=3 a.u.
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scattering phase shifts;

(iii) In region III P(r) still has radial oscillations
while (f°,g°) begin their exponential growth within
7 <7,, which induces an interesting stair-step
dependence of u% () on € and on 7;

(iv) In region IV both P() and (f°,g) are nodeless
and rise exponentially at all » 2|2€ \'1/2, causing -

a monotonic energy dependence of u‘e’,.

The remainder of this section illustrates each
class of quantum defect behavior explicitly and
delineates the underlying mechanisms.

Evaluation of ugo requires the regular solution
P(e,0,7) of Eq. (2.1) for the square well, and
also the zero-field analytic base pair (f°,g°).
These radial wave functions were given in Eqs.
(2.73) and (2.74) of 1. [Actually (f,g) were given
in I; we also use the relation f°=£"1"1/2f, g°
=k"/2g] These functions are

(2/7k%) /2 sinkr, €>0
(2v2/m) 2 sinh(r/v), €<0

fO(ﬁ,l:O,’V):{ , (3.1)
~-(@2/m)2 coskr, €>0
—(2/m) 2 cosh(r/v), e<0,

where 2¢ =k?=~1/v% The unnormalized radial
solution of Eq. (2.1) for this optical potential is

g0(€7l=097)={

sinky, €>Vgq,, ¥<7,

P(e,l=0,7)={ s ‘(3.2)

sinh(#/9), €<Vgq, v <7,
where 2(€ - Vo) =k%*=-1/7% The quantum defects

in this optical potential can now be evaluated,
giving for 7 <7, :

g .
Etanky — k tanky
~kk — E? tanky tankv’

Ev2tanh(r/v) — vtanky
~kv +}tanh('r/ V) tanky

v?tanh(»/v) —vPtanh(r/7)
—v +Vtanh(r/v)tanh(r/7) ’

€>0

tgmru‘zo(r) =< 0>€>Vgq -

€<Vgq .

(3.3)

A. Phase-shift variations with energy

The energy dependence of u = p%(r,) over the
entire spectrum of interest is shown in Fig. 2 for
a square well that possesses two bound states.
Although u‘:o is plotted continuously below thresh-
old the only physically relevant energies are those
of the bound levels. These levels occur at inter-
sections of the dashed curves

bo(v)=n - 1" tan"1(v)

with the full curve p%. Atomic fields with an as-
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ymptotic potential V() =0 possess at most one
bound state in region II, since V, alone cannot
bind a particle. In the example of Fig. 2 this
region is a band of width A€ ~»,2=% centered on
€=0. The higher of the two bound states occurs
near the lower end of this range at €,=-0.064.
Below this energy, region-III behavior sets in,
which is always characterized by an extreme
tendency for u‘;, to cling to the dashed curve that
identifies bound states. This tendency arises, as
described below, because (f°,g°) are both rising
exponentially within the well » <»,. Note the pres-
ence of one remarkable exception to this behavior
though: at € ~-0.5 a.u. the quantum defect rapidly
changes from one bound-state curve to anadjacent
one. This step in pgo is in general associated with
the occurrence of a region-III bound state. In
region IV, pd clings to a single curve as there
are no bound states as € ——«. The opposite limit
of large positive € in region I is characterized

by a general decrease of u with €, but modulated
by weak shape resonance-type ringing induced by
the sharp potential cutoff at #,.

Thus far our discussion has focused on the an-
alytic quantum defect #Zo- But the phase shift
usually discussed in scattering theory is instead
the energy normalized one, T, which is related
to po, by

tanm o= |2€ | 2tanT (3.4)

for our square well. Application of this trans-
formation to Fig. 2 leads to the energy-normalized
quantum defect plotted in Fig. 3. [The dashed
curves bJ(v) of Fig. 2 are also transformed by

Eq. (3.4), giving the curves b,(v) shown.] The
familiar Wigner cusp dominates the behavior of
Leo in region II. The upward point of the cusp

FIG. 2. “Analytic” quantum defect at =7, vs energy
(in a.u.), for the square well of Fig. 1 and I=0, Dis-
crete levels lie at intersections of dashed curves bg (v)
with p 20. The sharp step of 1 ° is discussed in the text.

FIG. 3. “Energy-normalized” quantum defect at
r=7, vs energy for the square well of Fig. 1. Dis-
crete levels lie at intersections of dashed curves b,(v)
=n —% with p €0°

signifies the presence of at least one bound state,
with the highest-lying bound state in region II or
at the upper end of region III. This follows from
Levinson’s theorem,' which states that if u,=N
at € =0, there are N bound levels. Conversely a
downward cusp signifies that no bound state occurs
in region II; the sharper this cusp the closer the
potential is to supporting an additional bound level.
The behavior of u,, in regions III and IV is quite
similar to that of p2, except that the bound-state
curve b,(v), to which p, clings, has a form dif-
ferent from b)(v). We conclude that near thresh-
old it is important to calculate the smooth 2,
instead of p.. The high-energy ringing of u., in
region I is smoother than that of the ug; curve
for energies € = 1 a.u. In this region it appears
then that u,, is the preferred quantity to calcu-
late, because of the more symmetric large-&

o
7
€ = —0.45 a.u.
o e = 0
Oicj_ € = —10
)
Q]
€ = 6
Q _—
© I T T 1
0.0 1.0 20 3.0 4.0
T

FIG. 4. “Analytic” quantum defect vs radius (in a.u.)
for the square well, I=0 and for energies in the four
regions I-IV of Fig. 1.
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forms of (f,g) given in Eq. (2.52). Section IV
discusses further the relative usefulness of u,
and p2, for realistic atomic fields.

B. Phase-shift variations with radius

The analysis of the energy dependence of
1%(,) can be extended into a mapping of the two-
variable function po(r), defined by Eq. (2.11b),
as a surface over the coordinate plane (€,7). But
before studying the joint variations simultaneously,
first consider the several slices of this surface
at constant € plotted in Fig. 4. In region I (€=6
a.u.) pd(r) increases smoothly toward its limiting
value at 7,, whereas in region II (¢ ~0) it rises
in a definite stair-step fashion. The stair-step
pattern of phase-shift accumulation is sharpened
in region III (€ =-0.45), with an extremely rapid
second step at »~2.9. This latter step is absent
in region IV (€ =-10), but a single radial step
persists even as € - -,

Two quantities dictate the form of the radial
phaseshift accumulation: (i) the relative wave-
lengths of oscillation of P(¥) and f°(») which are
dictated by the local kinetic energies,

T)=2k30) ==V ) =10 +1)/272, ‘
ToW)=3k2(r)=€ = Vo) =1 +1)/27%, (3.5)

and (ii) the ratio of the amplitudes of the base-pair
wave functions, |f°/g° | .

The importance of (i) can be best assessed by
using a WKB approximation for P(r) and (f,g) to
evaluate the Wronskians in Eq. (2.11a). After some
rearrangement, this approximation to p,(r) reduces
to

TuiEBr) = ¢ (1) = ¢4(1) , (3.6)
where
—tan-1 Fs(¥) L ,
¢ p(v) =tan [Wtan(j;ldr kp(r ))], o
3.7

bs(r) = frdr'k,(r’) ,
710

and where 7, and 7, are the inner classical turning
points for motion in the two potentials V() and
Vo(r). We interpret ¢, (). and ¢,(r) as the phase
functions of P(r) and f(»). The presence of &;(»)

in the expression for ¢ P(r) ensures that oscilla-
tions of P(r) are measured in units of the wave-
length of f(»). The expressions (3.6) and (3.7) are
exact above threshold for the present square-well
example, and the integrals in (3.7) are linear in

7 since k, =k and k,=k. We see that ¢,(r) in-
creases smoothly with », but the accumulation of
¢p(7) varies qualitatively with the energy. Far
above threshold ¢, ~%7 and 7, increases linearly
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in 7, as in the € =6 a.u. curve of Fig. 4. Near
threshold, conversely, the ratio k;/k,=k/k is
very small, keeping ¢, close to a multiple of 7
except where kv ~(n + 3)m. At these radii ¢, rises
by ~m quite rapidly, causing in turn a unit step

in p o).

While the variations of the wave number ratio
kf/kp have explained the different phase-shift
behavior in regions I and II, the factor |f°/g°]
can also act to sharpen the stair-step character.
This is most clearly demonstrated by rearranging
Eq. (2.11Db) in the form

o (P/P) 7O/ F°
tanT ko= T 7Y = @78 2

In those regions of € and » where the ratio f°/g° is
small, tan7u? tends to remain quite small too.
But very near those “step radii” where the de-
nominator of Eq. (3.8) vanishes, p%(r) rises
rapidly by unity. This occurs whenever P (€,l,7)
oscillates at small 7 <« |2¢|"'/2 because at small
radii (f°/g°) is roughly #2**!, This leads to ex-
ceedingly fast steps in p% () in the inner shells
of heavy atoms; for example the 3d antinode of
uranium is at »~0.1, where 72"*1=1075, '

A similar dependence of p% on 7 is observed
in the opposite extreme, when an antinode of P(r)
occurs at large »>v. In that case, however,
If°/g°| =0(1), since both f° and g° are proportional
to e””. In this extreme then, it is more appro-
priate to consider u?,(r), noting that |f*/f~|
=0(e™?""). Region III is characterized by having
T(r) >0 but T,(r) <0. In general in this region,
pt,(r) clings to integer values within an expon-
entially small number, though at certain radii
T3 (r) increases from one integer n ton +1. Eval-
uation of p?,(») for the s-wave square well shows
this explicitly:

(3.8)

————Iiv+tankf e P 0>e>V
kv —tankr ’

tanm pto(r) = (8.9)

V4 vtanh(r /D) e2r/v

>
v — D tanh(r/7) » Ve

Owing to the exponentially small factors, ul,@)
will be dominated by its tendency to remain an
integer throughout regions III and IV, both as a
function of » and of €, with the exception of a small
number of rapid steps. These properties of
pto(7,) are illustrated in Fig. 5 for the I =0 square
well. The constancy of u}, is prominent for all

v s 2 owing to the decaying exponential factor in
Eq. (3.9). This simple behavior of u%, in regions
III and 1V is in turn responsible for the clinging
of u%(r,) to the curves b(v) in Fig. 2. While both
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FIG. 5. Quantum defect u* vs effective quantum num-
ber v=(—2€)"12 for the square well and I=0. This para-
meter clings to integer values in regions Il and IV.

-1

10

u‘e’, and u. can assume a more complicated en-

ergy dependence in regivuns III and IV for different

‘long-range fields, the quantum defect uf, is al-
ways very nearly an integer. Regardless of the
long-range potential however, a good represen-
tation of the quantum defect far below threshold
is always

(P'/P)"'I/V e-2r/v,',2§’

tanp?, (r) T BB =1/7 s (3.97)

which follows from Egs. (2.46) and (2.11c). [The
general relation between u}, and p‘e’, is given in
Eq. (4.3).] In the limit of v -0 in region IV,
P’/P~1/7, showing not only that p!, is very
nearly an integer, but also that it is less than an
integer. This is generally true in region IV, pro-
vided V(7)< Vy(r) at all ».

It is important to note that the condition for a
bound state takes a very simple form in terms of
ut,(r,) irrespective of the form of the long-range
potential, namely,

e (r,) is an integer, (3.10)

as required for P(sn,l,v) to be proportional to f+*
for » >7,. The analytic quantum defect p9, is
unambiguously specified in terms of n!,, using
the known linear transformation from (f°,g°) to
(f*,f") for the relevant long-range field. This
transformation differs for the three alternative
fields (zero, Coulomb, or dipole). Hence although
pi (7) clings to integer values far below threshold
for any of these fields, p?,(») will “cling” to a
different curve b°(v) for each different field.

C. Phase-shift surfaces

To this point the analysis of p2(») has dealt
only with variations at fixed » or at fixed €. A
natural extension of this discussion is to plot
u2y(r) as a surface depending on (¢,7), showing
more clearly the interplay of the energy and
radius dependences. The negative and positive
energy plots are shown in Fig. 6(a) and 6(b) for
the square well we have discussed earlier. The
far edge of the two surfaces (» =3 a.u.) reproduces
the energy dependence of ud(r,) shown in Fig. 2.
The (near-threshold) region II persists in Fig.
5(a) for v = 3; here p% is roughly energy inde- .
pendent at all radii. The first notable feature
occurs as v decreases from threshold to v~1,
the energy at which p%(»,) changes by very nearly
1. Over a narrow interval in v, the second radial
step of u,(») begins to move slowly outward, and
as this radial step moves outward the ratio
| £*/f~| becomes smaller. The smallness of this
ratio in turn sharpens the radial step. [This is
seen more clearly by comparing the second radial
steps in p%(r) at €=0 and € = -0.45 in Fig. 4.]
Eventually, as v decreases further the extremely
rapid second radial step moves beyond the radius
74 Causing #20(7’0) to drop by unity quite suddenly.
This interprets the rapid drop of pJ; in Fig. 2 in
terms of a smoother radial progression which

FIG. 6. “Analytic” quan-
tum-defect surface for the
square well of Fig. 1. (a)
€<0: 1 0 vs effective quan-
tum number v and radius r;
(b) € >0: u° vs wave number
k and . The small-k edge
of (b) joins smoothly to the

| large v edge of (a).



would have been difficult to deduce from Fig. 2
alone. Interestingly, while the second radial
step moves outward as v is decreased, the first
step moves inward. This is a quite general fea-
ture of the phase surface, as will be seen in Fig.
10 of Sec. IV A. )

The positive-energy half of the surface is shown
in Fig. 6(b). The k=0 edge connects smoothly to
the v = edge of Fig. 6(a). The evolution of this
surface as & increases is, not surprisingly, en-
tirely different from the negative-energy surface.
In accordance with Fig. 2 there are no sudden
steps of u%(r,); rather the surface slowly di-
minishes in height as k increases. There remain
to be explained two “ripples” which are present
on the surface between £ =0.8 and £=2. Recall
two fundamental facts: (i) the radial nodes of all
solutions P(r) of Eq. (2.1) are decreasing functions
of &y (ii) dul,(r)/dr vanishes at each radial node
of P(r). Thus the ripples are just the radial points
of inflection, all of which move to smaller radii
as k increases. These points of inflection can be
seen more clearly in the € =6 a.u. plot of p% @) in
Fig. 4. The stair-step behavior of u?; is dimin-
ished as k increases through region I where the
Born approximation improves.

IV. APPLICATIONS

Next we use the analysis of the Sect. III to dis-
cuss two realistic problems, thus illustrating
the applicability of the unified treatment of Sec. III
to quite diverse phenomena. )

A. Atomic quantum defects

The emphasis thus far has been on regularities
which persist irrespective of the details of the
potential. This emphasis will be altered now as
we focus less on the systematics and more on the
individual variations, the true fingerprints of the
system’s dynamics. Calculated quantum defects
for orbital momenta =0, 1, and 2 of neutral
potassium are shown at € <0 in Figs. 7(a)-9(a),
and at € >0 in Figs. 7(b)-9(b). The calculation
consisted of first solving Eq. (2.1) for P(e,l,7) via
Numerov’s method,!* using the Herman-Skillman'2
atomic potential as V(»), and then applying Eq.
(2.11Db) to determine p2,(»). The energy depen-
dence of each of these partial-wave phase shifts
resembles the square-well results of Fig. 2,
though a number of important differences are
present.

In Figs. 7(a)-9(a) the dashed curves represent
the function b%(v) whose intersections with the full
curve p%,(r,) determine the bound-state energies,
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FIG. 7. Analytic (—) and energy normalized (-.-)
quantum defects at =, for potassium with I=0: (a)
versus effective quantum number v; discrete levels lie
at intersections of the dashed curves bJ(v) with u%; (b)
versus wave number k; this figure joins smoothly to (a)
at zero energy, where pu and u® are equal.

as in Fig. 2. Here, however, by~n —v at large

v in correspondence with the long-range unit-
charge Coulomb potential experienced by the outer
electron, thus generating the infinite number of
Rydberg levels. More specifically,

b2(v) =n — 7! cot™}(4 cotmv +§) (4.1)

where € =—1/2v%, and where the energy-dependent
parameters A and § are given in Table I of I. Also
shown in Figs. T(a)-9(a) (for v>I only) is the en-
ergy normalized quantum defect u ., whose plot

is represented by a dash-dotted curve. We see
that u% varies somewhat more slowly than u,
near and far below threshold, but Figs. 7(b)-9(b)
show p, to become smoother as € rises to large
positive values. This appears to settle the contro-
versy in the quantum-defect-theory literature®
over which of p, or u% can be calculated on a
coarser mesh: p; is to be calculated near and
below and pu.; far above threshold.

The dependence of i ;(#,) onl can be understood
rather simply, using qualitative estimates for the
phase parameters ¢ ,(7,) and ¢,(r,) of Eq. (3.6).
At € =0 for example, the atomic wave function
P(r) has either n; —=I — 1 or n, =1 nodes inside
7 <7, where #n, is the principal quantum number
of the lowest unoccupied orbital with a given
(e.g., n,=4 for K). Accordingly ¢,(r,) at €=0

TTTmp T T Imp T 1T

001 04 1 10 01 1 10 100
k

FIG. 8. Same as Fig. 7 but for I=1.
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FIG. 9. Same as Fig. 7 but for I= 2,

must lie in the interval
1y =l =1<¢pplry)/m<n,-1. (4.2)

For a rough estimate we use the intermediate
value ¢, (ry)~ml, =1 - 3). To estimate the Cou-
lomb phase function we note that at € =0, f°(r)
has one node inside 7, at =0 for nearly all atoms,
and no nodes inside 7, for higher ! (r,~ 3 for po-
tassium). Thus ¢ ,(r,)~7 for I =0, ¢,(r,)~0 for
1>0. These considerations alone yield the fol-
lowing crude estimates of po;: 2.5, 2.5, and 0.5
for?=0, 1, and 2. These can be compared with
the more accurate calculated and experimental
values in Table I; the large error in these rough
estimates arises largely from the crude guess
for ¢f(r). A more realistic approach is to use
the large-7 form of the exact zero-energy Cou-
lomb-field solution f=7'2J,,  (V8zr ) for cal-
culating

cotp, =k (o) f7(r,) /f(r,) .

This procedure leads to estimates «p,/w ~1.3, 0.5,
and 0 for /=0, 1, and 2, changing our respective
estimates of u,, to 2.2, 2.0, and 0.5, which are
much better but still far from exact. Table Ialso
gives an indication of the validity of the Hartree-
Slater!? approximation to the atomic field. Namely,
the I=0 and I =1 calculated quantum defects are
very close to the experimental values, but py,(,)
shows a large discrepancy. This discrepancy
results from the delicate balance between centri-
fugal and electrostatic forces which is strongly
model dependent for [ =2.

The regular spacing of Rydberg levels hinges on
the slow variation of p%(r,) as a function of en-
ergy throughout region II of the spectrum. This

TABLE I. Experimental (Ref. 14) and calculated po-
tassium quantum defects.

He=o,1(70)
l Hartree Slater Experimental
0 2.178 2.178
1 1.712 1.701
2 0.590 0.278

regularity breaks down near the lower end of the
series, reflecting the transition from region II

to region III. As emphasized in Sec. III, the onset
of region III occurs when the base-pair functions
(1% 2°) begin their exponential growth within the

core 7 <7, (say, when v, 22v). In this range it is

the alternative quantum defect u*, which becomes
nearly constant. According to Eq. (3.97) p?; is an
integer to within an exponentially small difference
[of order e~2ro”  except for energies at which
P'(r,)/Plr,)-1/v=0(/7,)]. As € is decreased
through this range, p%, drops rapidly to the lower
adjacent integer. A bound level then occurs where
ut, is exactly integer; that is, the numerator of
(3.9’) vanishes. At the energies where u*, rapidly
drops, the analytic quantum defect p.% also makes
a transition from one of the dashed curves.of Fig.
7(a) or 8(a) to the next one according to the relation-
ship

tanm p9,

_ D?tanmp?, — tanB,
~ A(1+D?tang, tanm u?;) + §(tanB, — D*tanmu};)

4.3)

which follows from Egs. (2.5b), (2.7), and (2.11a).
No rapid steps of u?% occur in Fig. 9(a) because
there are no I =2 core electrons; thus region III
is so narrow that it can be disregarded for this
value of I. The Rydberg series terminates at the
threshold of region III of the spectrum because
each of the levels below this threshold is occupied
by a core electron. (The wave functions of these
core electrons decay exponentially for » =7, and
are in fact disregarded here for all 7 >7,.)
Throughout regions III and IV u;, remains
slightly less than (but extremely close to) a pos-
itive integer, except near the rapid jumps. Equa-
tion (4.3) then requires u?, to lie just below the
corresponding dashed curve in each of Figs. 7(a)-
9(a). These dashed curves bJ(v) defined by Eq.
(4.1) are sensitive functions of I in the energy
range v <[, where they assume a nonmonotonic
energy dependence.'® In the limit v—0 at the
lower end of region IV, note that p2, approaches
0 for odd ! and unity for even /. This is deter-
mined by the explicit low-v form of Eq. (4.1)

bAV) s + (=1) 120120 /(1) (4.4)

Only those curves b2(v) which are positive are
relevant, since the quantum defect is positive by
Eq. (2.13). Thus, the lowest positive curve near
v~0 approaches 0 for odd  and unity for even [.

The Rydberg series terminates at different
energies for different atoms. This is illustrated
by the quantum defects of sodium, aluminum,
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phosphorus, and potassium shown in Fig. 10 for
€<0. One notes first in Fig. 10 that p,, increases
with Z at all €, which reflects the increasing
attraction of the atomic potential. For each of
these atoms pu,, varies slowly at large v until v
decreases below the lowest Rydberg level in the
transition region 1 <v <3. At the onset of region
III the Na quantum defect converges to the dashed
curve b,(v)=2 - v, while it converges to b,(v)

=3 - v for the three higher-Z atoms shown. This
abrupt change from one dashed curve to the next
as Z increases from 11 to 13 reflects the abrupt
increase in the size of the ion core as its n=3
shell starts filling. More specifically, the alkali-
metal-like core of Mg (Z =12) extends roughly

1 a.u. beyond the closed-shell core of Na: in the
Hartree-Slater model 7,=3.2 for Mg but only 2.2
a.u. for Na. Since the onset of region III occurs
at v~7,/2, u. should converge to one of the dashed
curves b,(v) at a higher energy for Mg than for
Na. Accordingly we expect that this sudden change
from the lower dashed curve (z=2) to the upper
dashed curve (r =3) occurs first for the Mg quan-
tum defect (which was not calculated in this study).
A similar transition should also take place ateach
alkaline-earth element.

The earlier onset of region III for the alkaline-
earth elements implies that they have a more
negative derivative d ., /de than the alkali metals.
The Z dependence of this derivative at € =0, plotted
in Fig. 9 of FTD," shows explicitly that |d pu,/de|
is roughly twice as large for each group-II ele-
ment than for the adjacent group-I element. Thus

T T T T rTIrry T T 1T rrrrr T T rerrr
10° 107 10 10!
v

FIG. 10. Energy normalized quantum defect for =0,
at 7 =7, vs v for sodium (****), aluminum (—+*-),
phosphorus (—— = — ), and potassium (——). Dashed
curves represent b, (v)=n —v and bound levels as in
Fig. 3.

the non-Coulomb contribution to Wigner’s time-
delay index 2mdp,,/de, is more negative for Mg
than Na. This is physically reasonable, since a
low-energy electron experiences an acceleration
throughout a much larger volume and so emerges
from the core sooner when scattered by Mg* than
when scattered by Na'.

1. Joint variations with € and r

The potassium phase-shift surfaces are shown
in Figs. 11(a)-11(c) at e<0 and for 1 =0, 1, and
2, respectively. The positive-energy surfaces
are not shown here as they are quite similar to
the square-well surfaces of Fig. 6(b). We can
learn about the atomic dynamics, however, from
the negative-energy surfaces. Near threshold,
at the right-hand edge of Fig. 11(a), the quantum
defect increases in a stair-step fashion. Note
that the step spacings increase while successive
step heights decrease as 7 increases. This dif-
fers from the phase-shift accumulation for the
square well (see Fig. 4), where the € =0 quantum
defect increased in a stepwise fashion throughout
< 7,. The atomic problem differs from the
square well in this respect because the potential
difference V,(¥) -V (¥), which determines
dp?, (r)/dr through Eq. (2.13), is not constant but
instead decreases smoothly as 7 increases and
vanishes at ¥ > 7,. Accordingly the ratio k,(v)/
kp(7) in Eq. (3.7) goes to unity as ¥—~7,. Since
the atomic radial wave function P(e,!,7) has an
antinode centered on each subshell of a given 7,
the rapid steps of u2; () occur at these radii also.
Thus the first jump occurs at the 1s subshell at
7~ 0,05 for I =0 and at the 2p subshell near
7~ 0.19 for [=1, while P has no antinodes within
< ¥, for I> 2. Much as in Fig. 6(a), a decrease
of the energy below the Rydberg termination en-
ergy causes the outermost radial step to sharpen
and to move outward (for =0 and 1 only). When
€ is decreased sufficiently this radial step moves
“beyond” 7,, causing the rapid steps in the energy
dependence of u?, (¥,) shown in Figs. 7(a) and 8(a).
Because potassium has no levels bound in the
inner well for [= 2, there are no similar steps of
ul; (v,) with energy. In the limit v—0 each radial
curve has either one step or none, depending on
the explicit form of the dashed curves b (v) de-
fined in Eq. (4.1).

B. H quantum defects

The preceding example emphasized the inde-
pendent-electron model of atomic structure. To
improve on that model it is necessary to explicitly
treat the effect of electron correlations. One such
approach, which treats the correlations nonper-
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FIG. 11. Anpalytic quantum defect 4, (7) for potassium
vs 7 and ¥ as in Fig. 6(a), but from a different perspec-
tive. (a)l=0, (b)I=1, (c)l=2.

turbatively, is the hyperspherical-coordinate
method used by Macek, Lin, and Fano®to charac-
terize doubly excited channels of He and H™.
Their studies demonstrated that the nonseparable
two-particle Schrédinger equation in the variables
7y, 0, @, 7y 0, ¢, can often be separated ap-
proximately, and thus reduced to an equation for
motion in a local potential of the single variable

R=(r2+7r2)"/2,

Within this approximation we can apply a single-
channel QDT treatment.

In addition to R one must consider five coordi-
nates independent of R, which we label collective-
ly as . Macek expanded the wave function in a
complete set of eigenfunctions ¢ u(R ; ) which
diagonalize the Hamiltonian with R held fixed; we
write this as '

HR:const‘Dp(R;Q)zUu(R)(I’“(R;Q) . (4.5)

The eigenvalues U, (R) then act as adiabatic poten-
tial curves which smoothly connect the condensed
(R~ 0) and dissociative (R —«) limits, analogous
to the united-atom and separated-atom limits of
molecular physics. More specifically, Macek’s
expansion took the form ‘

Y=R™/23" & (R;Q)P,(R) , (4.6)
m

where the factor R™5/2 has been separated for
convenience. Substitution of Eq. (4.6) into the two-
electron Schrodinger equation, followed by multi-
plication by ¢, and integration over Q, gives the
infinite set of coupled hyperradial equations:

(d_zz L 9E - ZUM(R)>P,1(R)

v ; 2W,,, (R)P,s (R)=0 . (4.7)

The coupling coefficients W,,» represent depart-
ures from the adiabatic approximation. Macek5‘?’
found that these off-diagonal couplings can often
be neglected, thus reducing the electron correla-
tion problem (4.7) to an effective one-dimensional
Schrddinger equation. A multichannel QDT ap-
proaeh is then required when the W, are not
negligible for p# u’, but here we have ignored
these coupling terms.

This approach has been utilized recently by
Lin%‘? to classify 'P°H™ resonances near the
n=2 threshold of H. The adiabatic-potential
curves U, (R) he obtained (including also the diag-
onal element Wuu) are shown in Fig. 12. Note that



at large R as one electron escapes from a hydro--
gen atom in its z =2 states, there is one attract-
ive channel “sp —”, and two repulsive channels
“sp+” and “pd.” Lin®® showed that the sp+
channel supports no bound states but does support
a strong shape resonance just above the n=2
threshold. The pd channel is completely repul-
sive and plays no role in the excitation processes
near threshold. The sp— channel, though, is at-
tractive at large R, where it is represented by

2Ugp-(R) = 2W, gp —==0.25 - 3.71/R?,  (4.8)

in atomic units, disregarding spin-orbit coupling
and the Lamb shift. This potential, generated by
the dipole moment of a 2s-2p hybrid state of H,
supports an infinite number of bound levels,'®
corresponding to the “dipole” type of long-range
field of Eq. (2.2), with g=1.86. It is this channel
which gives rise to the observed'® and calculated!’
1pe Feshbach resonances below the threshold, of
which only the lowest one has been observed ex-
perimentally. Of course the states of this channel
‘lie in the continuum of H(1s) + €p, but their coup-
ling to this continuum amounts to only a weak per-
turbation Wi, ,-. Disregarding this perturbation
permits us to discuss the level structure of the
sp— states by single channel QDT.

Using Lin’s “sp—"" potential curve it was straight-
forward to solve Eq. (4.7) for P,,.(R) and to phase-
match this function to the dipole-field base pair
(7°¢" defined in I (at R=R,~25 a.u.). According
to the convention of Eq. (2.5) of I, the dipole-field
solutions are given in terms of Bessel functions
by
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(v/mD(,a)f*

==2(1 = ")t/ 21 2 1m( g, 67/ V)]
(/M0 (v,a)f

=2(1 — ™)1/ 212 Re[ J, (i /V)],

(4.9)

with ¢=1.86 as above. The base pair (f,g)
=(r%g" for the dipole field at negative energies,
and is expressed by Eq. (2.5b) in terms of the
functions in Eq. (4.9). These functions were de-
termined numerically by using the series expan-
sion for Bessel functions.!® The solution of Eq.
(4.7) was obtained as above in Sec. IV A, and Eq.
(2.11a) then determined u?,. The results of this
calculation are plotted in Fig. 13. As in the
earlier quantum-defect plots, the intersection of
©?, with any of the dashed lines,

b)(v)=n-r"laln2v+ 7 argl'(1 - ia),

of Eq. (2.9) represents a physically observable
bound state. Note that gll bound states of the
sp-channel occur in the near-threshold region II,
throughout which uga remains very nearly con-
stant (uga changes only by ~0.004 between € =0
and the lowest bound level at v, ~22.45, ¢,
~-0.00198 Ry). Also, whereas a long-range Cou-
lomb field has bound states whenever v increases
by unity, here the successive bound states con-
verge geometrically to the condensation point,
according to

~ m/a _
Vpet ~ Ve 4 =5.4v,.

(The binding energy of the lowest level of this
series lies roughly 7x10°® Ry lower than Lin’s
value®'®; this 4% discrepancy probably results

-0.20

U(R) (Ry)

H 'P

FIG. 12. Adiabatic-po-
tential curves Uy (R) of
H™ 1P° states that converge

-0.25

to the n =2 level of H [from
. Ref. 5(c)l.

-0.30
E) 10 1S

R (bohr)
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FIG. 13. Analytic quantum defect at R =R for the
“sp—> 1P0 channel of H" vs effective quantum number.
Discrete levels lie at intersections with the dashed
curves b°(v).

from errors in graphically reading his potential
curve Uy, from Fig. 12.)

The sp~- potential is quite shallow, even for R
<R,. This diminishes the extent of region III of
the spectrum, as it does in Fig. 9(a) for =2 of
potassium. In fact region III should be quite nar-
row for any two-electron channel because no more
than one bound state will occur in the inner well
of a two-electron system (inner-well states cor-
respond to »;~7,). The limiting behavior in re-
gion IV as v -0 is rather different when the long-
range field is dipole rather than Coulomb. In the
Coulomb problem u?, - integer as v -0, because
the regular Coulomb solution has no nodes below
v=1[+1. The dipole-field solutions behave in-
stead at small radii as sin(q¢ln?) and therefore
have an infinite number of nodes at all energies.
These oscillations at small » are unrealistic be-
cause no attractive 72 potentials actually extend
to »=0; these oscillations force u!, to diverge as
v -0 for any realistic short-range potential.

It is also possible to calculate several useful
quantities from QDT as is often done for Rydberg
series (Sec. IIE of I). In particular the energy

dependence of the wave function for R <R, is mainly
localized in its normalization coefficient, Eq.
(2.8), which at threshold is just

y;’z',,;;(a/ﬁ)vf, . (4.10)
Thus the photoabsorption cross sections.of suc-
cessive series members decrease in the ratio

o(n+1)/0(m) ~ (Vy1/v) ~e*/®. (4.11)

It is also possible to evaluate the mean orbital
radius for any given state by noting that (7), in-
creases with » as

4 T « ir \]?
I—Z?ﬂ‘a—a—yg—]o- drr? [ImJ“‘(V_")] xV,, (4.12)

in contrast with Rydberg-series radii, which in-
crease as 1/,2,. For the present example succes-
sive bound states occur at v, =22,120,640,. . .,
and successive radii in a.u. are roughly (7),

= 30,160,880, . . . . While the radii of Rydberg
levels increase as a higher power of v, than levels
in a dipole field, the successive values of v, in-
crease much faster for the latter, causing the
wave functions P,,(R) to spread out much more
rapidly with increasing n. Direct calculation of
these wave functions by variational approaches?’
would then require a basis that represents this
long-range behavior adequately.
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