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Surface-wave propagation on isotropic liquids: A study of two-mode structure
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The dispersion relation for capillary waves on isotropic fluids is written in a dimensionless form appropriate
for propagation experiments and solved numerically. Using a recently developed technique to generate and
detect capillary waves, the authors have observed a second mode on a highly viscous fluid whose
characteristics are in good agreement with theory.

I. INTRODUCTION

It has long been known that surface waves at the
liquid-gas interface (capillary waves) provide a
convenient probe of the bulk and surface properties
of liquids. Experimental techniques to study
liquid systems using surface waves fall into twp
categories: (i) temporal methods (Brillouin scat-
tering) and (ii) spatial methods (propagation ex-
periments). In the former, thermally excited cap-
illary waves interact with incident light causing a
momentum and frequency shift pf the scattered
light. The spectrum of the scattered light at a
given momentum transfer is then measured by a
variety oi means, e.g. , a spectrum analyzer and
cprrelatpr. In the latter, a capillary wave of
known frequency is generated, and detected as a
function of distance from the generator, thus re-
vealing its propagation characteristics.

The dispersion relation of capillary waves has
previously been parametrized into a dimensionless
form and numerically solved' under the assumption
that the momentum of the wave is real, whereas its
frequency is complex; a form which is pertinent to
the temporal method. In contrast tp the dispersion
relation pf bulk sound waves, the momentum-fre-
quency relation is highly nonlinear. In particular
there are two qualitatively distinct modes for a
certain range of the parameter.

The predicted mode structure was experimentally
observed by Katyl and Ingard~' on various liquids
covering the entire range of this parameter. Such
a paraIDetr ization of the dispersion relation, has
not to our knowledge been done in a form suitable
to the spatial method where frequency is con-
sidered real and wave-vector complex. This is
understandable since propagation experiments
have usually been performed on fluids of low vis-
cosity where an approximated form of the disper-
sion relation is adequate and a complete solution .

of the equation is not necessary. We have recently

developed a technique to study capillary-wave
propagation. ' The wide dynamic range of our
technique has allowed us to observe highly damped
waves on viscous fluids conveniently, and hence
the necessity arose to solve the equation without

approximation.
In this paper we would like to present the result

of numerical calculations of the dispersion relation
parametrized in the form suitable for propagation
experiments. The results show two types of mode
fpr highly viscous fluids, corresponding to the twp
modes in. Brillouin scattering. We will then show
data frpm capillary-wave experiments on a vis-
cous liquid where the two-mode structure is ob-
served for the first time in propagation experi-
ments.

II. THEORY

The derivation of the dispersion relation for sur-
face waves is well known", however, it is rele-
vant to our purposes tp emphasize certain details.
We consider an incompressible isotrppic fluid of
density p, surface tension o, and shear viscosity
q in a Cartesian coordinate system where the z
axis points vertically out of the fluid; the wave-
prppagation direction is taken to be the x axis lo-
cated in the fluid surface. If the wave amplitude
is small then the linearized Navier-Stpkes equation
is adequate to describe the fluid motion, subject
to boundary conditions at the fluid surface and at
z = —~. We ignore the effects of gravity as they
are small at the surface-wave frequencies we
usually study. Corrections due to gravity will be
discussed later. We assume a plane-wave solution
with the fluid displacement in the z direction given
by

g(x, z, t) =
go exp(iqx —St+ mz),

where

q —=@+in and S —=S+iS;,
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and k, e, S„and S, are real. ' The displacement
in the x direction is obtained from the incompres-
sibility assumption & ~ v= 0. It is found that two
values of m satisfy the equations of motion

m,'= q' and m,'= q' Sp/r), (3)

where the boundary condition at z = -~ requires
that we take the proper signs so that

Re(m, ,)& 0. (4)

The solution is thus a linear combination of two
z-dependent terms as

mj.g+ gem2g

The boundary conditions at the fluid surface im-
ply that such solutions must satisfy the dispersion
relation given by Eq. (6):

(m', + q') (Arq' 2irIS—qm ,) —('m', + q')

giving P = 3.4 & 10 . For an example in the high
damping limit, we may consider glycerol at 100
Hz for which &o= 628 cm ', p= 1.26 g/cm, o = 50
dyn/cm, rr = 10 poise (though this latter quantity
is highly temperature dependent), giving P = 14.
%e then varied P from 10 ' to 10' with the results
shown in Fig. 1; here the solutions are written in

, a form Q=Q„+iq„with Q„and Q, being plotted
separately, representing the real and imaginary
parts of Q, respectively N. ote that for low P val-
ues, only one mode Q, exists, while for P values
greater than P =—0. 105 there are two modes Q, and

Q, . The first mode Q, approaches a critically or
viscous damped solution in which Q, = Q„, while
the second mode is an overdamped solution in
which Q, & Q„.

In the limit I'- 0, the slopes of the solutions for
Q,„and Q„approach —,

' and 1, respectively, result-
ing in the usual low viscosity approximation given
by

x [ioq' 2irISqm, + (ipS'/q)m, j= 0. (6) k' = p(o'/o

and

Q = ql(~ p/rI)" '

P -=(~rI'/po')'";

(7)

(8)

Eq. (6) can be parametrized in the form

4Q + (1/P) Q' —4i Q' —1 = 4Q" v'(Q2 —i), (9)

where + denotes the square root whose real pari
is positive. The dispersion relation for surface
waves is now in a dimensionless form. By squar-
ing and after some manipulation, Eq. (9) reduces
to

Q + (1/8P —2iP}Q —iQ —3PQ

We now consider solutions for Eq. (6) assuming
that S is purely imaginary, i.e. , a condition ap-
propriate to spatial experiments. Following the
conventional notation we write S,- as &. %e assume
that k, n, and & are positive, without loss of gen-
erality. Then with the substitutions

Q = —r/+/6,
3

This approximation, however, is not accurate
even at I'= 10, where numerical solution gives
slopes of 0. 333 and 0.987 for Q„and Q„respec-
tively. The curve for Q, starts deviating from a
straight line at a rather low & value. Conversely
if one were to use Eq. (12), or equivalently Q,
= 4 P, a 3/p error would be introduced for Q, at
p =10, where Q&

—1.29x 10 . . In the limit P
-~, Q,„=Q,&-0.74, Q,„-0.236, and Q, &

—0.428.
On low-viscosity liquids such as water, it is

easy to see why propagation experiments can never
detect the second mode; even if waves of frequency
10 kHz could be generated and detected I' would
still only be 3.4 x 10 ', well below the appearance
of the second mode at &=—0. 105. Because P is'

IQ

,'Q3+iPQ2+ 'P=o, (10} 10 Im(Q )

which is in a form convenient for numerical analy-
sis. Equation (10) was numerically solved for Q
using the Jenkins-Traub three-stage complex
algorithm. ' For a given parameter P there were
seven solutions from which the nonphysical ones
were rejected using the following criteria: (a) The
solutions have to satisfy the original equation (9),
(b) condition (4), and (c) Im(Q) & 0 since n & 0.

The relevant range of P was determined as fol-
lows. As an example in the low damping limit,
we may take water at 100 Hz for which & = 628
sec ', p = 1 g/cm', a = 73 dyn/cm, rI =0.01 poise,

IO

10
Glycerol,
IQO Hz

10

IO 10 IQ
2 IQ'

P
10 102

FIG. 1. Solution to the dispersion relation for surface
waves in a dimensionless form. Q„and Q; are the real
and imaginary parts of Q, respectively. Gravitation is
neglected.
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proportional to g' it is expected that changes in
fluid viscosity give changes in Q which are more
important than those due to frequency changes.
As an example we can note that at higher temper-
atures the viscosity of glycerol is low enough to
give values of I' in the single-mode region, I'
&0.105, while at room temperatures glycerol
fa,lls well into the two-mode region, P & 0. 105. .

The, second mode for large I' is not a surface
wave in a strict sense because the real part of the
wave v ctor is less than the imagina, ry part. In
fact the form exp(iqx+qz) implies that the wave
propagates into the fluid rather than being local-
ized nea, r the surfa, ce. A similar situation occurs,
for instance, at a solid-fluid interfa, ce where a
Ra,yleigh mode on the solid is coupled into the bulk
fluid mode' (sometimes called a Stonely mode).
Thus the energy near the surfa, ce is continuously
taken away into the bulk. In the literature, the
term "leaky mode is sometimes used for such
waves.

Equation (6) defines a hypersurface in a four-
dimensional space (k, n', S„, S,). The intersection
of this surface with a plane a= 0 (temporal ex-
periments) and that with a plane S„=0 (spatial ex-
periments) are qualitatively similar. Thus, there
are two modes in the high-viscosity limit in both
cases, the upper branch in Fig. 1 of Ref. 1 cor-
responding to the second mode and the lower
branch to the first model, although there are no
quantitative relations. In the low-viscosity limit,
we have e-0 and S„-0. Therefore, there is no
distinction between the two intersections and both
reduce to Eq. (11).

As a final point for discussion we show that Fig.
1 can be used to deduce fluid viscosity and surface
tension from measurements of wave number k and

attenuation coefficient n at a, particular wave fre-
quency e/2m. From Fig. 1 it can be seen that the
ratio of wave number to attenuation k/o. ' (which is
equal to Q„/Q&), is a monotonically decreasing
function with increasing P. Thus by simply form-
ing k/n we can locate the corresponding value of
& uniquely. With a, known & value, the ratio R

8-=(&+in)/(Q„+ iq, ) = ((up/q)'~'

can also be calculated. Since we then have two
equations, Eqs. (6) and (13), for two unknowns,
o and g, we can find unique values for them pro-
vided p is mea, sured separately. The procedure
is simple and there are no approximations.

III. EXPERIMENT

The details of the experimental apparatus mill
appear elsewhere, ' but a brief description of the
main features is appropriate here. With our ap-
paratus schematically shown in Fig. 2 a, sharp
metal wedge is carefully positioned very close to
the fluid surface («1 mm) arid an ac voltage is ap-
plied to the wedge. Due to electrocapillarity, the
fluid (whose dielectric constant is higher than the
gas above) tends to rise up to the region of intense
electric field at the tip of the wedge. Surface ten-
sion and gravitation oppose this motion. Because
the strength of the electrocapillarity is proportion-
al to the squa, re of the applied voltage, the surface
wave is generated at twice the applied frequency.
The deflection of a specularly reflected laser
beam from the corrugated surface, , which acts like
a rocking mirror, was detected by a position sens-
ing photodiode and a phase sensitive detector, as
seen in Fig. 2. A mirror mounted on a, translation
sta, ge was driven by a low rpm dc motor to scan
the laser beam and thus sample the wave charac-
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teristics as a function of distance from the genera-
tor.

Because the generator and detector are essen-
tially noiseless (having no mechanically moving
parts) and because the vibration isolation of the ap-
paratus consists of a 2300-kg electromagnet floated
from the floor on pneumatic cushions, the noise
level is very low. We could detect amplitude
changes by factors of 10' routinely even when wave
amplitudes at the generator were well within the
linea. r regime of the Navier-Stokes equation.

In order to study the two mode structure at high
&, we used a viscous vacuum pump fluid, Con-
vaclor-8, (Consolidated Electrodynamics Corp. )
for it is chemically stable and the viscosity is in-
sensitive to the temperature. Static measurements
indicated a density of 1.4 g/cm', a bulk shear vis-
cosity of 3.8 poise, and a, surfa. ce tension of 42
dyn/cm, giving &= 3.73 at 100 Hz. Thus at 100
Hz it was expected that a two-mode structure
would be observed.

Experiments were carried out at surface wave
frequencies of 20, 100, and 400 Hz. Two traces
whose phases were 90 apart were taken at each
frequency. They were completely reproducible.
We then attempted to fit the two traces at each

frequency with the functional forms given by
2

F,(x)= Q A~e "&"cos(k, x+ y, )
f=l

a,nd

2

1;(x)= Q &~e ~*cos(k~x+ y~ —-'m), (15)
)~1

respectively T. he parameters A» n&, k&, and p&

represent the wave a,mplitude, attenuation, wave
number, and phase, respectively. The result of
such a. fit is seen in Fig. 3 which shows the data,
taken at 20 and 100 Hz and the calculated values
from Egs. (14) and (15) in circles. A fit was also
attempted where only one mode was assumed.
This is shown as triangles in Fig. 3. It is clear
that a second slowly damped and long-wavelength
mode is necessary to avoid zero crossing toward
the end of the traces where the signal is well above
noise level. We believe that this is the first clear
cut indication of the second mode in propagation
experiments.

Figure 4 gives the results of the experiments at
20, 100, and 400 Hz, showing the fit values for .

Q, and Q„versus the numerical predictions. The
& values were calculated from the known surface
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FIG. 3. Experimental data and points representing a single-mode fit (triangles), and a two'-mode fit (circles) of the
form (14) and (15). (a) and (b) at 20 Hz and (c) and (d) at 100 Hz with 2& phase difference.
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wave frequencies and p, o, and q obtained from our
static measurements. The solid curve is an en-
largement of the high I' region of Fig. 1. The
dashed curve is a gravitational correction. Since
the gravitational force cannot be parametrized in
terms of P and Q the correction depends on the
specific values of q, 0', p, and ~. The gravitation-
al correction is small (-1%) at 100 Hz but it is
significant at 20 Hz. The mode structure, how-
ever, is not altered by the gravitational effects.

Although the agreement between the experiments
and the theory is reasonably good, a systematic
discrepancy is clear; measured Q, values tend to
be larger than predicted while Q, values smaller.
At the moment we do not known the cause of this
phenomenon. This tendency is common for all data
analyzed including data taken from glycerol, sili-
con oils, and other viscous fluids. The effect of
the boundary was found to be unimportant because
a small trough (4 cm diameter and 0.5 cm deep)
gave the same results as a larger trough (7 cm
diameter and 8 cm deep).

A similar parametrization is possible for capil-
lary waves on anisotropic fluids involving three
shear viscosities. A numerical analysis of the
parametrized equation and an experimental study
using nematic liquid crystals are in progress.
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