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Gradient correction to the statistical electronic free energy at nonzero temperatures:
Application to equation-of-state calculations
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The gradient correction to statistical kinetic free energy, well known at zero temperature, is.generalized to
finite temperatures, following the prescriptions of the density-functional formalism. The coeNcient of the
gradient term, a function of electron density, is explicitly determined, and an accurate approximation,
suitable for numerical computation, is given. The corrected kinetic free energy, with a phenomenological
extrapolation to all temperatures of the exchange and correlation contribution, is applied to equation-of-state
calculations. Results are presented in the case of Be, Al, and Cu, for temperatures up to SO eV and
compressions 0.1, 1, and 10, and the influence of the gradient correction is discussed.

I. INTRODUCTION

Since Von Weizsacker's work, ' the approach to
many-electron systeri~s which consists in deriving
corrections to the statistical Thomas-Fermi (TF)
and Thomas-Fermi-Dirac (TFD) models has been
intensively explored. ' " When the statistical mod-
els express the total energy of a system in terms
of the local electron density n(r ) only, the correc-
tions introduce the gradient )d'n(r). The density-
functional formalism' "has given a rigorous the-
oretical background to the derivation of these cor-
rections. Various applications to physical systems
such as atoms, ""metal surfaces, "and de-
fects" "may be found in the literature. In all
these applications, the correction to the statistical
kinetic energy has the following form:

K[n] = h, dr,I Vn I'

where h., is a numerical constant ranging from the
Von Weizsacker value of -', to the correct gradient-
expansion value of —,', . In a previous paper, we
have investigated the influence of the kinetic cor-
rection (1) on the zero-temperature equation of
state of metals, particularly Li, Be, Al, and Cu."

In the present work, we generalize the gradient
expansion correction to the case of nonzero tem-
peratures. Section II shows how such a general-
ization can be achieved in the framework of den-
sity-functional formalism, using the analytic ex-
pression of the free-electron gas polarizability
for finite temperatures T. In order to investigate
the effect of temperature in a model which reduces
to the TFD one at absolute zero, an approximate
treatment of exchange and correlation for all tem-
peratures has been developed: it is described in
Sec. III. In Sec. IV, the expressions derived in
Sec. II and III are applied to the equation-of-state
problem at nonzero temperatures. The numerical

results obtained for Be, Al, and Cu are reported
and discussed in Sec. V.

II. GRADIENT EXPANSION OF THE KINETIC
FREE ENERGY

In their paper on the self-consistent equations
for an inhomogeneous system of interacting elec-
trons, "Kohn and Sham have shown how the den-
sity-functional formalism can be applied to finite
temperature systems by considering the grand-
canonical potential

1 ~ 1
Q[n] = u(r)n(r) dr+- n(r) n(r') dr dr'

Ir -r'I

n[ n+]n[ ] n— n f n(r) dF

where v(r) is the external potential. and p is the
chemical potential. The free energy of noninter-
acting electrons is E [n], a unique functional of
the electron density at a given temperature.
E„[n] is the exchange and correlation contribu-
tion to the free energy. The correct density of the
system minimizes Q[n], so that

( ) f (,)
1 -, nn, [n] !in„[n]

ir —r'I &n(r) 5n(r)

where we have defined the free-energy density by
the relation

If the most simple approximation is made, which
consists in using the uniform electron-gas free
energy F, for F„ then the statistical models are
obtained: Eq. (3) reduces to the TF equation if
exchange and correlation effects are neglected
(F„—= 0). Tile two well=known following equations
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define the free energy in this case:

F.= (~~/. ')~ "'[- :f—...(n). nf„.(~)],

I is the standard Fermi function'~ and P '= kT.
An analytic form of F,(n) is given in Appendix A.

Taking into account the first gradient correction
leads to the free energy

(5a)

(5b)

F.[n] = F,(n)+ k(n)
~
Vn ~.'/n.

To our knowledge, the function k(n) (for sim-
plicity, we do not make explicit the dependence
on temperature in the list of variables) has never
been calculated up to now. The correct way to
determine this function is to identify the polariz-
ability of a system described by (3) and (6) with
the exact polarizability of the noninteracting elec-
tron gas at large wavelengths. ' With the free en-
ergy (6), E(I. (3) becomes

85 8 h h~ 6F„
U+—' —~vn~' —— —2k—+ —"'= u, (I)

~n ay) n n &n

-8'P. , 8' h 8 h6V, iV i'
en ~n' n en n

h h-2——vn van-2-s&n=0.
en n n

provided that the boundary condition V~= 0 on the
surface enclosing the system is fulfilled. I et us
now consider the linear response 5n of a noninter-
acting system (F„,=—0) described by ('I) to a small
localized variation 6U of the effective (total) poten-
tial. U:

2-

3 Y

FIG. 1. Coefficient of the gradient term of the kinetic
free energy as a function of the reduced variable y.

and )(I is related to n= n, by (5b).
Expressions (11) and (12) can be treated by ele-

mentary means in order to obtain the expansion at
small q.

2 z/2
o„„(q,n, )=-(am') '(p s „(n)—

—,', p.q*.q-
dg

().„.(n))+ o(q')).

(13)

The first term of (13) is exactly -(O'Fo/&n') ',
from the term in q' we get

The polarizability of the system is defined as the
ratio of 5g to 5U in reciprocal space

k(n) W2, „,d 1
24 de I, i,(q)

(14)

ll(q, n) = 6n(q, n)/&U(q) .

Specializing to the case of the uniform electron gas
of density n„we find

k(n)
II(q, n, ) = — ' + 2 q'

~PE
Np

(10)

f.„= [1+exp(P&. —q)] ',
with

~.= -', k' (a.u. )

(12a)

(12b)

It is clear that h can be determined by requiring
the identity of the expansions in q(q-0) up to order
q' of II(q, n, ) and II»„(q,no), the random-phase-
approximation polar izability defined by"

o„„(q,n, )= 2(Rm)
' J ' ""d):,

1r, k+q

where f-„ is the Fermi-statistics occupation num-
ber

y = (v'/~&)P" 'n (15)

only. An analytic approximation of k(y) is given in

Appendix B.

III. APPROXIMATE TREATMENT OF EXCHANGE

AND CORRELATION EFFECTS

Our purpose here is to derive an expression of
the exchange (and correlation) functional F„,(n)
which could be considered as a reasonable extra-
polation to non-zero temperatures of the O'K
Kohn-Sham exchange functional. The theoretical
difficulty of this task lies in the impossibility of
treating temperature dependent exchange effects

Elimination of rI between (5b) and (14) entirely
determines h, which is shown in Fig. 1. The cor-
rect limit h= —,', at zero temperature is recovered.
At very high temperatures, the limit is h= -'. It
is easy to see that h is a function of the reduced
variable
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f)„,tn) = —(2r)' f dkdk', , fkf;
[k -k'f'+ x'

alone: correlations must be considered simul-
taneously in order to avoid an anomalous behavior
of the specific heat C„at low temperatures. " The
correct calculation of the electron-gas specific
heat is a very difficult work beyond the scope of
the present paper. The results obtained by differ-
ent authors are not in full agreement and the ques-
tion remains open. Here we shall restrict our-
selves to define a phenomenological functional
&„,(pz) having the following properties: 6'„,(yg) gives
the exact exchange energy in both limits of zero
and very high temperatures; the corresponding
specific heat vanishes at absolute zero.

Let 6:„(p) be the exchange (only) contribution to
the free-energy density. Its formal expression in
momentum space, up to first order in the inter-
action, is

(21)

we find a thermal component 0 F„,at T-0:

(6 V„,(n}=, —+ — ln(l+ 8) —1
1 1 1

(22)

with 8= Bp,,/X' or 8= 7fv'2g, with the reasonable
choice of the Thomas-Fermi screening length.
The quantity b 6'„,(n) compares with the thermal
component of the free energy for the noninter-
acting electrons

Z6:,(&) =-(1/67fP')8, T- 0. (23)

In the range of metallic densities (22&10 ', 8& 2

a.u. ), the ratio s = b F„,(n)/
~

&6',(n)
~

is always
small: s=0.050 at 8=2, s=0.052 at 8=4, and s
=0.044 at 8=10; s decreases as 8 'ln8 for larger
values of 8. The results of this model differ
strongly from those obtained with the bare inter-
action. Although not rigorous, they support the
opinion according to which the relative magnitude
of the exchange and correlation corrections to the
noninteracting specific heat is small, about 10%."

After the previous remarks, and keeping in mind
that we are not concerned here with an accurate
study of temperature-dependent exchange and cor-
relation effects, and they only included in order to
allow the extrapolation of the cold TFD model, we
adopted the following form for F„(n):

which can be transformed, by elementary means,
to

1
0„(n)= —, [I „.(n)]'dq.

The occupation numbers in (16) are defined by
(12a), and q is related to the density yg by (5b).
Using the asymptotic form of the Fermi functions
for 7i- —~ in (It) leads to

6:„(n)- ——.'~'pn' (18)

2(n) = —(kw) f )dk6k' f„fk (16)1

at high temperatures, . showing that for a given
density, 6'„(n) decreases as 1/T. Horovitz and
Thieberger have shown that the expression of
P„(g) at low temperatures is"

C„„-P ' In(PV. )+O(P ') (20)

which dominates the specific heat of the noninter-
acting electron gas, proportional to P

' only.
This result is unphysical and Horovitz and Thie-
berger have pointed out that C„„(20)must be can-
celled by other terms in the expansion of 6'„,[n].

One can easily be convinced of the extreme sen-
sitivity of the specific heat to the approximations
made in the treatment of interactions. A simple
calculation of (16) using a screened interaction
e ~ ' "/ir —r'~ instead of the bare interaction
gives evidence of this sensitivity. Applying the
Sommerfeld method to

where p, is the Fermi energy at 0 K. The first
term is the classical exchange energy at T= 0; the
temperature-dependent part gives a contribution
to the specific heat

IV. APPLICATION TO EQUATION OF STATE

A; Self-consistent calculation of the electron density

We want now to solve Eq. ('l) for a density n(r)
describing an atom confined in a spherical volume
V of radius S. The boundary conditions are

n(0) = no,

=0dn

$

(25a)

(25b)

6'„,(n) = 2wPn' tanh(a, y
' -+ b,y ), (24)

where y is the dimensionless variable defined by
(15). At high temperatures (y —0), Eq. (24) has
the correct asymptotic behavior [Eq. (18}]. The
numerical constant g, is such that the Kohn-Sham
exchange is recovered at T=0 [a, = d(3v 2)'f']. In
the absence of reliable result on the exchange and
correlation part of the specific heat (T-0), we
have chosen the second term in the argument of
the hyperbolic function in order to cancel the term
in T' (I),= ~). The asymptotic form (18) is reached
for y = 1 approximately, or P = 0.'Ir'„where r, is
the standard density parameter.
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n(r ) dr = Z . (25c) density z. With the functional forms of the free
energies (cf. Appendix A)

Following our experience of the zero-tempera-
ture case, we have determined the density n(r) by
an iterative procedure, writing at the step j+ 1,

6',(n) = P 'nf(y)

and (24),

(31)

n,.„(r)= n,.(r)+ &n,(r),
V...(r) = V,(r)+ 5V,(r), .

(26a)

(26b)

6:.,(n) = —Pn'~(y),

the total energy becomes

and linearizing Eq. (7). Choosing the new function (33)

~(r) = r(6V,(r) —i ), (27)
where the three contributions appear (kinetic, po-
tential, and exchange-and-correlation):

and relating it to 5n, (r) by the Poisson equation,
leads to df - ', dk lVnt'K= 2P ny —dr+, ),'+ zy — dr,

y dy ~ p: dy pg

I
n ""+—' "—' so"'+ q (r )w.

"+ 2v—n.m = 8 .(r)

e,(.) = —,"„(„"-')' -"„' ("„-" „"')

&&0»xc'
S,.(r) = 4vrn-, —. V,.+ '+

~s s

(28a)

(28b)

(28c)

(34)

Z 1 1
W= t ——n dr+- n(r) n(r') dr dr',

ir-r'i

X= P n 2j+ ~y —dr.dg {36)

The kinetic energy is the sum of the homogen-
eous part K, and the gradient correction Kg.

The pressure is also deduced from the grand po-
tential

dh
h, =y ——h

dy
(29a)

The primes correspond to derivation with re-
spect to the coordinate r.

The functions h, and h, are related to the func-
tion h of the gradient correction by

8
[O+ &+]a ns'i

the partial derivative is at constant density under
the constraint of normalization when the volume
changes. Equation (37) leads to the virial theorem
in the form

,d'h
h, =y' (29b) es„,3PV= 2K+ W+3

J n "' —6:„, dr. (38)

h, h„and k, are calculated in (28a)-(28c) with
the argument y, corresponding to pg, .

Equation (28a) has been integrated using the nu-
merical technique described in, detail for the sim-
ilar equation at zero temperature. " The electron
density found in the TFD approximation [Eq. (7)
without gradient correction term in 8', [n]], mod-
ified in a small region near origin in order to can-
cel the singularity at r=0, has been used as start-
ing density for the first iteration. A relative ac-
curacy of 5 x 10 ~ was reached after five itera-
tions.

B. Energy and pressure

A more interesting expression of the pressure,
which avoids the important numerical cancella-
tions occuring in (38), can be derived. We shall
not give the detailed demonstration of this equiva-
lent expression here, but only indicate how it can
be worked out. The main point is to transform the
kinetic energy K [Eq. (34)], integrating the first
term by parts. A surface term is obtained in that
way, together with a new integral where appears
the quantity ydfldy, which can be extracted from
Eq. (7). At this point, K is given by

SC= —,P-' Vjny — ——.W
( df

dy s

E=
sp

[P{O+ I +)]», („) (30)

where the derivation is at constant volume V and

As a consequence of the stationarity of O[n], the
energy of the system can be expressed as

+- rn—

1 " r t
+ I V C idr,2 J» r)

where C is the function

{39)
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C= -2rh pg" — ——-rg'y' —.
pg r dg

Integrating the exchange term in (39) by parts
and applying the Stokes theorem to the last inte-
gral, we arrive at

30

(41)
20-

The boundary condition (n') ~
= 0 has been used in

the last surface term.
The desired expression of the pressure results

immediately from (38) and (41):

I = n —&o —2(hn") ~+ n "-' —F„,

(42)

The first term is the homogeneous kinetic pres-
sure P„ the second is the kinetic gradient correc-
tion P„and the third is the exchange-and-correla-
tion pressure P„,.

10 20
I

50 T (ev) 100

30-
FIG. 3. Same as Fig. 2 in. aluminum.

V. RESULTS AND DISCUSSION

Here we present the results obtained for the
equation of state of beryllium, aluminum, and

copper when applying Eq. (7) to the self-consis-

20

20

10

1 I

10 20
I

50 T(~y) 100

FIG. 2. Ratio 7& of the inhomogeneous to homogeneous
kinetic pressures, and similar ratio v& for kinetic
energies, in beryllium. Triangles: p jp o

——1. Circles:
P~P()= &o.

0 I

10 20 50 Tev
FIG. 4. Same as Fig. 2 in copper.
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tent determination of the electron density. In the
following, this model will be referred to as TFDW
(we keep the denomination used in" at zero tem-
perature, where the letter W referred to Von
%eizsacker for the gradient correction, although
the magnitude of the correction suggested by this
author is nine times larger). We shall compare
the results with the TF and TFD equations of
state. The effect of temperature has been studied
up to 50 eV for the compressions p/p, = O. l, 1,
and 10. The normal densities are p, (g/cm')
=1.8450, 2.7&47, and 8.9382 for Be, Al, and Cu,

respectively.
In Figs. 2-4 are shown the variations of the

quantities

T~ P, /-Po,

ratio of the inhomogeneous to homogeneous kinetic
pressures, and

r~ = K~/Ko

similar ratio for the kinetic energies. At normal
density, r~ is large [(20-30)%] at T= 0 and de-
creases very fast with rising temperature; at p/p,
=10, T~ is smaller at low temperature but de-
creases much slower. It can be shown that T~
varies approximately as
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(44)

where g and b are numerical constants and p. is
the chemical potential. According to (43), T~
tends to zero with increasing density at T= 0. The
temperature behavior is determined by the quantity
P p, , and T~ begins to decrease when P p, becomes
negative. The larger the density, the higher the
temperature where Pp vanishes, so that the T~
curves become increasingly flat. The curves rep-
resenting TE show much less structure; they are
quasilinear in temperature in the region of inter-
est, and their sensitivity to density is weak. As
the energies entering TE are integrated quantities
(instead of quantities calculated on the boundary
r= S for vz), Tz is driven by P(p —U), where U is
an average potential. The temperature where
P(p —U) becomes negative is very high„so that
the behavior of TE changes very slowly.

The numerical values of total pressure P [Eq.
(42)] and energy [Eqs. (33)-(36)] are given in
Tables I-III. The origin of energies has been
fixed, for each material, in order to reproduce
the experimental cohesive energy at T=0, p/p,
= 1. It is not possible to choose the free-atom en-
ergy as origin since there is no solution in the
TFD model for very low densities at T-0. The
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numerical values of the energy shifts may be de-
duced from Table 1 of Ref. 23. For all materials,
and at all densities, the exchange and correlation
effects are more important than the gradient cor-
rection: the TFDW and T.FD results are closer
than the TFD and TF ones. At the temperature of
50 eV, the TFD% and TFD pressures in Be agree
within 0.3% 1.2% and 4.8% at p/p0=0. 1, 1, and

10, respectively. The corresponding percentages
are 0.8%, 2.1%, 5.7% in Al and 1.5%, 3.5%, 4.8%
in Cu. For energy, the three models give thermal
components in very close agreement: the gradient
correction to kinetic energy does not influence ap-
preciably the specific heat.

In conclusion, I have presented a generalization
of the gradient correction to nonzero tempera-
tures. The functional h(33) which describes this
correction has been defined and computed. Appli-
cation has been made to the calculation of equation
of state, showing (i) the relative importance of the
gradient correction to kinetic pressure, which de-
creases at T=0 when the density increases, goes
to zero slower at high densities; (ii) the relative
part of kinetic energy due to the gradient correc-
tion varies very smoothly with temperature and

density.

APPENDIX A

An analytic representation of the functio»0(n),
density of free-energy of the noninteracting elec-
tron gas, has been determined from Eqs. (5a) and

(5b}. It is clear that the correct variable is

From the asymptotic forms of the Fermi func-
tions, it is straightforward to show that

lny+ (const) + 0(y), y -0,
f y f 0 2/3[ 3 (3~2)2/3 0( 4/3)]

10

The relation between F, and n is obtained by tab-
ulating (5a) and (5b) for values of q in the range
—10» g» 20. Owing to the change of behavior of
the Fermi functions when g passes through zero,
it was convenient to consider two regions y &y,
and y ~ y, (y, = 3v/4v 2). In both of them, a least-
squares fit with Chebyshev polynomials has been
performed, requiring the continuity of f(y) and
its first and second derivatives at y=y, . The fol-'
lowing approximation was found:

f(y ) = lny —G. 879 188 021 5+ 0.198 971 874 2y + 0.106 869 7 04 3 x 10 'y' —0.881 268 57 2 6 x 10 'y'

+ 0.127218 302 7 x10 'y'-Q. 977 2758583 x10 'y'+ 0.382063 047 7 x1p 'y' —0.597 1217041 x10 'y'

for y»yo= 1.666081101,

f(y) = 0.786 222 418 3u —0.188 297 945 4 x 10'u '+ 0.532 195 268 lu '+ 0.230 445 795 5 x 10'u '

0..161428077 2 x10'~ '+0.5228431386 x10'y '-0.9592645619 x10'y "
+ 0.946223017 2 x10'y '3 —0.3893753937 x10'u " for y -yo with u=y'/".

The relative accuracy is always better than 1.2 x 10 ' on f(y) and df/dy, and better than 1 x 10 ' on d'f/
dy'. When the exact value of df/dy is exactly 0, the approximation gives —0.39 x10 '.

APPENDIX B

The same technique of approximation has been used for the function I3(y) defined by Eq. (14). The ex-
pression below is continuous at y = y„and also its first and second derivatives:

12h(y) =0.5 0.1999176316y+0.9765615'109 x10 'y' 0.6237609924 x10 'y'+ 0.5801466322 x10 'y'

—Q.4449287774 x1Q ~y +Q. ].903211697 x1Q ~y Q. 3284p96926 x1Q 2y for y»yp

12&(y}= -', + 0.3115SG 799 Gu '+ 0.329 566 243 S x 10'u 4 —0.292 203 832 6 x 10'u '+ 0.116108453 1 x 10'u '

—0.2504543147 x10'u ' +0.2814336880u "—0.1288784806x10'u ' for y~y .
The accuracy on h(y) is better than 10 ', the maximum error occurs at y =2.
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