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Late stages of spinodal decomposition in binary mixtures
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The influence of hydrodynamic interactions on the coarsening rate r of a mist of droplets combining
through diffusive coalescence is examined in detail. For a sufficiently rarified mist, the competing Lifshitz-
Slyozov or evaporation-condensation mechanism is dominant, but the volume fraction of precipitate actually
produced in most off-critical quench experiments probably favors direct coalescence, When the minority
phase is continuous, as in a quench at the critical concentration, surface-tension eA'ects lead to a crossover
from r -t'" to r -t, where t is the time.

I. INTRODUCTION

Spinodal decomposition is the process through
which a thermodynamically unstable system separ-
ates into its components which can be either two
phases of the same chemical species or phases
of different composition. Cahn and Hilliard were
the first to study this process in metallurgical
systems. ' The term nucleation is generally re-
served for the decay of a metastable state, though
the subsequent agglutination and organization of
new phases, so produced, may be included under
the rubric of spinodal decomposition. Phase
separation is clearly a nonequilibrium and, ex-
cept in its very, and possibly, unattainable stages,
highly nonlinear phenomenon.

In this paper a number of new modes for phase
separation unique to fluid systems are developed
that typically will manifest themselves in the so-
called later stages of spinodal decomposition. In
addition, we collect all theoretical results, per-
tinent to "long" times and fluids and evaluate them
with parameters appropriate for the two most
widely studied systems. A number of critical pa-
rameters and regimes are isolated whose exis-
tence has been overlooked in the experimental
literature.

Fluid systems are in certain respects more
suitable for phase-separation studies then metal-
lurgical ones when common physical processes
occur and in addition, exhibit mechanisms in-
accessible to solid systems. ' ' Lattice mismatch
and the concomitant strain effects, absent in fluids,
are an additional complication that is seldom in-
cluded in theories that treat the nonlinearities ser-
iously. Time scales are very short in fluids and
it is only by working near a critical point that in-
teresting effects will occur over times of seconds
to minutes. The quench process itself then fre-
quently becomes by comparison instantaneous with
consequent simpiifications in the theory. Fluid
mixtures possess a clear advantage over the well-

characterized liquid-gas systems near their re-
spective critical points because the characteristic
time; g'/D, where $ is a correlation length and
D a diffusion constant or thermal diffusivity, is
approximately 100 times longer in mixtures. ' The
smaller viscosity in the common liquid-gas sys-
tems is responsible. -

%orking near a critical point has other advantag-
es. The correlation length greatly exceeds atomic
scales and phenomenological free energies as
well as hydrodynamics are frequently applicable.
Certain material parameters change rapidly near
T, and varying the temperature is often the sim-
plest and best controlled way to enhance one mech-
anism over another.

Most existing theories applicable to the early
stages of spinodal decomposition begin with a
phenomenological equation for a conserved Ising-
like order parameter that is transferred diffusive-
ly in response to the gradient in the local chemical
potential. ' The chemical potential is written as
the order-parameter derivative of a Ginzburg-Lan-
dau free energy. The stage or degree of evolution
is expressed most naturally in terms of the wave
number k at which the structure function S(k, t)
is a maximum. This characteristic wave number
decreases monotonically with time and "early"
times are typically those for which

0.1&0 ( «1.0.
The correlation length is defined in terms of the
difference of the thermodynamic critical tempera-
ture T, and a reservoir temperature that in most
cases is spatially uniform and time independent.
Binary mixtures near their critical point again
possess an advantage over a single component sys-
tem in that the thermal conductivity of the mixtures
remains finite while near the liquid-gas transition
it goes to zero. '

The upper bound on k ] in (1.1) merits comment
since it excludes the earliest times. It is imposed
in part because nonlinearities are treated within
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a Ginzburg-Landau theory with critical fluctuations
integrated out and incorporated into coefficients
which generally assume their physical values. A
gradient expansion of nonlocal terms should also
converge for k( & 1.0.

The dynamics of a critical fluid are more com-
plicated than kinetic Ising models because the vel-
ocity fluctuations strongly renormalize the trans-
port coefficients. ' lf one attempted to model a
fluid for 0 ]& 1.0 out of equilibrium, it is not ob-
vious what fluctuations enter the transport coef-
ficients. It is also not obvious that the linear re-
sponse hydrodynamic assumption tha, t the current
is the gradient of the local chemical potential re-
ta.ins any validity. "Might not the coefficient de-
pend on the local order parameter for instance'P

The Ginzburg-Landau, equations together wi. th
hydrodynamics will hold for k] arbitrarily small
but become cumbersome and overly detailed when
well defined regions of nearly equilibrium concen-
trations are established. The only quantitative
theory for the early stages is due to Langer and
co-workers. "For quenches at the critical con-
centration (or for zero net magnetization), they
find that an order-parameter distribution that; was
spa. tia, lly uniform at 0 ] = 1 breaks down into a two
peaked structure by k $ -0.3 with concentrations
approaching their equilibrium values. Quenches
with nonzero average magnetization evolve more
slowly. Unfortunately, Langer's approximations
fail around k $ -0.3 which is symptomatic of the
theory's failure to approach the thermodynamical-
ly correct equilibrium and to describe the mixture
when the domain size is very different from the
interfacial thickness. It seems safe to assume
that by 0 (-O.l, i.e. , the putative division be-
tween early and late stages, that the material con-
sists of well defined patches in which the average
order parameter is near its equilibrium value.
Theories for the "late stages" of coarsening can
work in terms of two distinct phases separated
by sharp interfaces.

Kawasaki and Ohta have grafted the conventional
mode coupling diagrams for a fluid onto the Ginz-
burg-Landau results of Bef. 5.' The ve|ocity
fluctuations are assumed to be Gaussian and in
equilibrium. Apart from the limitations on this
theory inherent in its application of Bef. 5, mode
coupling will not correctly describe the hydro-
dynam'ic interactions between well defined regions
of different phase on a scale k '.

Binder, whose intent was principally to under-
stand the numerical experiments on kinetic Ising
models, ' has adopted a more microscopic start-
ing point than Ginzburg-Landau theory. "'~~ By
means of "cluster dynamics" he arrives at results
for A (»1 as well as for the early stages during

I

which existing Ginzburg-Landau calculations would
apply. In addition, he recovers the Lifshitz-
Slyozov theory for long times. Many of Binder' s
published results follow from scaling and matching
asymptotic forms. " For orientation, we estimate
the duration of the early stages of spinodal decom-
position in a binary fluid quenched through its
critical temperature at its critical concentration.
At room temperature, where all experimental work
to date has been performed, the tempera, ture can
be controlled to about a mK leading to a reduced
temperature & of 3x10 '. The characteristic time
g'/D is then 0.2 sec and at 3 mK from T, it falls to
0.02 sec. The theories of Langer, Bar-on, and
Miller and Kawasaki-Ohta work at best out to 100
times ('/D "Cl.early, the regime 0.1 & k $ & 1.0
is difficult to attain and of limited duration. By
contrast, the later stages of spinodal decomposition
are accessible over a much wider range of con-
ditions; and with a microscope, useful observa-
tions can be made out to times of an hour for cer-
tain parameter s.

These characteristic times also necessitate ra-
pid quench rates if the early stages are to be seen
at all. The thermal response time of a mm'
sample of the common binary fluid systems is
-10 sec independent of temperature near T,. Sim-

ply immersing the sample in a ba, th will not suf-
fice. Two techniques for a truly rapid quench have
been developed. The first used by Kong and Knob-
ler exploits a sudden change in pressure to raise
T, while keeping the actual temperature constant. "
The second method, devised by Goldburg and col-
laborators, uses microwave radiation to uniformly
heat a mixture, with an inverted phase diagram,
into the spinodal region. ' "

It is convenient to classify experiments as cri-
tical or off-critical though the boundary between
the two is not sharp. The former are quenches
at the critical composition and l.ead to a 50-50
mixture of the two phases. Hydrodynamic effects
are important here and we will argue that they are
driven in succession by surface tension and gra-
vity. Off-critical quenches begin with a system on
the coexistence curve, removed an amount AT,.
from T„and "cool" it through the nucleation or
cloud temperature to a final temperature AT&
measured from T, . Figure 1 illustrates our no-
tation. For LT&»AT, the composition ratio in
the off critical quenches approaches one but in cur-
rent experiments the minority phase ranges from
about 2% to 20%%u& of the total. At the lower end of
this composition range, Lifshitz-Slyozov" (evapor-
ation-condensation) and direct droplet recombina-
tion are of equal importance with the latter dom-
inating in more concentrated mixtures. Experi. -
ment and theory agree regarding exponent and
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Critical Off
Critical

FIG. 1. Schematic plot of the temperature concentra-
tion plane for a binary mixture to illustrate our notation.

prefactor except where there is reason to believe
initial transients have not relaxed.

In outline then, Sec. II contains an account of
the influence of hydrodynamic interactions on drop-
let coalescence followed by an evaluation of the
Lifshitz-Slyozov theory with parpmeters appro-
priate to the commonly studied binary mixtures.
The Lifshitz-Slyozov mechanism is also shown
to be resistent to a number of potential hydrody-
namic instabilities. Our treatment of the hydro-
dyriamic effects observed in critical quenches is
at the level of dimensional analysis, but it does
isolate several relevent parameters that had not
been fully appreciated. The third section con-
cludes with a synopsis of the experimental litera-
ture and a comparison with theory. Included is a
partial explanation of the time dependence of the
shape and magnitude of the k-dependent scatter-
ing intensity for off-critical quenches.

The picture that emerges, then, is a growthlaw
A '-t' ' with a calculable coefficient throughout
the late stages when the minority phase is suf-
ficiently rarified that internal flow is impossible.
Droplet coalescence, even with hydrodynamic in-
teractions included, leads to more rapid growth

than Lifshitz-Slyozov except for very dilute mix-
tures. For more nearly 50-50 mixtures, k ' goes
from approximately t' ' to t at a temperature-
dependent length set by the surface tension. This
length can logically be no less than -10( since well
defined interfaces are required for surface ten-
sion flow. Our crude theory, which is purely dy-
namical. does not require it to be any larger than
10$. The f'~' regime then properly falls into what
we have called the "early stages" where Ginz-
burg-Landau theory is required, "though a nai. ve
application of our formulas for droplet coales-
cence"'."gives t' ' and a reasonable coefficient.
The coarsening rate accelerates further at a
second crossover determined by the acceleration
due to gravity and the density difference of the two
coexisting phases.

II. THEORY

A. System parameters

We will frequently refer to the data in Table I
to screen by simple scaling or dimensional argu-
ments some of the myriad of effects possible in a
multiphase nonequilibrium fluid. %hever possible,
quantities measured for either the isobutyric-acid-
water (1-W) system or the 2-6-lutidine-water
(L-W) system with its inverted coexistence curve
are cited. (We will designate the one-phase region
in either system by "T& T," and the two phase re-
gion by "T( T, .") Most of the tabulated properties
differ by no more than a factor of 2 among binary
mixtures with a room-temperature critical point.

The T& T, correlation length for L-W, tabulated
in Swinney and Henry, ' was divided by 2 when used
below T,." The surface tension is close to
k~T, ) ~. The actual prefactor for &y as well as for
hc was taken from measurements on the cyclo-
hexane-methanol system with T, = 45 'C." The
density contrast between the hvo coexisting phases
has been tabulated separately for L-W and I-W."

TABLE I. Characteristic parameters in binary fluids near T, [cgs units, ~= {1—T/T~)).

Correlation
' length

Surface
tension

5ormaliz ed
concentration
difference

6c
c

0 && 10-8~-0.62

100' 1e 23

Kinematic
viscosity

Thermal
diffusivity

Diffusion
constant

0.024

103

Density
difference

I-W 0.053~'"

0.11~'"
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The difference between the two systems stems
from the different densities at T, of 2, 6-lutidine,
0.91; and isobutyric acid, 0.95. Both mixtures
are -66/~ water by weight. We will occasionally
need other experimental numbers such as (Bc/
s p, ) ~r ~, in what follows. Fortunately they always
occur in combinations predicted by the renormal-
ization group to be universal. %e are therefore
able to exploit the well-knowncorrespondence be-
tween the liquid-gas and binary fluid transitions
and utilize the rather accurately known Xe data
collected in Ref. 20.

Among the dynamic parameters, the kinematic
viscosity varies by no more than 15/~ from & = 10 '
to 2& 10 ' and its temperature dependence may be
safely ignored. " Similarly the thermal diffusivity
was estimated from room-temperature measure-
ments on pure lutidine and water. " The measured
diffusion constant does not appear to satisfy the
scaling relation Dv = k~T/(5')) for T & T„but
even at m=10 ', e" ]-2. The prefactor mea-
sured in Ref. 21 above T, was multiplied by 2 to
account for the smaller correlation length below
T,. %e have used the measured exponent in nu-
merical estimates except when g remains variable
in which case the "correct" exponent is used.
Note that k~T, /Smpv), =1.1x10-'.

B. Droplet coalescence

It is well known that the diffusion constant of a
spherical drop of one fluid in another of similar
viscosity is

D=k~T/5wpva, (2 1)

where a is the radius. ~ Smoluchowski was the
first to calculate the recombination rate of a dilute
mist of drops moving purely diffusively. Consider
a drop of radius a, fixed at the origin in a uniform
cloud containing n, drops per volume of radius a,.
Drops that just touch should be pulled together
very quickly, in comparison to a diffusion time
'TD by surface tension. The fusion time & can be
estimated from Vp/p- vV'v, with p-0/l and l-min(a„a, ). One finds

v, -pvl/a-10 sec«,
r~ -l'/D-1 sec

for &=10=' and 1=1 p, m. Further from the critical
point v /T~ will be smaller still.

For t»7~ a depletion layer will be established
about the drop at the origin and the radial distri-
bution of the drops follows from a solution of
V n2= 0 with the boundary condition n~= 0 ate=a,
+a,. The number of collisions per time I follows
from an integral of the particle flux over the sur-
face r =a, +a2 (D2=D for a =a2),

I= 4v(a, +a,)D, n, . (2.2)

dt
—= -16@Dan'. (2.4)

Now (Da) is independent of time and we find

a'=12(Da)v(t+ t,) = lx10 "v(t+ to) cm', (2.5)

where v ~ s/b, c (see Fig. 1), is the volume frac-
tion occupied by the drops, and t, can be found
from the initial drop size.

The argument just given has neglected hydro-
dynamic interactions between the drops. That is,
in order for two drops to merge, the suspending
Quid in between must be squeezed out. The rela-
tive diffusion constant will be smaller than the one
used above and depend on the separation between
the drops.

The motion of two hard spheres in a fluid has
been thoroughly studied, and we will be able to
carry over these results to the droplet problem. ~
The application is not a trivial one since near T,
the surface tension-'is small and the drops undergo
some distortion upon approach. In addition, cir-
culations inside the drops can be set up. Consid-
eration of both effects will show that droplet
coalescence can proceed no more slowly than it
would for hard spheres and of course no more
rapidly than if hydrodynamic interactions were
neglected altogether. The correct law for drops
may not correspond to any single variable dif-
fusion process at all. The upper and lower bounds
on the rate of droplet coalescence will be shown
to be sufficiently tight to render a more refined
theory superfluous in so far as spinodal decom-
position experiments are concerned.

The relative diffusion constant or mobility for
a pair of spheres is a tensor that depends on the
vector R joining their centers. " Different motions
result from forces parallel and perpendicular to
R. The coalescence rate will again be calculated
from the diffusive flux of a spherically symmetric
gas of drops onto an adsorbing surface of radius
a, +a2 fixed at the origin. Thus only the radial dif-
fusion constant or corresponding mobility is need-

In reality, the drop at the origin is free to move
and if we imagine e, drops of radius a, and dif-
fusion constant D, the number of collisions between
the two, populations per time per volume is

I~ 3= 4m(a, +a2)(D~+Dgn, n2. (2.3)

The radius of the new drops a, is of course a3
=a, +a2.

If one assumes that a population of drops agglu-
tinating at a rate given by (2.3) approaches a sta-
tionary distribution when scaled by the average
radius a the time dependence of a follows from



20 LATE STAGES OF SPINODAL DECOMPOSITION IN BINARY. . .

ed. They are related by the usual Einstein rela-
tion. Although the necessary mobility is known

exactly for several values of a,/a„"."we prefer
to reproduce a crude version of the lubrication
theory argument first used by Bayleigh in this
context. It will provide a number of useful in-
termediate results and insight on how to treat sur-
face deformations and internal circulations.

Consider two spheres of radius a, & a2 moving
radially together with a velocity k satisfying kh/v
«1, wher e h i s the minimum distance between
the surfaces. To make the trivial problem ap-
proximate the surface of the larger sphere by an
infinite plane and model the smaller sphere by a
disk of radius b = (a,k)'~ ' (see Fig. 2). The pa-
rameter b was chosen as the radius at which the
perpendicular separation between the sphere and
a flat surface is the v 2 times the minimum separ-
ation at r = 0, i.e., p.

For small Reynolds numbers and h «b, the
trapped fluid is squeezed radially outward at a
rate determined by the velocity of approach and
the no slip boundary conditions at the bounding
planar surfaces

microri-sized drops the required ratio is -10
The second condition, in addition tokk/v«1, is
necessary if lubrication theory is to apply to the
trapped fluid. .

Brownian motion corresponds roughly to an er-
ratically varying velocity of magnitude -(ke T/m)'~
and duration g . The trapped fluid must respond
in a time «z in order that the steady motion, we
assumed in deriving (2.8) and thus r itself, be at-
tained. In response to a change in velocity, a pres-
sure gradient is established at the speed of sound
and the velocity in the layer approaches its steady
value in a diffusion time set by Pg and p. Thus,

7'v/k -k/a((1. (2.10)

Note that if the sphere were actually a disk (of
fixed radius independent of k), then D would be pro-
portional to k' and the inequality in (2.10) would be
reversed.

To find the coalescence rate, we again consider
only a drop of average size a and solve a time in-
dependent diffusion equation for the spatial distri-
bution of drops outside of an adsorbing surface at
r =2a+5, 5/a «1:

(2.6)

The pressure follows from V(p/p) = vV'v and the
boundary condition that it fall to zero at the edge
of the disk

or

V (D. n)=O

p = 6vpk (b'-r')/k'. (2.7) gr
r'(r -2a)- =0.

gr

F = Swpva, k/k . (2.8)

The force on either surface is found by integrating
the pressure and substituting for b,

The required solution for 5«a is

2a r 2a
n(r) =n, 1- +in

I r r (2 ) (2.11)

A more careful treatment of the spherical geo-
metry yields twice E when a,«a, and one-half
E when a, =a2." The diffusion constant for the
small sphere with the other held fixed is

D = ke Th /3mpva . (2.9)

/a) h~
/////// r/I

/llllllllllllllll/

FIG. 2. Approximations made to reduce the effects
of hydrodynamic interactions on the relative motion of
two spheres to an equivalent disk and plane problem.

Before using (2.9) to solve the diffusion equa-
tion, two conditions must be satisfied. The first
is that the corresponding relaxation time 7 =mD/
ke T multiplied by the average velocity (keT/m)'~',
mhere ~ is the droplet mass; should be «jg. For

and no is the density of drops at infinity. The
reason for placing the adsorbing surface slightly
outside the combined radii of the spheres is ap-
parent from (2.11).

For drops, the parameter 5 is the distance in-
side of which they mill fuse rapidly under the action
of surface tension forces. Clearly 5 can be no
smaller than the interfacial thickness 5~ $. The
Van der %aals forces set a second, possibly more
restrictive, limit on 5.

First note that the Van der %aals potential
energy between two spheres of radius a and dielec-
tric constant e suspended in a medium of nearly
equal dielectric constant e at separations l » a is
approximately

V= ', keT[(e —e)'/e'](a-/I)';

in the London limit, l»c@/keTe' -10 '/e' cm,
and

& = (@e/e" 'I)[(e —e)'/e'l(n/I)',

when I «ch/(keTe'~ ). ' The fractional difference
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in dielectric constants (e/e) —1 is of course pro-
portional to 6 c/c in Fig. 1. For well separated
drops, the influence of the Van der Waals forces
on their relative diffusion is -U/k~ T and thus neg-
ligible.

When two planar samples with dielectric constant
e are separated by l «c&/(k~Te'~'), Ref 2.8 shows
there is an attractive force per area of roughly

F-10 '(hc/1 e' ')[(e -e)/e]', (2.12)

5/g - max[1, 10'a' ~ '(1 —T/T, )], (2.13)

and for large (-10 p, m) drops, far (zl0 ') from the
critical point, the Van der Waals cutoff exceeds
the correlation length.

The generalization of (2.11) when a short-ranged
potential U acts between the spheres i.s

where e is the dielectric constant of the interven-
ing medium and e/e —1«1. To apply this result
to a pair of spheres with minimum spacing Q and
radius a»h set l =h +r'/(2a) and do an integral
wf, dr on F. Convert to a potential by then in-
tegrating on h. Normalizing U by k~ T and replac-
ing (e/e) —1 by b,c/c yields

U/k, T - 10-'(a/h')(1 —T/T, )'",
with all lengths in cm. We will show in the follow-
ing paragraph that U/k~ T-1 determines the dis-
tance at which coalescence occurs rapidly. Thus,

Note that the argument of the logarithm in (2.15)
through a and possibly also through 5 in (2.13) is
time dependent. Equation (2.15) is only applicable
when a is sufficiently large that a(t) from (2.15)
is less than a(t) from (2.5). Hydrodynamic inter-
action cannot accelerate the coalescence process.
We will continue to use (2.15) when 5 is determined
by g even though the fusion process is not driven
by a singular potential. The error is considerably
less than the uncertainty over whether to assume
the interface has a thickness $ or 2$ for instance.
The numerical factor in (2.15) could be off by a
factor of 3 due to neglect of the distribution of
droplet sizes. Somewhat unexpectedly, Eq. (2.15)
is not terribly different numerically from (2.5).
If D in (2.9) vanished as h' for small h, the aver-
age radius a would grow as I,

" '.
In order to use (2.15) as a lower bound on the

rate of droplet coalescence near the critical point,
two effects, neglected in the lubrication theory
derivation of D, must be estimated. No further
discussion is necessary for the short distance cut-
off g.

Firstly, as two drops are slowly squeezed
together and at constant velocity the radial motion
of the trapped fluid induces circulation into the
drops themselves. In our effective disk against
surface (or disk against disk), approximation to
the two-sphere problem, we should modify (2.6)
to read

n(r) = n, exp(-U/k~ T)[I J(r)/-J (2a)], ~(r) = 6nrh~ (h - )z/h' P+hrjh, (2.16)
where

" exp[U(r')/k„T]
r"(r' —2a)

Note that for U/k~ T = —[5/(r —2a)]', J is conver-
gent at x=2a. The total flux I incident on the sur-
face x = 2a is

where the second term is the velocity within either
drop (assumed of equal radii) at the surface ad-
jacent to the trappe'd fluid. To conserve the mass
of the trapped fluid, o. +iI=1. For steady motion
within the drop, we estimate the surface stress
as

I= 4~D~ '/J(2a), - S-pv[Phr j(ha)] . (2.17)

16~D~n,
ln[2a/(3. 635)] ' (2.14)

which except for the constant within the logarithm
would have followed from (2.11). Equation (2.14)
is the analog of (2.2). To find a(t) we double I,
multiply by no, and equate to -dn, /dt. We finally
have, following (2.5),

4x10 "v(t+tJ
ln(0. 55a/5)

(2.15)

where D„=k~ T/(3wpva). Assuming 5/2a «1, J (2a)
can be approximated as

ln(3. 635/2a)
(2a)'

so that

That is, we assume the velocity induced at the
pressing surface relaxes over the drop radius a.
But (2.17) must equal the stress calculated from
(2.16) for z = 0 or h. Thus, for h «a, P = 1, and
o. =h j(6a). The pressure calculated from (2.16)
comes only from the a term leading to a force and
thus a diffusion constant independent of h in con-
trast to (2.9).

The second objection to (2.6)—(2.9) is peculiar
to the critical point where the surface tension tends
to zero. Recall that Brownian motion consists
of an erratic velocity with magnitude -(kBT/m)'
and a lifetime & much greater than the viscous
diffusion time h'/v. Compare the pressure at r = 0
for h = (kBT/m)'~2 with the pressure in the drop in
excess of the ambient pressure, i.e., 2g/a. One
finds, assuming a/h =10,
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ap(0)/(2o)=10 a "e ' (2.18)

7/T= (6vpa D/vh') (ks T/gk )~, - (2.19)

where (2.9) was used for D. Now by (2.13), k is
always greater than ~ and from Table I, p -4kaT/

Surface deformations are negligible except
near T, and just prior to fusion. If (2.1) were used
for D, the expression for 7/T would be increased
by (a/k) and could considerably exceed one. Either
complete neglect of hydrodynamic effects or in-

with a in pm. When (2.18) exceeds 1, . the drop
will flatten, making it more difficult for the trapped
fluid to escape which then increases p(r = 0) at con-.
stant Q.

Surface deformation and internal circulation act
in opposite directions on the coalescence rate.
Both effects however are greatly overestimated if
the diffusion constant is extracted, following Ein-
stein, from the force developed in response to a
steady velocity h. In particular, we will see that
the surface deformation is completely negligible
so the hard sphere result can be used with con-
fidence as a lower bound on the recombination rate
for drops.

In thermal equilibrium, the magnitude of a drop's
deformation can be gauged from the ratio 4wga'/

k~ T»1, which is always much larger than one for
q) Sx10 '. Hence droplets remain spherical.
Similarly the kinetic energy of the internal cir-
culation implied by (2.16) and (2.17) is ks Ta/h
when Q is a thermal velocity. In addition, the in-
terior motion attains its stationary value only
when k is constant over times»a'/v.

A more explicit argument can be constructed
to rule out surface deformations and thus show the
coalescence can proceed no more slowly than
(2.15). Consider a time 7. much greater than the
Persistance time of the thermal jitter mD/ks T
and large enough that if (2.6) and (2.7) are aver-
aged over T and k replaced by (D/r)'~', the aver-
aged pressure for r=0, b=vah is less than o/a.
If 7 can still be chosen much less than the time
necessary for drops separated by 5 to merge, T,
we will have broken down the random walk into
super steps of duration 7 long enough for the
trapped fluid to be squeezed out without droplet
def ormation. The complete diffusion process
can then be reconstructed from the steps of size
7- and shown to conform to the same diffusion
constant D. In more formal language we are sug-
gesting that the path integral from 0 to T of a mul-
tivariate problem, i.e., center of mass plus sur-
face modes, may be factored into integrals over
subunits of length 7 for which the motion is de-
scribable in terms of only the center of mass. The
ratio of times becomes

Lifshitz-Slyozov, in a well-known paper, have
constructed a mean-field theory for droplets grow-
ing from a slightly supersaturated broth. " Their
treatment is very complete and we will merely
summarize the necessary conditions for its ap-
plication to fluids and reproduce several formulas
with parameters appropriate to the critical point.
Of more importance, will be a check that their
solution is stable against a number of possible
hydrodynamic instabilities.

The Lifshitz-Slyozov theory will only apply in
the late stages of evolution when drops are much
larger than a correlation length and most of the
latent heat of the transition has been released. In

a binary fluid near T„ the finite thermal diffusiv-
ity maintains a uniform temperature and only the
concentration field has to be followed. Lastly, the
supersaturation and thus the volume fraction'oc-
cupied by the drops should be small. Note that a
volume fraction of 2~0 resulting from an off-cri-
tical mixture quenched through the nucleation point
for && 10 ', corresponds for a regular array of
drops, to a spacing of six radii. Clustering ef-
fects are apt to be suppressed since if two close
drops do not diffuse together their depletion layers
will overlap, slowing their growth rate, and lead-
ing to eventual reevaporation.

The rate of change of a drop's volume is a func-
tion of its radius and the current supersaturation.
A solution to the diffusion equation in the region
exterior to the drop with the correct boundary
conditions at the drop's surface yields the flux
of the minority phase onto the drop and thus b, c da/
dt. The fundamental equation is

da D s 0.12~
dt a 4c a

(2.20)

where the supersaturation s (Fig. 1) is a function
of time in order to conserve the quantity of minor-
ity phase as the number and radii of the drops
changes. The numerical factor in the second term
is just

which is universal and was evaluated from the Xe
data cited in Ref. 20. The average radius then

elusion of only internal circulations for a spherical
drop may be inconsistent sufficiently near T, since
they imply a, diffusion constant that leads to sur-
face deformations which then slow the coalescence.
The hard-sphere result, (2.15), with hydrodynam-
ic effects, is consistent in this respect and there is
no reason to believe that droplet coalescence will
proceed any more slowly.

C. Evaporation-condensation mechanism
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evolves according to

a'= 0.053D)f. (2.21)

a and p and ~. If 5v and 5T denote small changes in
velocity and temperature due to convection then

Equation (2.21) follows by comparing Eqs. (2) and

(28) of Ref. 16 with (2.20). The coarsening rate
depends on neither T —T, or the degree of super-
saturation. Both parameters, however, enter the
characteristic relaxation time T„beyond which
(2.21) will apply

Ts .2x 10 E
"' (b,c/s) sec . (2.22)

A somewhat larger initial relaxation time can in-
tervene when the initial distribution of drops is
both more rarified and of larger initial radius
a, than appropriate for the initial supersaturation,
l.e.

y

g, »a, = 0.126.c(/s .

Equation (2.22) is then multiplied by (a,/a, )'.
We conclude our discussions of Lifshitz-Slyozov

by eliminating a number of possible instabilities
that small drops growing from a supersaturated
broth could be liable. In solid solutions as well as
liquids, the purely diffusive instability analyzed
by Mullins and Sekerka can occur but the amplitude
of the deformation grows no more rapidly than the
radius itself and cannot lead to the disruption of
the drop. " A drop growing according to (2.20) is
stable against the "convective" and dendritic in-
stabilities analyzed by Langer and co-workers. "

According to Lifshitz-Slyozov, once a drop be-
gins to decrease in size; evaporation of material
continues until it disappears. Any instability lead-
ing to fragmentation of a shrinking drop should not
seriously modify the mean-field theory. In a fluid,
the surface tension plus ability to flow should
counteract the effects of the diffusive instabilities
in an isothermal system.

Although it must not be inferred that the fluid
degrees of freedom are necessarily stabilizing,
we have not found any instabilities that could con-
ceivably invalidate the Lifshitz-Slyozov mechan-
ism in a fluid. Potential instabilities may be clas-
sified according to the force driving the velocity.
One common mechanism in multiphase systems
invokes a spatially varying surface tension to set
the fluid into motion. The temperature variation
sustained by the velocity is then responsible for
the variable surface tension. ~ In spinodal dec'om-
position one might conjecture that the latent heat
release could set up a convective flow which would
deliver more supersaturated solution to the surface
to release more heat and thus sustain the motions.

To rule out surface-tension-driven instabilities,
we construct the analog of a Reynolds number
from the maximum temperature difference between
the drops surface and infinity DT; the drop radius

5vhT/a - e5T/a

and from a.stress balance

5 T(d(r/d T)
pp5v/a ~

The dimensionless parameter is

aTa(d o/dT)

PPK
(2.23)

We believe that the critical value of B for a sphere
will exceed the corresponding value for an infinite
layer of fluid of depth a. Pearson has done a care-
ful eigenvalue analysis for the later problem and
finds Be 100." Using numbers from Table I
yields,

~T» 0.01m '" cgs.
Now AT, irrespective of source, can not exceed
b, T& and a surface tension instability is inconceiv-
able near the critical point for a & 1 mm.

D. Concentrated mixtures

v-O. lga/fpv.

Several novel growth mechanisms, unique to
fluids, are possible for the 50-50 mixtures that
result from a critical quench. We are unable to
provide any hard theoretical criterion for what
constitutes a sufficiently concentrated mixture for
the results below to apply. The percolation con-
centration -15' is a natural guess but the two
phases are by no means arranged at random. Re-
call that randomly packed hard spheres of constant
radius occupy 63% of their container's volume.
The experiments to be discussed below and others
that could be done provide useful information on
this point.

The mechanisms of Secs. II 8 and II C will continue
to operate in concentrated mixtures. Although none
of our formulas are strictly valid, both mechanisms
yield a similar amplitude and the same exponent
—', that is expected to persist on dimensional
grounds. New growth mechanisms are possible
if the minority phase is assumed connected and
surface tension forces are included.

To see the essential physics, imagine a long tube
of fjuid of radis a with a significant radial undula-
tion of wavelength l»a in a medium of uniform
pressure. The undulations lead to a pressure
gradient -g/al along the axis that tends to transfer
fluid from the necks to the bulges. The corres-
ponding averaged velocity follows for instance
from the equation for Poiseuille flow
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To apply this result to spinodal decomposition,
assume there is only one length a -k '(t) and a
single velocity da/dt. Then

takes place when

a'-g/gn, p, (2.26)

a - (0.1o/pv)t. (2.24)

a p-k T. (2.25)

Equation (2.25) was derived by equating two values
of da/dt [one from (2.5) and the other from
(2.24)]. It cannot be correct since it places the
crossover in the "early stages" when the in-
terfaces are not yet well defined and surface
tension driven flows are a logical impossibil-
ity. Equation (2.25) does have two important
implications. The first is that appart from the
Kawasaki-Ohta calculation in the "early stages"
which gave approximately a t ' ' dependence, there
is no distinct f,

' ' regime for a concentrated mix-
ture in the late stages as there is for the dilute
mixtures. Of course one should not use (2.5) with
v =-,' to derive (2.25) but it is "reasonably close to
the predictions of Ref. 9 and experiment. Secondly,
we expect the coarsening rate to go as t through-
out the late stages in concentrated mixtures. Com-
parison with experiment will show that the numer-
ical factor in (2.24) is -10' too large so that. a re-
derivation of (2.25} would place the crossover at
a -10$ where it should be on thermodynamic
grounds.

A second crossover to gravity-dominated motion

A similar formula, lacking perhaps the factor 0.1,
follows from dimensional analysis applied to
V(P/p) = vV'v. " Equation (2.24) requires that the
Reynolds number

g -2x 104gq'~

with a in cm, is small (in practice &100), which is
certainly true for as 100 pm and e~ 10 '. Our
Reynolds number is actually an overestimate since
experiment shows that the numerical factor in
(2.24) should be 10 '. The connectedness assump-
tion necessary to apply (2.24) is by no means tri-
vial as our example above suggests. A fluid tube
will fragment into a string of blobs which will not
evolve further in the absence of diffusion even
though the lowest energy state is a single large
blob. ~ In a concentrated mixture, disconnected
blobs may be picked up as the interfaces migrate
during the coarsening. It should be stressed that
the coefficient in (2.24) is extremely uncertain and
one might suspect an overestimate, since a com-
plicated surface, through the surface tension in-
duced pressure gradient, will send conflicting sig-
nals into the body of the fluid as to the direction
of flow necessary to coarsen the mixture.

The crossover from diffusive coarsening to the
rate described by (2.24) occurs for

where b,p is the density difference of the two
phases. The expression corresponding to (2.26)
for a(t) does not follow a power law and diverges
in a finite time. For any experimentally attain-
able value of c, gravity effects will follow the lin-
ear regime (2.24).

III. COMPARISON WITH EXPERIMENT

For off-critical quenches that are not too deep
[in practice (AT&)/(n, T,.) & 20], either (2.21) or
(2.15) should apply throughout the late stages of
coarsening; and although there may be transients
that mask the t' ' scaling, they should be cal-
culable. Equation (2.5) should be used in place of
(2.15) whenever it would give a smaller value of
the radius. The crossover from Lifshitz-Slyozov
to direct recombination occurs at a volume frac-
tions v of precipitate of -1%. There could be a
factor of 4 error in this last figure due to the un-
certainties in (2.15). Note that the Lifshitz-Slyozov
rate is independent of v.

The data plotted in Fig. 6 of Ref. 13 for k (-a ')
vs t collapse onto t' ' with a prefactor in accord
with our expectations to within a factor of 2. " The
fraction of minority phase runs from 4%-20% and

LT& from 63 to 430 mk. There is a tendency for
the deeper quenches to be somewhat more evolved
at the latter times. While this is in agreement with
(2.15) it could also arise from faster transients
or a change in the relation between k ' and a. The
201O mixture is of particular interest since it was
at a temperature sufficiently removed from T„
and carried out to sufficiently long times or large
lengths, that it should have crossed over to the
linear regime, (2.24), if it were connected. Runs
I. and P (not plotted), were rather shallow quen-
ches, nearer to T, than the others, and produced
exponents decidedly less than 0.33. The onset of
scattering was delayed beyond the moment of
quench and the authors infer that phase separation
was initiated by nucleation. Their quench depths
are compatable with the limits to supercooling set
by other experimenters. "

A nucleated transition proceeds by events rare
on a microscopic scale and might well be expected
to yield a rarified mist of drops with mean radius
considerably larger than the equilibrium value at
that supersaturation. Now if some of the conden-
sation occurred heterogeneously either on the walls
or at some impurity, or only a small fraction of
the precipitate was in drops with the rest still in
solution, v in (2.15}would be «s/n, c. Droplet
coalescence would not be a factor in the early
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stages. As we have seen, the initial transients
implied by Lifshitz-Slyozov are considerably en-
hanced by a shallow quench and a replot of the data
say as a' vs t on linear scales so as to allow for
a nonzero intercept might demonstrate consistency
with a-t' ' at latter times.

Similar remarks apply to recent measurements
of Goldburg and co-workers. " Their quenches
were always just through the nucleation line, the
observation were in the range 0.18-0.26. Their
last points at 100 sec fall about where (2.21) sug-
gests, however. Since their measurements give a
coarsening that is no faster than either Lifshitz-
Slyozov or Eq. (2.15), it is difficult not to attribute
their low exponents to transients unless a may can
be found to suppress evaporation-condensation.
Impurities that resided on the drop surfaces and
modified the surface tension might have this effect
but their affinity for the surface would be hard to
explain since the two phases are very similar near

Longer off-critical runs coupled with direct
microscopic observation of the droplets at later
times should permit an unambgiuous test of the the-
ory. The distribution of drop sizes should also
be checked against theory.

Our predictions for the critical quenches are
also borne out by experiment, although the pre-
factors are far off. Figure 5 of Ref. 13 shows for
separate runs at variable quench depths, a coar-
sening law, measured for a common range of
wave numbers, varying from t' ' to t at the deep-
er quenches. The cross over length (a -k '} is
about 3 p.m at e -10 ' and the slope in the linear
regime at c-2.7&&10 ' is -10 ' cm/sec. The cor-
responding numbers from Eqs. (2.25) and (2.24}
are 0.2 p, m for the crossover and 10 ' cm/sec
for the slope. The Wong-Knobler results are in
accord with unpublished measurements of Goldburg
also on isobutyric-acid water that displayed the
—,
' to 1 crossover in a single run. The prefactor
in (2.24) is thus 100 times too large, an error in

part due to the difficulty of associating quantita-
tively the scaling length with k . Critical quenches
at different temperatures can be collapsed onto a
common curve in both the t' ' and linear regimes
by plotting a/$ vs t/$'

Goldburg and co-workers found for lutidine
water at e -10 ' a crossover from t ' ' for a -10
p, m to a rate faster than t.'~ We attribute this last
result to gravity effects, superimposed on (2.24),
that according to (2.26) should appear at a -50 p, m

for c-10 '. Gravity effects are more pronounced
in lutidine-water than isobutyric-acid-water (see
Table I), and because Wong-Knobler never went
beyond ™~20p, m at &=2.7x10 in the latter sys-
tem, gravity played no role in their observations.
A deeper quench should push the crossover length

of Eq. (2.26) into the range of scale sizes acces-
sible to light scattering.

A calculation of the complete structure function
S(k, t) for concentrated mixtures is a formidable
task and to deduce the scattering intensity I(k, t)
is yet more difficult since multiple scattering is
frequently important in the experiments. For a
dilute array of spheres, such as a shallow off
critical quench would produce, a great deal is
known in the absence of multiple scattering be-
tween spheres. '4 For simplicity, we will assume
the spheres are of constant radii and nonoverlap-
ing but otherwise arranged at random. The scat-
tering intensity from a volume V of fluid can be
factored into t(k, t), the scattering from a single
sphere, times

a 6 X/e' (3.1)

where a is the radius and A. the wavelength. The
scattering intensity per drop varies as the dipole
matrix element squared a'and is otherwise a func-
tion of kawith a maximum at ka = 0 and a shoulder
that extends to ka- 1.5, wherek is the momentum
transfer. To complete I(k, t), one removes a factor
n„ the number of drops per volume, from (n«n «)/V.
What remains is a function of n~' and ka and when
plotted against ka has a peak around ka -6. A
simple analytic form is given by Ashcroft. " Since
n~' is independent of time, I(k, t) grows as a'- t
for any fixed value of ka. Depending on the exact
form of (n,n «), I should have a peak around ka
-2 wherei(k, t) begins to fall off as (ka) 'while
(n«n „) is still rising.

Wong and Knobler" find I(k, t) t'" and a pea-k

around k that is somewhat sharper than Refs.
34 and 35 would suggest. Perhaps .there is some
large-scale clustering. Multiple scattering, as
manifest by the reduction in the transmitted beam,
is clearly a problem in their experiments.

When (3.1) is violated in a dilute mixture and the
transmitted beam is weakly attenuated we can still
factor I(k, t) into t(k, t), which now scales as a',

Near the critical point, it will frequently be
possible to use the Rayleigh-Gans formula (or
equivalently the first Born approximation) which
applies when the phase shift across the drop, mea-
sured with respect to the suspending medium, is
much less than one." For the isobutyric acid
water system, the higher terms in the Born series
are negligible when
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times (n«n «). Now, however, I(k, t) no longer
measures the concentration-concentration correla-
tion function S(k, t), since there is multiple scat-
tering (equivalent to diffraction-refraction) within
and around the drops. ' In this regime, f(k, t)
-a(t). In concentrated mixtures it is more dif-
ficult to estimate I(k, t), but it should be empha-
sized that the scattering intensity is not propor-
tional to S(k, f) if (3.1) is violated even if the re-
duction ia the transmitted beam is small.
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