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Using the quasistatic approximation as basis for the description of broadening by ion-produced fields and
the impact approximation for electron-produced high-frequency fields, an analytic approximation procedure is

developed and applied which allows for slow variations of the total field acting on a radiating atom, This low-

frequency Stark broadening depends on the radiator velocity and is therefore correlated with the thermal

Doppler broadening. The theory is extended to Lyman-a lines of hydrogenic ions.

I. INTRODUCTION

Measurements' ' of the central portions of the
profiles of the Lyman-o. and —P lines from op-
tically thin plasmas revealed that the usual Stark-
broadening ealeulations' gave substantially less
broadening than that observed experimentally.
Although the deviations were much larger than ex-
periment-theory discrepancies' depending on the
reduced radiator-perturbing ion mass, it was
shown, ' ' for the lowest density at which Lyman-u
had been measured, ' that inclusion of radiator-ion
motion would greatly reduce but not eliminate the
observed differences. The present author' pro-
posed a model for the inclusion of the effects from
electron-produced low-frequency fields which al-
lowed the removal of the experiment-theory dis-
crepancy in the entire density range covered by
the experiment. '

%'ithin the combined theoretical errors of these
various attempts' ' to explain the additional
broadening of the Lyman-n line, one could still
say that both of the two corresponding mechanisms
are actually contributing to the observed broaden-
ing, i.e., both field variations associated with the
relative motion of radiators and perturbing ions
and field variations associated with the shielding
electrons in the Debye clouds of the ions.

However, the model microfield calculation, '
which gives linewidths in closer agreement with
measurements at all densities, seems to rule out
such combined action of the two above mechan-
isms, since the model microfield used is produced
by statically, rather than dynamically, shielded
quasiparticles. A resolution of this apparent
dilemma will be proposed in Sec. V. Suffice it to
mention here that the smooth time variation of the
actual field is in the model mierofield method re-
placed by discrete changes in field magnitude and
direction, with the frequency of these changes
governed by an appropriate collision frequency in
the sense that it gives the correct autocorrelation
function of the field. Section II of this paper is

concerned with the effects of slowly varying elec-
tric fields, regardless of their origin, on line
profiles, especially on the profile of the Stark
components which in the limit of linear and static
Stark effect are not affected by the field (unshifted
Stark components). The magnitude of low-fre-
quency electric field variations in dense plasmas
is discussed in See. III, followed by Secs. IV and
V devoted to combined Doppler and (low frequency)
Stark effects and a comparison with experiment,
respectively. Section V also contains proposed
ion-dynamical corrections for Lyman-n lines
from hydrogenic ions immersed in dense deuter-
ium-tritium plasmas.

II. BROADENING BY SLOWLY VARYING ELECTRIC
FIELDS

Consistent with the use of the quasistatic approx-
imation as a point of departure, the radiating atom
must be assumed to be in some electric field in-
itially. This field F(0) may be taken to be in the
z direction, which is then the natural axis of quan-
tization. Consistent with the use of the impact ap-
proximation for the broadening caused by high-
frequency electron-produced fields, these fields
can be assumed to vanish at t = 0 and the atok be
assumed to be at this time in one of the stationary
(parabolic coordinates) eigenstates in the ion-pro-
duced but (statically) electron-shielded field F(0).

Instead of Voslamber's' equation (1) for the line
profile of Lyman-n we start with

L, (&u)= —Re e '~ '
—,e' &'(U„+U„)1 6 (dt

0

+~e' 2 (U +U2)

(U„)(U„))dt.

Indices 1 and 2 designate the required linear com-
binations ([ 210)+,~200) )/v 2 of the two m=0
states, whose energies are shifted in the initial

20 606 1979The American Physical Society



20 BROADENING OF THE LYMAN-0. LINE OF HYDROGEN BY.. .

field by @+, and k~» while 3 and 4 still stand for
I 211} and I 21 —1), respectively. The quantities
(U„)are averages of the elements of the atomic
time-evolution matrix (in the interaction repre-
sentation) in the principal quantum number n = 2

subspace, and b, ~ is the angular frequency mea-
sured from line center. The Schrodinger equa-
tion for U, already averaged over the fast-elec-
tron time scale, , is

—= —D-[F(t) -F(0)]-%~IU, U(0)=1.
dt 5 j

The atomic-dipole operator D and the electron-
collision operator X are multiplied with appro-
priate exponential factors, e.g.,

(3)

with

d
+2 U23+g~22tU23

= —i~23k 8 033 ic'o24te 24' U43

+ we 21 U13$ (7c)

(u;~ =(u( —(u~ = (1/K)(V;; —V~~),

22 ll& 33 44

The zero order solution of the coupled equations
is

"+(()U40= —i(u4)te' 4('U» —i(u42te' 42'U», (7d)
cQ

where the frequencies in the exponents are

h(u, = —D((' F(0) = V,(, (4)
U(0) e ttt f U(0) 0 (i P 3)

in order to account for the removal of the degen-
eracy with the m= 0 states. Also, the full ion-
radiator interaction D F(t) is replaced by

—D' [ (t) —FF(0)) —0 F) t= ttttt
dI;

to first order in a power-series expansion of the
slowly varying part of the perturbing field. The
nonvanishing components of the collision matrix
are

which on substitution into Eqs. (7b) and (7c) and
integration gives first-order solutions for U13
and U», e.g. ,

U(1) 1 j~ e($ &13 Iu) t
13

—= 2 13

)( [(u2 (()2 (u ((u2 (02)tt 2]

x [y, '(y, + i(u„)(()(e)')' —1 -y, t )

—y, ' (y, i(u»)(y,——i(u»+(e)(e&2' —1 —y, t )],

where (() is the (half) halfwidth of the electron-
broadened Lorentzian profile of the central Stark
components of the usual calculations. '

The coupled Schrodinger equations for one of the
central (unshifted) components are

with

(10)

" +wU»= -iso„te' 31'U, —iw„ge 32'U23,

dU„" + 2WU13+iYb„fU»

i&13)e U33 —%14)e U43

(7a)

These first-order solutions are substituted into
Eq. (7a) whose integration gives a second-order
solution for U33,

U"'= e ~(1 —,'(t.'„(u»[—3,1]

—a(u»(u»[3t 2] ),

+we' »'U23, (7b) with the abbreviation

[3,11=[(u»-(()'-(u»((u» (e')' '1(r,-'(r, +i(u»)N)[r, ' -at' '0r, t'+r, '-e')'(r, t —1)]

—y, '(y, —i(u„)(r, i(u»+(())[—r, ' —2t' &r,t'+ r,'-e'2'(r, t —1)]}', (12)

and an analogous expression for [3, 2]. A corre-
sponding solution can be found for the shifted com-
ponents, e.g., for Ull+ U12 However, because
the contribution of the shifted components to the
central region of the line profile is small and only

weakly dependent on frequency, low-frequency
Stark broadening of these components can safely
be neglected.

As shown by Demura, Lisitsa, and Sholin, ' one
can proceed with such expressions in Eq. (1) and
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arrive at complicated expressions for their aver-
ages over distributions of ion-produced fields
E(0) and field derivatives E(0). This is provided
that one neglects correlations between perturbing
ions and Debye shielding by electrons, i.e., uses
distribution functions of Holtsmark' and Chand-
rasekhar and von Neumann. ' From comparisons
with field distribution functions of Hooper, "which
do account for correlations between perturbing
charges, it is clear that the use of Holtsmark,
etc., functions entails large errors for the dense
and low-temperature plasmas of interest here. '
It is therefore more appropriate to simplify Eqs.
(9), (ll), and (12) before proceeding with the
evaluation of line profiles.

For almost all values of the ion-produced field
one has, e.g. , ~ ~,J»w. This suggests toas-
sume w -0 in all correction terms and to neglect
terms involving exponential factors with ~», etc. ,
for the calculation of the central region of the
line profile. In other words, we may use here

U U set 1
31 13 32 23 (t2+~-2)4) + (d CO

33 44 ' ' 2
' ' 2 13(dl~ /

(13)

and ignore all corrections, e.g. , to U„+U». Sub-
stitution into Eq. (1) and integration then yields
for the profile of the unshifted Sta,rk components

u 1 F„~2"()=3 '+ ' 2 E)
w' —3w'A~'
(W2+gCO2)3 (a)13 Zu2+~(u'

(14)

if one also uses the relations between the various
matrix elements, namely, [x»t =2(x»j =2[y,J,
and introduces F2'=E„'+~2 for the aqua. re of the
field derivative in the direction perpendicular to
the initial field E. [Had the exponential factors
been retained, we would have U33(0) =U«(0) =1,
as usual. ]

Of the two correction terms, the first agrees
with the results of Demura et al. ,

' while the sec-
ond is -

20%%uo larger than their corresponding term
at small b, ~, not to mention larger deviations at
larger A~. These deviations are connected with
the various simplifications made here, but are
of little numerical importance because (so/ar»)2
is very small for typical values of the ion-pro-
duced field. (Estimates show that the second
term is -10%%up of the first term inthe region of
interest. ) We will therefore neglect the second
term in the following and write the correction to
the Lyman-a profile due to low-frequency field
fluctuations as

1 E~ ' w' —3w3~~'
EI. &u =—

Bw wE) (w'aw)' (15)

Before proceeding with the discussion of (E'/E)2,
which emerges as key quantity, it is interesting
to note that the form of the correlation function
actually used for ~L, (&u), namely,

U„=e"'[1——,'(E /E)'t'] (18)

is also consistent with Voslamber's result. ' This
becomes clear if we identify the angle between
the field F(t) and F(0) with E~t/E and expand his
expression up to t '. Furthermore, to the same
order in powers of t, the correction factor cor-
responds to a Gaussian profile of 1/e width

~' =(E,/F), (17)

to be compared with the thermal Doppler width

4&D — (2KT/M) (d3/C (18)

Coefficients of fourth- and higher-order terms in
the correction term will of course be such that the
corresponding profile becomes non-Gaussian for
b, &u ~ v'. [ Judging from Voslamber's expression, '
the ratio of coefficients of fourth-. and second-
order terms is -(-,'cu')2, which suggests that the
Gaussian profile is accurate to -10%%up even at
h(d= (d&).]

III. LOW-FREQUENCY FIELD FLUCTUATIONS

According to Eq. (15), the dimensionless param-
eter for the relative contributions of slowly vary-
ing fields to the Lyman-a profile is E,/Fw, where
E, is the magnitude of the time derivative of the
low-frequency field in the perpendicular direction
to the initial field E, and w is the halfwidth of the
electron-broadened Lorentzian profile of the un-
shifted components. Within the approximations
made in the precedinq section, we actually only
need the average of (E /mE)' over all perturber
configurations or, rather, of (F, /F)', since' is
independent of E for all practical purposes.

The task of determining the average of (F /F)'
for low-density high-temperature plasmas is an-
alogous to the problem of gravitational fields pro-
duced by stars and their Quctuation moments.
These fields and moments were calculated for the
case of stochastically distributed stars by Chand-
rasekhar and von Neumann, "who obtained

3 (5~)1/3(
KT

E 3E Mr3

(f (.-1)'"'
3KT ) p P'

( PH+K) —, —
12m 3K+ J p P
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where M,- is the mass of the perturbing ions, v

is the velocity of the radiating atom, and ro is the
mean ion-radiator distance defined (in terms of
the ion density N) by

(20)

The functions G, I, a&d K can all be expressed in
terms of the Holtsmark function' "If(P), which
for noninteracting point charges represents the
distribution of reduced electric field magnitudes,
i.e., of

p=E/E = ('-')' 'F/27reN'~'- r'E/e (21)

The integrals in Eq. (19) can be performmi analy-
tically using the integral representations and dif-
ferential equations for the various functions, "and

changing the-order. of integration. The result is,
for v'= 3kT/M, ,

5 &25
+ —I—

V2 E n 3jMro
KT KT KT

= 10.06, +0.74, = 10
Mr 0 Ma ~o Mr 0

(22)

and the second term, which comes entirely from
the thermal motions of the radiating atoms (of
mass M, ) is seen to be negligibly small. The re-
mainder, involving the reduced mass M„=(M,'
+M, ') ', conforms with the fluctuation moments
used by Demura et al. ,

' but it is in excess of Vos-,
lamber's estimate' by a factor -2, if one uses
again 8 = (F, /F)t for the angle between field direc-
tions at times t and t = 0.

In the plasmas of interest, ions and electrons
do interact rather strongly. This is indicated by
the typical magnitude (- 0.6) of the dimensionless
Parameter r, /P Pvv being the Debye length

pv = (~T/4mNe')'/' . (23)

These interactions, first of all. , lead to substan-
tial modifications of the distribution of quasistatic
fields, in the sense that relatively small fields
become more probable. Since such small fields
are produced by a number of perturbers acting
simultaneously, the quantity (E /E)' might be ex-
pected to decrease as a result of such interactions.
This seems to contradict a calculation by Hey, "
who generalized Chandrasekhar and von Neu. -
mann's theory to the case of fields from Debye-
shielded point charges. Quantitative estimates
using Hey's generalization of the G, I, K, a«
H functions, however, are not possible because

of the large values of the expansion parameter,
r, /pv, and the appearance of a minimum permis-
sible value of p ( r-02/pv2) in Hey's work.

So far, we have only discussed low-frequency
field variations due to ion-radiator motion. As
emphasized before, ' we must also consider low-
frequency fields produced by electrons that make
up the Debye-shielding clouds of the ions. (Re-
member that high-frequency electron-produced
fields contribute in the impact approximation to
the Lorentzian width w. ) These contributions to
F~ could be estimated from standard plasma
theory, provided one assumes them to be inde-
pendent of the ion-produced field F. Neverthe-
less, in view of the difficulties with this approach
for the plasma wave numbers (&=1/r, ) and fre-
quencies (+ =a&~, ) of interest, and because of the
problems connected with the separation of corre-
sponding ion-produced fields from the quasistatic
field, we instead employ the following model:

The total field acting on a given radiator is
composed of its initial value, an ion-produced
slowly varying part, and a low-frequency wave-
produced part, i.e.,

(25)

if we assume ion- and wave-produced parts to be
independent and introduce

F' =&F2~, (26)

The remaining average is over the magnitudes of
the various ion-produced fields F& (0).

A fluid model for the plasma (see Appendix) re-
sults in

24
1/3e4/3 Fo +et

w 5 p~

1- tan ' ~~ + —tan 'x
Xm v2 x

(27a)

Here x = 4 p~ corresponds to the maximum wave
number 0, beyond which a continuum descrip-
tion of the plasma is invalid. In analogy to the

At t = 0 and assuming random phases for the F~,
only the first term contributes. It cannot, how-
ever, be identified with the quasistatic field of
Hooper, "which contains also some low-frequency
wave contributions, but rather with the ion field
of Holtsmark. ' For the quantity of interest our
model gives



HAN S R. Gg IKM 20

Debye theory of specific heats of solids, we de-
termine ~ by equating the number of wave modes
times two for the two degrees of freedom per
mode with the degrees of freedom of the ions in
velocity space, i.e., we choose k„=3(-,'m)' 'r, ',
corresponding to (28a)

20"'5 E', 1 — tan '
~2

lx —p2 E2
Xm

The same model also yields

(27b)

if we neglect radiator motion. To include the lat-
ter effect, which corresponds to Doppler-shifted
field fluctuations, co2 must be replaced by
(&u -k v)', where v is the velocity vector of a
given radiator. On the average over k directions
this becomes &u'+-', k'(C)'. (The term 2(dk v does
not contribute for isotropic plasmas. ) Using again
the fluid model (see Appendix), the required gen-
eralization is therefore

With Eqs. (25), (27b), and (28b) the proposed re-
placement for Eq. (19) becomes

=-'(5 )" ', (1+—

36m gg 1 M;v
+ — f + —„~54/3 ~ ~2 - i 3 a

p KT

xf (29a)

where f, and f, ar. e the factors in square brackets
in Eq. ( 28b). Again using the integral represent-
ations for G, I, and H and noting that the inte-
grands are even functions of P, the two integrals
over P can be done first, by contour integration,
and we finally obtain

terms and their sum are shown in Fig. 1, relative
to the leading term of Chandrasekhar and von Neu-
mann, "i.e., the first term in Eq. (22) with ~T/M
replaced by —,'v'. Almost independent of r„/pD,
(&~/Ji)2„ is seen to be reduced by long-range cor-
relations between ions and electrons, though al-
ways by less than a factor 2, and a suitable ap-
proximation for the conditions of the experiment'
(p' = 2.72, f, = 0.78) is

(F /Z);„=-', (5v/2r, )'. (30)

This is a factor -1.6 below the leading term of
Chandrasekhar and von Neumann, which was used
by Demura et al. ,

' but still slightly larger (™20%)
than Voslamber's estimate. ' These authors more-
over, replaced v by a mean value, i.e., they did
not treat the correlation between Stark and Doppler
broadening. This correlation is the subject of
Sec. IV.

(29b)

For the Lyman-n experiment, ' the terms involving
the ion mass (argon) are negligible for practically
all radiator velocities v. The radiator motion

0.8

0.4-

Q2-

W

601 0.03
I

oa r,gp,

FIG. 1. Perpendicular
low-frequency field fluctua-
tions (I'~/E), relative to
the fluctuations from
stochastically distributed
ions, as function of ro/pD
(ratio of mean ion-ion sep-
aration and Debye radius).
The contributions from ion-
produced (P ) and low-fre-
quency wave-produced fields
(N' ) are also shown.
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IV. STARK AND DOPPLER BROADENING L,„(co)= (2&~v(uo) '

We infer from Eqs. (17) and (30) that radiation
emitted by atoms of given velocity has, due to
low-frequency electric field fluctuations, a near
Gaussian line shape of 1/e width

&uo = (5/2v 3)v/r, = (uo v/v„v, = (a r/M, )'~', (31)

or, if we allow for the Doppler shift &u, (v/c)cos3
of the radiation, where 3 is the angle between
velocity vector and line of sight,

r (d —(00 —ctlo(v /c) coseexp- dcos~
0 ~a c

c l &o —e„+w,u/c)erf
4(d0V '

COG

1
—erf

au~

Averaged over a Maxwell distribution of velocities,
this leads to

oo V2
I

0 Va 2vg (dGV 2 Qlg (4&o V 2 (dgj

OQ I

if we use Eq. (18) for the Doppler width~v and in-
troduce b. &@=~&a —vJ. Assuming the constant
terms in the arguments of the error function to
be smaQ, i.e.,

2M3 &or o 4M31T

M2 4lo 5 C 5 A. o

we may replace the error functions by the first
two terms of their power series and obtain"

M2
" 1 are

L ~(&o)=, exp —x—,dx
7NV g 0 2X (dg

Gaussian with 1/e width (tuv2+ 3a&o )'~', i.e., from
the combined Doppler and (low-frequency) Stark
profiles analogous to previous calculations, ' ' are
rather large in the parameter range of interest
(see also Fig. 2). Of these deviations, those near
the line center are most important. Here use of
a single Gaussian profile clearly leads to an over-
estimate of the broadening by low-frequency fields,
as did the use' of Chandrasekhar and von Neu-
mann's result" for field Quctuations.

At large distances from line center, w'e have

, , Z, ~M2-, ~,v (&vol)' '( (uiG j
where K, is a modified Bessel function. This
analytic approximation, which could have been
obtained more directly by neglecting the Doppler
shift in Eq. (32) and then averaging over radiator
velocities, remains rather accurate even for
values of &uD/M2a&~ approaching 1, as can be seen
from Fig. 2, where results of numerical integra-
tions of Eq. (33) are compared with Eq. (35). Such
accurse. cy might have been expected, because
even at h~ = 0, where the expansion used to ob-
tain Eq. (35) is entirely invalid, we obtain

1I,o(0) =~
WRg

M2

~ 10
3

3

10

10

10

100

Q8

I

3 4
Q 4) /&24) g

1
336 (36)

to be compared with 4 2/vv~ from the analytic
approximation. (In the experiment, ' tov/M2&oGI re-
mains below 0.5.) However, deviations from a

FIG. 2. Combined low-frequency Stark and Doppler
profiles (solid curves) and profiles in which the velocity
dependence of the effective-field fluctuations is neg-
lected (dashed curves). The parameter on the curves
is ~&/~c &, the ratio of Doppler and low-frequency Stark
width (times ~ and taken at the mean velocity of radiat-
ing atoms) according to Eq. (34).
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3 V2 (d~

2 QCU

15 2 Std~

from the asymptotic relations for K,/(g),
2~/4

L~(b, u))™,, „„exp—M2

(37)

0.300
- Q3
3

0.100

I I -
I I I I

This differs substantially from a Gaussian, but
this deviation as such would not be serious, be-
cause for A~& v 2 cu~ electron impact broadening
tends to dominate. To account for this process,
we convolve LG(b &u) with a Lorentzian profile,
L~ = w 'w(ge'+b, w'} ' . This leads with Eq. (35)
to

Lc ((u) =, Re(w +is(u) .'-, „d(o'2 ' . t" (u'K, (v'2 (u'/~~)
7T(d g gg + i 6 (d + (a7

0.030

0.010

Q.QQ3

gg + sh, ca)=Re I2
G

0.00l
6 8
g h) /U3(;

(38)

using an integral" of this form and symmetry or
recurrence relations for Bessel (Y„)and Struve
(~H[„)functions.

Examples of such profiles, which account for
electron impact and low-frequency Stark broaden-
ing of the unshifted components of Lyman-n are
shown on Fig. 3. These profiles were calculated
from Eq. (38), using the integral representation"'

~H(, (z) —Y,(z) =—Jr (1+t') ~~e "df (39)
0

or Gauss-Laguerre quadrature of Eq. (38). For
large separations from line center, an asymptotic
formula" can be employed

( )
2 '1 (dg 13 G)~

2' zv+ ih(o

(40)

but no convenient approximation can be obtained for
small values of b, ~.

In principle, the profiles Lc (~) should still be
corrected for Doppler broadening. Howeve'r, for
the experimental conditions, i,e., 0.35& w/u&~
& 0.55 and 0.68 & ~~/~~ & 0.43, the additional
broadening is not very important. From Eq. (36)
and Fig. 2 one would expect the maximum intensity
to be reduced by 8%% or 3'%%uo, respectively, for the
lowest- and highest-density conditions and neglect-

FIG. 3. Convolved low-frequency Stark and electron-
impact profiles. The parameter on the curves is zg/u&
Where MI is the (half) halfwidth of the Lorentz profile
of ~& is the low-frequency Stark width at the mean velo-
city of radiating atoms.

ing impact broadening. According to Fig. 3, the
latter effect lowers the peak intensity of the Stark
profile by factors 1.43 and 1.67, respectively.
This suggests that errors from the neglect of Dop-
pler broadening are -5/o at an electron density of
N= 1&& 10"cm ' and -2%%ug atN=4&10 cm '. Such
errors are not only insignificant compared to those
from the various approximations in the treatment
of the low-frequency Stark broadening, but are also
negligible compared with the large disagreement
between measurements' and calculations' "'"in
which Stark broadening by low-frequency fields is
omitted.

V. COMPARISON WITH EXPERIMENT AND DISCUSSION

Profiles of the unshifted components according
to Eqs. (38) and (39) multiplied by —, to account for
their relative contribution to the complete profile,
were added to the quasistatically and impact
broadened profile" of the shifted components and
then compared with the measurements' at N = 2
x10" and 4&10"cm '. As can be seen in Fig. 4,
the agreement is within -l(P/g over the entire
range of relative intensities, to be held against a
factor of -1.5 disagreement near the line center
and a similar factor near the half-intensity points
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-3
1Q—

10 cm

-4
10

10 10 ) (A)
10

FIG. 4. Comparison of measured (heavy dots, from
Ref. 1) and calculated Stark profiles (solid curves) of
Lyman-& line at the indicated electron densities. Also
shown are convolved Stark and Doppler profiles not
accounting for low-frequency Stark effects {dashed
curves, from Ref. 17) and, for the lowest density, the
contribution from the shifted Stark component (lower
dotted curve, from Ref. 16). The upper dotted curve for
the lowest density is calculated with allowance for
Doppler broadening as discussed in the text.

TABLE I. Comparison of measured and calculated
full-widths-at-half-maximum of the hydrogen Lyman-&
line.

10 N 10 T
(cm~) ('K) (A)

ash' anth
'

(A) (A)

1.27
1.32
1.32
1.40

0.23
0.30
0.36
0.42

0.23 (0.20)
0.33(0.30)
0.38 (0.35)
0.44(0.42)

0.20
0.29
0.39
0.47

0.19
0.24
0.29
0.34

From Ref. 1.
Present calculations inclusive of estimated Doppler

broadening (see text, values without Doppler broadening
in par enthes es) .' From Ref. 7, i.e., from a model allowing for low-
frequency wave-produced fields.

From Refs. 6 and 18, i.e., from model microfield
calculations.

with calculations'"'" not allowing for low-fre-
quency Stark effects, (Note that the shifted com-
ponents, shown for K = 10" cm ' by the lowest
curve on Fig. 4 contribute very little in the central
region of the profile. ) Furthermore, the agree-

ment between the profiles is decidedly better than
what was obtained previously' on the basis of a
simple physical model for the effects of low-fre-
quency fluctuations. This model remained within
the framework of the impact approximation, rather
than beginning with the quasistatic approximation
as the present work.

Measured and calculated halfwidths are listed in
Table I. The widths calculated here tend to be
larger than measured widths by -10%%uo, which is,
however, certainly within estimated errors of the
present calculations. The only previous calculation
of potentially similar accuracy, namely the model
yaicrofield calculation, ' yields halfwidths" which
are 20%%uo below the measurements (see last column
of Table I). One may therefore ask whether the
model microfield' underestimates the key quantity
for corrections to the quasistatic broadening by
ions, namely, (E~/E)'.

Although this quantity does not occur directly in
the model microfield calculations, it can be iden-
tified with two-thirds of the square of the jumping
frequency 0, of the ion-produced model field.
Kith this correspondence we find for strong fields,
which dominate, e.g. , in Eq. (19), for the model
microfield"

(41a)

to be compared with the asymptotic result of Chan-
drasekhar and von Neumann"

(E /E)'= 2(gT/M t,')P . (4lb)

As mentioned before, our results correspond to a
level of field fluctuations below those derived in
Ref. 10 by a factor -1.6, so that the model micro-
field indeed implies values of (E /E) which are
smaller than those obtained here by -2(P/g, leaving
as much room for wave-produced fields in this
model as estimated here (see Fig. 1).

For Lyman-u lines of hydrogenic ions of nuclear
charge Z, which are typically small admixtures in
plasmas consisting mostly of singly charged light
ions, low-frequency Stark effects per se will es-
sentially result in a Gaussian profile with 1/e width
given by Eqs. (17), (27b), and (29b). However, in
the last equation, we now neglect the terms involv-
ing the radiator velocity v and allow for the repul-
sion between radiating and perturbing ions by a
cutoff in the integrals over reduced fieldstrength
at P„=(r,/&„)'with &„estimated by (8 —1)e'/x
=~T. Assuming P, „

to be large, the corrections
are easily estimated from the asymptotic rela-
tions'o for the functions G, I, and H in Eq. (29a),
and we obtain, instead of Eq. (29b),
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the Mmcwell. equation for low-frequency electric
fields

with

36 2/3
+ 54&, f (1+0)'

I

28 wi ro i M)r

(29c)

V.E = 4 we(N, . —N, ),
and the continuity equations

' +N; V'Vg =0,

(A3a)

(A4a)

(A5a)

fr=1 —6/2 +(15/2x„')4tan 'x —2 &~'(&~+1)

& =3(~v)'~' p~/r, .
For the hydrogenlike ion of neon, which is useful
as density indicator in laser fusion research as
admixture to D-T plasma, s, and an electron density
of 10" cm ' at a. temperature of KT =300 eV, these
relations give a 1/e width of 0.98 eV with/ = 1.874
from Eqs. (27a) and (27b) . This broadening due to low-
frequency Stark effects should be compared with
@co, =0.41 eV from Ref. 7 and a Doppler width of
0.18 eV, while electron impact broadening" results
in a full-width-at-half-maximum of 0.31 eV.
(In pure neon plasmas, low-frequency Stark effects
according to the present work would come much
closer to @co,. Note also that the fine-structure
splitting is ™"0.45 eV and should therefore be al-
lowed for. )

The above example suggests that estimates for
the effects of low-frequency fields proposed in
Refs. 7 and 19 were indicative for Lyman-n lines
of hydrogenic ions, but not quantitatively correct.
Further work is needed to extend the present re-
sults to other lines of hydrogen and hydrogenic
lons.

Friction between the two fluids (resistivity) can
be neglected, because the collision frequency for
momentum transfer between electrons and ions is
much smaller than the ion plasma. frequency

&u~&
= (4vNe'/M, )' ~', (A6a)

—ice j/I,-N8& =eNE -ik~Tn;, (Alb)

0= —eNE -skvTn, , (A2b)

zuZ =4~e(,n, -n, ), (A3b)

-icon,-+ikNv, =0, (A4b)

and we can set m, =0 because electron inertia, is
not important for frequencies of order co~,-. The
implicit assumption of equal and constant temper-
atures is consistent with the relatively large value
of the mean free path of the particles.

We a.ssume, as usual, that N,- and N, are es-
sentially equal, i.e., ¹=N+n, and N, =N+n, ,
and treat n, , n„v„v„andE as small quanti-
ties which vary as exp[i(kx- vt)]. The linearized
set of equations for the corresponding amplitudes
1S
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APPENDIX

To estimate low-frequency field fluctuations,
we begin with the two-fluid model of a plasma des-
cribed by momentum equations for ions (i) and
(e)

((o/u)~, )'= (kpD)'[2+ (kp~)'] /[1+ (kp~)']. (A6b)

E~=4m(kpD)'[1+ (kp~)'] '[2+ (kp~)'] '~T, (A7)

The following energy densities are involved in
these waves: kinetic (-,

'
M, ) u,. ~'), electric field

([ Zl '/8m-F'/8v) and ion and electron pressures
(gKT ~s, , ['/N). Using Eqs. (A1b)-(A5b) and Eq.
(A6b) to calculate the relative contributions to the
energy and assuming thermal equilibrium, i.e., a
total energy ~T per mode, we then obtain

dq,
d]

= e&g E -~T V N,

dve
~g Ng d

' ' —eNe E —&TV Ne

(Ala)

(A2a)

(u'F' =4p~~,. (kp~)'[1+ (kp~)'] 'KT . (A8)

Multiplication with the number of modes in a unit
volume, 4m''dk/(2v)', and integration over 0 fin-
ally gives Eqs. (27a) and (28a).
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The waves of interest here are heavily Landau
damped. This effect may be estimated by adding
a Landau-damping term to the dielectric constant
corresponding to the dispersion relation (A6b),
i.e., by considering

&1 2+ (kp~)' l
(~p )

(A10)

e= ~ ' —[2+(k )']
(

(A9)

Setting
~ e[ = 0 and neglecting Ime gives back the

dispersion relation, whereas with Im~ and a&- ~
+b,~, we get

i.e., damping corresponding to y= Imhe. Most
important for us are modes with (kp~)'s 9(-,'v)'~'
(p~/r, )' (see Sec. III), so that we may take the
limit (kp~)'-~ or

pl~ - .'(-.'s)"e-"—=0.26. (A11)

This may not seem small, but the frequency enters
only quadratically in our application so that neglect-
ing y' vs &u' causes errors & 15/p in &~'Il' and even
smaller errors in ZF'.
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