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Coherent states and the resonance of a quantum damped oscillator
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A quantum-mechanical model of a damped harmonic oscillator (both with time-independent and time-

dependent parameters) is studied in the framework of the linear Schrodinger equation with a Hermitian
nonstationary Hamiltonian. Integrals of. the motion of this equation and their eigenstates, including coherent
states, are constructed. The influence of an external harmonic force to the time evolution of various average
values calculated over coherent states is considered, including the resonance case. The specific symmetry of
the Hamiltonian leading to the new concept of loss-energy states is discussed.

I. INTRODUCTION

Coherent states, which were used already by
Schrodinger in the first papers on quantum me-
chanics, ' now serve as a very convenient tool for
solving various problems in almost all fields of
phvsics, especially in quantum optics,"in the
theories of superfluidity and superconductivity, '
in the theory of elementary particles, ' etc. There-
fore, during recent years a great number of papers
were devoted to various generalizations of Glau-
ber's2 coherent states and to the construction of
such states for concrete quantum systems; see,
e.g. , Refs. 6 and 7 and references therein.

A method of constructing coherent states for an
arbitrary quantum dynamical system (i.e., a sys-
tem described by an equation of the type i ag/at
=H(t, where H is a certain operator) based on the
employment of quantum integrals of the motion
was proposed by Malkin and Man'ko. ' (For the
first time the significance of time-dependent quan-
tum integrals of the motion for solving the Schrd-
dinger equation was emphasized by Lewis and
Biesenfeld. ') This method was used in Ref. 10 for
the detailed study of multidimensional quantum
systems with time-dependent Hamiltonians which
were the most general quadratic forms of the op-
erators of coordinates and momenta. Besides, in
Ref. 10 some special cases of general quadratic
systems, such as a charged particle in time-
dependent electromagnetic fields, were considered
in detail. In Ref. 11 the integrals of the motion
method were used to derive new equations for the
Green's function and the density matrix of an arbi-
trary quantum system. These equations were
solved in the case of the most general quadratic
time-dependent Hamiltonian, and the results were
applied, specifically„ to the problem of a charged
particle moving with damping in crossed magnetic
and electric fields. The anharmonic oscillator was
studied with the aid of the integrals of the motion

method in Hef. 12.
In the present paper we apply the general method

of Ref. 10 to construct coherent states and some
other systems of solutions in the case of a very
interesting example of a quadratic nonstationary
quantum system, namely, in the case of the sys-
tem which can be considered as a quantum model
of a damped harmonic oscillator describing this
oscillator in terms of pure quantum-mechanical
states, i.e., with the aid of the SchrOdinger equa-
tion. This equation was considered earlier in
many papers, ' ' but the solutions for all values

. of parameters, as well as cpherent states, have
not been obtained. To fill this gap is one of the
aims of this paper; this is done in Secs. II and III.
Moreover, . we consider very interesting group-
theoretical aspects of the problem, and consider
in this connection in Sec. IV the new concept of
loss-energy states. Finally, considering the
physical significance of the model and its relation
to other models describing quantum dissipative
systems, we discuss in Secs. V and VI the general
problem of the quantization of a given classical
system.

II. INTEGRALS OF THE MOTION AND COHERENT
STATES OF A DAMPED FORCED OSCILLATOR

VfITH TIME-DEPENDENT PARAMETERS

Let us consider the Hamiltonian

ff(t )
— [P2e 21 () ) + ~2(t ) I'e(t2) x2] f(t ) e21 (2) x (l)

It leads to the following equations of the motion:

p~-2I (t)

P = -&u', (t) e' "'x+ f(t) e'""',
x + 21 (t ) x+ (o2(t ) x =f (t ) .

Therefore, the quantum system with such a
Hamiltonian can be considered as a quantum anal-
og of a classical damped forced harmonic oscil-
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lator with time-dependent parameters. For the
first time, Hamiltonian (1) (in the case of constant
parameters) was suggested independently by Cald-
irola" and Kanai. "

Following Ref. 10, we are first of all looking
for the integrals of the motion, i.e., the operators
I(t) satisfying the equation [i (a/et) -IJ, I]=0 (we
suppose 5=1). For the systems with quadratic
Hamiltonians all integrals of the motion can be
constructed from two (we consider a one-dimen-
sional problem) independent linear integrals of the
motion of the form 1(t) =a(t) f&+b(t)P+5(t).

Calculating the commutator [P, I], one obtains
the following equation for the coefficients a, 5,
and 6:

a=(uo(t)e' "'(t),

Therefore, all linear integrals of the motion
have the form

t(t) tt(t)t( —()(t)=e' "'t —ff(t)e' "'tt(t)dt

Evidently, there exist two and only two indepen-
dent linear integrals of the motion. If one chooses
the function b(t) in the form b(t) =i 2 '~'e(f), where
e(t) is a complex function satisfying Eq. (4) and
the additional condition

e'r «)(em* —~*e) = 2i (5)

2'(f)g„(x;f) = [e'""~"~'y„(x;f)]~ e '""'"'.

[the left-hand part of Eq'. (5) does not depend on
time due to Eq. (4); e* means the complex con-
jugate to e], then one obtains two independent
mutually Hermitian conjugate linear integrals of
the motion satisfying the relation [A(t), A'(f)] =1.
The operator A(t) thus obtained has the form

A (t) = (i/~2) [e(f )P —e(f ) e'r&') g]+6(f)/~g,

I!(t) —t fe(e=)e''e"'y(t)dt.

The eigenfunctions g of the operator A(t) are
just the coherent states. To obtain the explicit
expressions for these states, one should solve the
system of equations

A(f) q„(x;t)=my. (x;f),

(the lower limit of the integral in the right-hand
part may be arbitrary), b(t) being an arbitrary
solution to the equation

b +I2' f)+&a,'( f)5 =0. (4)

These equations determine the function g„(x; t)
up to a factor dependent only on time. This factor
can be obtained from the SchrMinger equation and
the normalization condition. After all calculations,
one can obtain the expression

ie,r, , W2
g„(x;f)=(~e') ~' exp e' "'x' + c&x — c&' - 2lc&I' — — 5' -4I5I'

2e e 2e ' e 4e

+ 5*+ 5 —— lm(55*) &f 7'
~2 c 2

These states satisfy the standard relations'

(~ I P& exp&=2I o' I-' kl P-I +~ 'p}*
1

&f Rend Imo. lo. &(&). l
=1.

(8)

values change in time according to classical me-
chanics. For the dispersions one can obtain the
formulas

(10)
The average values of the coordinate and momen-
tum operators in these states are

(alki n&=a 2 Re(&)&e*) —Re(e*5),
(9)

(o. IP I c&& =e' "' vYRe(n~*) — Re(6+5)
dt

Since the function e*(t) satisfies Eq. (4), and the
function -Re(a*5) satisfies Eq. (2), these average

Due to Eq. (5),

(«'&(hp'&= —,'e4 "'
I
ee I'

& -', e' "' [fm(em*)] ' & —'

Note that the dispersions do not depend on n and
5. (The most general nonstationary Hamiltonians
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preserving the minimal value of (ag') (ap') were studied in Ref. 6.)
Expanding g„(x', f) in a, power series of o,

(.(x'f)=exp(='I~I') Q, q„(x;&),
n=0

-u2 ~* . t'x+Re(c*6j
|t&,(x' f) =(&t) "' — — q, (x; t)H„~ (12)

[H„(x) is the Hermite polynomial] we obtain the eigenstates of the quadratic integral of the motion

. &(&) =:-(A'A+AA')

=2 llel p +I el e x' —e' Re(~~*)(x)+px)+Im(c*6)p-e' Im(~+6)&+~6~'], Rg„=(&+-,')g

Using Eqs. (5), (9), and (10), one can obtain the
formulas

~q.( xt) ~' =(2~(~x') )-'~' exp
2(~x')

(7a)

Note that the operator A(t) [Zq. (6)] and coherent
states [Eq. (7)] can be constructed for the quite
arbitrary functions F(t), e,(t), and f(t). For ex-
ample, in the case of a motion with damping in a
uniform field, i.e. , when &u, =0 and I"(f)= yt, the
function e(t) can be chosen as follows:

e(t) =A. +(i/2yx)(1 —e '~'), (14)

A. being an arbitrary real number. Another ex-
ample is the case of a centrifugal potential, when
v', &0. If &o, =const, and I'(f) = yt, then one can
choose the following function e(t):

le.(~;t &I'= &2~v '&It.b;& &'&4(
&

~, &~, ) .
2(b 2'

(12a)

systems of coherent states stand out against the
others. Therefore we are proceeding to the de-
tailed study of this case.

III. CASE OF CONSTANT PARAMETERS

If the frequency m, and the friction coefficient
1" = y are constant, then Hamiltonian (1) satisfies
(provided f= const) the interesting relation

B (i+i'/y) =e(i). (16)

~(t) =n "'exp(-yi+inf), n =(~; y')"',

(17)
1

we obtain the following operator A(t):

A(t) =(ie'"'/v'2n ) [e ~'p+(y —in) e~'x]+6(t)/V2,

Evidently, one should take into account this sym-
metry to construct the "best" systems of coherent
states or some other functions.

(i) Let us consider first the case of a weak damp-
ing: &o, &y. Then choosing the function e(t) in the
form

e(t) =n '~'e ~'[cosh(nt) +i sinh(nt)],

~(t) =-ye+inc*, n =(y' —&u', )"'. (15)

6(t) = — e'~''""f(7) dv.
vn

(18a)
However, the choice of the function e(t) is not

unique, because the function e = )e+&7m* satisfies
the same relations as e(t), provided complex
numbers g and &7 satisfy the condition ) $ ~' —(q ~'= l.
Therefore, applying various linear canonical trans-
formations to operator (6) one can construct vari-
ous operators of the same type (cf. Ref. 7). In a
general case, none of these operators are "better"
or worse" than the others, so that all systems of
coherent states corresponding to these operators
are equivalent. However, in the most important
special case when cg, and 1 are constant, some

In the case f= const the function 6(t) can be chosen
in such a way that this operator possesses the fol-
lowing property:

A(t+i»'/y) = -exp(-wn/y) A(t),
A'(t+im/y) = exp(mn/y)A-'(t) .

(19)

This property distinguishes the operator (18) from
all other linear integrals of the motion. Therefore
in the case vo, y = const the "best" coherent states
are the eigenstates of the operator (18):
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&C)„(x; t) =(n/yy}"'ekp [--,'i(n +i@)t --,'(n+iy) e2y'x2

+v'an c&xe'y '""-2o2e ""'--', i&2'' —1tnxe&y-'")'6(t)

—nv'ane'y '""z(t) ,'nz-'(t) e' y' +i t(()t)], (20)

where the phase factor (I)(t) is equal to

&(S)=-.0nel e '" S (e)-Se)

and the function

(20a)

Then at the initial moment t=0 the corresponding
coherent states would coincide with usual Glauber
states, ' but the product of uncertainties in these
states would oscillate in time:

s(()=-2e e "*' )n)st) (nS ) = — (e —s(n(0() sns(0()e —s(n(0() I,
e 2y y
2+p 0 0

is the solution to classical equation (2) with the
initial conditions z(0) =z(0) =0.

The functions (20) satisfy the relation
(&&') {&p')=~ [1+(4&0',r'/Q') sin'(Qt)] . (25)

i n; x; t+i7&/y) = ((-ne ."Iy; x; t) exp(—„' in + )y Q/ay),

) n; x; t) -=&t „(x; t ) exp(-,' i o. )
') . (21)

e '~' - co'
{g)t2)— (gp2) 0 e2y &

2n ' 2n
2

(~x'&«P'&= 4Q. --'.
(22)

All other systems of coherent states do not possess
such a property. The average values of the oper-
ators R and p move along classical trajectories in
the phase space [see Eq. (9)]. For the widths of
the wave packets (20) we obtain the relations

Therefore, states (20) are distinguished not only
from the group-theoretical point of view, but also
from the point of view of the uncertainty relation,
so that states (20) are indeed the "best" coherent
states. If y =0, these states coincide with Glauber
ones.

(ii) ln the case aP( y' the operators A(t) and
A'(t) turn into the operators [we drop the factor
2 (2n} ']

I,(t) =e'"'[e y'p y (yon)ey'2]+8, (t),
(26)

Note that if we chose another system of coherent
states, then the product of uncertainties would not
be constant but would vary in time. For example,
we could choose the operator A(t) in the form

A(t) =(2&0,) "'(ip, +&d,X,), (23)

X, and P, being the operators of the initial coordi-
nates and momenta [for simplicity we suggest f(t)
=0]:

Q(y2&d2)1/2

5,(t) = — e' '""f(7)dr, -

satisfying (if f= const) the relations

I 2(t+Ar/y) = -exp(ii)y Q/y) I ~(t ) .

(26a)

(27)

+(&020/n) ey'sin(nt}x,

X (0) =/i,', P,(0) =P.
(24)

X (t) = -8 y p+8 cos(nt) ——l s(Ant) 21

P (t ) =e ' [cos(n t ) + (y/Q) sin(n t )]p

Therefore, in this case there exist besides the
systems of coherent states [for example, with the
function e(t) given by Eq. (15)] two other interest-
ing systems of functions, namely, the eigenstates
of the integrals of the motion I, and I satisfying
the Schr5dinger equation (let us consider for sim-
plicity the case f=const):

"1 n~ .~e" «'
~n~

&t) "'(x t)=iiIf' + t)=(an') "'exp —(+0-y)e2 'x' +ixe ' Kei"'+ ' — + e' "'
g & y & 2 4&

2Ef
& y& o&t if 8

&0', 4y(y+n}' 2 (28)
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These states form two complete sets

(Z';+; t~Z; —;t)=(4~in) "'-exp( iZ-Z'/2n),

(z' + t~z + t)=~(hf z')
(29)

(iii) In the case &u', =. y' the operators I, and I,
and consequently the states (It)~

' and cp~ ', coin-
cide:

I,=I =I„(t)=e ~'I)+ ye "x

and satisfy the relations
—{f/y) e)' (f= const), (31)

Z;e;ee =~1-Z'e*""",e;e) exp (yen)),

@
(&) g@(&)

I,(t+im/y) = I„(t-) .

Therefore, one can construct the eigenstates of
the operator I, :

~Z; t}= (2a) "'exp( ;iy-e'~'x'+iZxe~'+(if/y) xe'~' —{iZj/too) e~' —(if'/4y') e'~' ——,
' iZ't+ —,

' yt),

satisfying the relations

i, (z; t)=z~)z; t),
~Z; t+iz/y) =

~
-Z; t) exp( —,'i7) + zZ'/2y),

(z; t)z'; t) =f{z-z').
Another integral of the motion in this case is (we

suppose again for simplicity f= const)

i', (t) = te y'p —(1 —yt) e~'x+(fe&'/y')(1 —yt) .

It is not transformed into itself by the translation
t-t+im/y States (3. 3) are the limit cases of the
states

~
Z; +; t) =- ~Z; +; t) exp(v iZ'/4n),

(Z';+; t~Z; —;t)=(4wtn) "'
exp[ t( Z- Z')' /4n]

(28a)

when Q 0.
The linear integrals of the motion and Gaussian

wave packets in the case cu, & y, f= 0 were con-

structed in Ref. 20 (see also Befs. 13 and 21), but
the states satisfying relations of the type (21),
(30), a.nd (32), as well as the solutions in the case
+,, &;~, were not considered earlier.

(iv} The la,st special case is a&, =0. Gaussian
wave packets in this case were constructed in Ref
21 in which the external uniform field was de-
scribed by the scalar potential Ex, and in Ref.
22 in which the uniform field was described by the
vector potential A(t) = fE(7 ) dv—. This proMem
was also considered in Ref. 23. -Coherent states in
the case under study are given by formula (7}with
the function e(t) given by Eq. (14). In the case
f=const we can also construct the states analogous
to sta.tes (28). The integrals of the motion I, and
I in this case turn into

I,(t) =p —(f/2y) e' ', i,(t+im/y) =I",(t),
(35)i (t) =pe "'+2yx-ft.

Therefore, if f o 0 only the eigenstates of the op-
erator I, are transformed into themselves when t
is replaced by tlirt/y:

g~(x; t) ={2a) "' exp[ipx+(ifx/2y) e')'+(ip'/4y) e ')' —ipft/2y —(if' /61y') e'~'j, I+(~ =ply)~,

q, (x; t+im/y) =y, (x; t) exp(~pf/2y')

I

IV. LOSS-ENERGY STATES

The invariance of the Hamiltonian with respect
to the translation t-t+im/y in the case of constant
parameters &o, and y, f leads to the existence of
the solutions of the Schrodinger equation satisfying

the relation

q(x; t+i~/y) =~y(x; t).
Such states are evident generalizations of the
Bloch states in the case of spatially periodic Ham-
iltonians: H(x+a, ; t) =H(x; t), and the quasienergy
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states" in the case of time-periodic Hamiltonians:
H(t+T) =H(t-), ImT=0. We call the new type of
states loss-energy states because they arise in
studying quantum analogs of dissipative systems.
Let us write X=exp[(m/y)E].

By analogy with quasistationary states satisfying
the relation g(t+T) =g(t) exp( iE-T), we call the
value E in the relation

((x; t+im/y) = q(x; t }exp [(v/y) Z]

tge loss energy. Note that Hamiltonians with im-
aginary periods are well known in physics. For
example, the one-dimensional Schrddinger equa-
tion can be solved exactly in the case of Hulthen's
potential

y(r) = -V, exp(-r/a)/[1 —exp(-r/a)],

states are similar to those of the quasienergy
states, there are a,iso certain essential differ-
ences. These differences arise owing to the fact
that many properties of the solutions to the Schrod-
inger equation have been proved using the reality
of the time variable, while the concept of loss-
energy states is based on the translations of this
variable to an imaginary value. The detailed study
of loss-energy states of quadratic systems will be
given in another paper, so that here we consider
only two examples.

First of all let us note that the integral of the
motion K(t) (13) in the case of the operator A(t)
given by Eg. (18) satisfies the same relation (16)
as the Hamiltonian itself:

g2
If(t) =n-' Si(t)+-.'y(xj+ jx) — f, p+ ', e'r',

24gp 24)()

Morse's potential z(t+im/y) =g(t) (38)

and some others of a similar kind (see, e.g. , Ref.
25, problems 68 and 70). The solutions in all
known cases satisfy the relation

q„(x+2'/a) = x„q„(x),

i.e., they can be considered as the Bloch states
with an imaginary period.

Therefore, we can suppose that for any potential
V(r} with an imaginary period the solutions of the
SchrMinger equation can be chosen in the form
g(r) = exp(o. r) g(r)„where g (r) is a periodic func-
tion with an imaginary period. [In the known

cases" g(r) is a hypergeometric function of a
periodical variable. ] However, this supposition
requires a more detailed study. Indeed, the ex-
istence of the usual Bloeh states is the consequence
of the fact that all irreducible unitary representa-
tions of the Abelian translational group are one-
dimensional, while in the case of the Hamiltonians
with imaginary periods we have to use nonunitary
representations of the translational group, among
which there are not only one-dimensional but also
multidimensional representations. As far as we

know the symmetry concerned was not discussed
earlier anywhere. (In the ca,se of the Hulthen po-
tential another group of symmetry, namely,
SO(2, 1) group, was discussed in Ref. 26.)

Although some properties of the loss-energy

Therefore the eigenstates of the oper at or@ (t)—
the functions (12)—are the loss-energy states:

y„(x; t) =—,,-„-y,(x; t)H„(Wne" [x -f/~;]),

(39)

q„(x; t+iw/y) =q„(x; t) epx[(n '+)(n i+)yw/y] . (40)

The function P,(x; t) is given by Eg. (20} with

e =0. The loss-energy spectrum is discrete:

Z„=(n+-', )(n+iy), ~=0, 1, 2, . . . . (41)

It is essential that the loss energies are complex,
th imaginary part being related to the damping
coefficient y. The integral of the motion (38) was
obtained in the case f=0, also in Refs. 16, 1V, and
20. States (39) in the case f=0 were constructed
in Refs. 18, 20, and 21, and in the ease of an arbi-
trary function f(t)—in Ref. I'I. These states were
called "pseudostationary""'" or "quasistation, -
ary. "" However, the symmetry of the Hamiltonian
and of the operator K(t), as well as relation (40),
were not discussed.

Formula(39) is valid only in the case e,)y. The
case vp (y is even more interesting from the
viewpoint of loss-energy states, and this case was
not studied earlier in any paper. If (dp p the
loss-energy states can be easily constructed from
states (32):

II",&(x; t) = ~Z; t) + ~-Z; t) = (2~) "'exp [-,' yt-ilPt --iye'2~'x'+(if/y) xe'~' (if'/4y') e'~—']

x ]exp [fife~'(x —f/(u2o)] + exp [-ironer. '(x —f/sP)]] . (42)
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The loss-energy spectrum in this case consists of
two continuous branches:

+@&

& = 2 PP y t' y) 0 -lt & m (43)

The functions U~ ' are the eigenstates of the oper-
ator

E~('= VQ+piy, -&V& ~. (44)

The most interesting 2nd complicated case is,
strange though it may seem, the case (dp 0 In
this case there exist many different complete sets
of loss-energy states corresponding to different
branches of loss-energy spectrum. The details
are given in Ref. 2V.

In conclusion of this section, we would like to
emphasize that loss-energy states can be con-
structed not only in the case of dissipative sys-
tems with Hamiltonians of the type (1), but also
in the case of quite usual Schrodinger, Dirac, or
Klein-Gordon equations describing the motion of
charged particles in uniform but time-dependent
electric and magnetic fields of the type E(f)
=E, tanh(at). Although the solutions in these cases
are known (see, e.g. , Ref. 28), their invariance in
respect to imaginary translations in time was not
noted earlier. It is possib. e that just the existence
of such an additional symmetry enables to obtain
exact solutions in the case discussed.

In the case 0&cop& y the loss-energy states are
again the eigenstates of the operator K'(f ); they
can be expressed in terms of the parabolic cylinder
functions. The explicit form of these states is
given in Ref. 27; here we give only the formula for
the loss -energy spectrum:

If we chose the coherent states corresponding to
the operator A(t) (23), then to the same approxi-
mation we would obtain again formula, (46).

Let us consider the case &&& =0, F', /8 y& -,'&u, ,
i.e., the case of a very weak external force, when
the energy of the steady forced oscillations is less
than the initial energy of the quantum oscillator.

Then the energy of the classical oscillator

((W&"&(f)))=(1 e &')'F', /8y'

monotonically increases, while the energy of the
quantum oscillator

(( W" (&t)))=(1- e&')'F,'/By'+-, '&d, e '&'

first decreases, and only when yt &1 it becomes
to increase. These differences of the behaviors
of the functions ((W "&(f))) and ((W&"'(f))) are shown
in the case F', /8y' =—,'&d, in Fig. 1.

Using Eqs. (fa) and (22) one can easily verify
that for t

lq„(~; f) l'-6(x-&el~i~)). (47)

may be different. To show this let us consider
the case of the strict resonance: co=Q. Usually
we are interested in the values averaged over the
period 2&&/&u. We sha. ll designate such average
values by the symbol (( )). Let us suppose that
y «c&. Choosing the function 5(t) in such a, manner
that 5(0) =0 and neglecting the terms of the order
y/&o, one can obtain the following expression for
((W(t))) in the coherent state given by Eq. (20):

«W(i)»= ~.e "'(l ~ I'+-') +(1-e ")'F:/8y'
(& &d )&&2 Re((ye&0')(e &'& e 2&'&)F /y-

y««&. (46)

V. RESONANCE IN COHERENT STATES

In |his section we obtain the formulas for the
energy of a damped oscillator being swung by the
harmonic force

f(f) =F,sin(&dt+q), F„&d, y =c&&nst.

We define the energy W as W =—', (z'+ &02+').

the quantum-mechanical average of this value in
an arbitrary coherent state (20) changes in time
as follows:

gCW&
uo

(o IW In&= W„(t)+(a&', /2n) e '&'. (46)

W„(t) is the energy of the cia.ssical damped oscil-
lator moving along the trajectory determined by
Eq. (9). Therefore, the steady regimes (when
f » y ') of the classical oscilla. tor a,nd of its quan-
tum-mechanical model in a coherent state coin-
cide. However, for small values of time, t ~ y ',
the behaviors of quantum and classical oscillators

FIG. 1. Time dependences of the averaged over the
period energies (( W{t ))) of the classical {a) and quan-
tun& (h) oscillators in the case o. =0; Eo&/(By ) =4 ~0
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p. (t) =(0+iy) e'". (48)

Therefore, for yt»1 (we suppose y«&u, )

[(2n, IO)I'=2 e&'Ie '&'- —, I' (2n, )!/(n, !)'. (49)

For np»1 one obtains, using Stirling's formula,

This means that for large t» y
' the wave function

of the damped oscillator is "spread" nearly uni-
formly over all energy eigenstates In, ) of the usual
(undamped) harmonic oscillator [the explicit form
of thestates In, ) is givenbyEq. (39) withy=f=o].
For example, in the simplest case a =0 and f(t) =0
one Ilas

(2n, +1I0)=0,

22n )

(2n. I0)=(~.n)"' ' '
(n )) '

4p" +!l

x ' — 2 "Oexp(—,yt+2i&o, not),
&a), —p(t)
ato+P,

4 1/2

I(2n. I0)I'=I e "Il-2e "'I'"'
( wn,

(5o)

(xIp)=(m, (u, /n)"'exp[-2 m, (o, x' +(2m, (oo)"'Px

--''--'IeI']. (51)

A simple calculation yields the following expres-
sion for (pI a):

Consequently, although the average value of the
operator W tends to zerowhen t ~ [iff(t) =0],
the probabilities I(2n, IO)I' are not equal to zero
even for np»1; moreover, they have the same
order of magnitude as the value [(OOI0)['.

Let us calculate also the transition amplitude
(PIa) between the coherent state Ia) [Eq. (20)]
of the damped oscillator and the coherent state
IP) of the usual undamped oscillator with the mass
m, and the frequency ~, . The state IP) has the
following forDl ':

(P la) =~2[(m, (o,ming'/(p, (t)+ m, (u,)"']
xexp(--'(I aI'+IPI') --,'(P*'+a') --,'Qe'(t) e' ' —(2mB)"'az(t)+i&(t)

+2 [p, (t)+m, ",] '[(2mQ)~'a —(mn)~'5+(2m&v, )'~'P*]');

nz =e'~' n = ne '"' 5 = ae '"' (52)

(m, &o,mA)"'

lg' ~ ~ &0/2
xexp ~ +~2+~Qg g 2~Q 1/ ~g g ~~ g ~ ~ 0 0 2 50/

2)m, ~.rnid)"*(~2ii-lt))
Ilp [~&(t) m2(P]&/2 (53)

If one expands this formula in a power series of p*,2'3 then the following expression for the values (n, I a)
(In, ) means the nth eigenstate of the undamped oscillator) can be written

Let us note that for large t-~ the function 6(t)
behaves as exp(yt) [see Eq. (18a)]. Therefore, if
mp =1, as in the previous case, then the argument
of the Hermite polynomial has the asymptotic form
-25e ~', and formula (53) can be simplified (we
neglect the terms of the order y/e, ):

e "ft 'I 1/2

&~.Ip)=(2' "'
np'.

xexp{-—,
' [Im(~2a —5)]'+i ReaIm(a —~25)

+ilm5 Re5+ig(t))H„(-25e ~').

(54}

Suppose now that at the moment t0» p the ex-

ternal force is switched off together with the fric-
tion force. Then one may think that the real mass
of the oscillator is m, =exp(2yt, ) [using the term-
inology of the quantum field theory, one would say
that m =1 is the mass of an "undressed" oscillator,
and m, =exp(2yt) is the mass of a "dressed" oscil-
lator arising due to the interaction with the ex-
ternal world; the interaction is described pheno-
menologicallyby the friction coefficient y]. In
this case one must calculate not the values(n, Ia)
[Eq. (54)], but the values(n, Ia), where In, ) is the
eigenstate of the undamped oscillator with the mass
exp(2yt, ). The formula for the values(n, Ia) is
very different from Eq. (54) (evidently, one should
calculate this transition amplitude at the moment
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t=t„since for t &t, the probabilities would not change in time):

1/2

{n,)o)={r'On,!) '~'exp -~1~2@ —5I'+ lm(+5*)+ —,'iRe5lm5+zP(t)'e„'-5
~sl

» y

(55)

These examples show that the physical interpre-
tation of the results obtained may be different de-
pending on the choice of the states which are as-
sumed to be "physical" ones. Therefore, we have
to discuss the problem of the physical significance
of the model considered above.

VI. DISCUSSION

In the previous sections we have obtained for the
first time several new complete systems of solu-
tions of the Schrddinger equation with Hamiltonian
(1) for all possible relations between the param-
eters y and co„and we think the results obtained
are quite interesting themselves. Now we want to
discuss the physical content of the model con-
sidered above, especially its relation to the real
quantum damped oscillator.

Before discussing this problem let us note that
there exists the real physical problem which can
be described exactly by means of the Schrodinger
equation with Hamiltonian (1). This is the problem
of the motion of a particle with the time-dependent
mass m(t) = m, exp[2I'(t)] in a uniform nonstation-
ary gravitational field. Such a problem can arise,
for example, in the gravitational theory and in
studying the early stages of the evolution of the
universe; see, e.g., Ref. 29. Besides, unstable
systems can be also described with the aid of the
concept of the time-dependent mass. "

As to the real dissipative systems, they are de-
scribed usually in terms of the density-matrix
formalism, which explicitly takes into account
the physical nature of the dissipation —the inter-
action of the system under study with a large heat
reservoir [see papers" "and references therein] .
Besides this approach there exist also several
other models describing quantum dissipative sys-
tems. One of them is the model considered above;
it was studied also in Refs. 13-23, 37, and 38. In
Refs. 39 and 21 the friction was introduced into
quantum mechanics with the aid of nonlinear gen-
eralizations of the Schr5dinger equation. An ap-
proach based on exploiting non-Hermitian Hamil-
tonians was studied in Ref. 40.

We would like to emphasize that all these models
by no means contradict the postulates of quantum
mechanics (although in some papers the opposite

claim can be found). For example, Hamiltonian
(1) is Hermitian, all solutions of the Schrodinger
equation with this Hamiltonian are normalized, and
the uncertainty relations for the operators of the
coordinate and the generalized momentum are ful-
filled [see Eq. (11)]. Gf course, some properties
of the model of a quantum damped oscillator con-
sidered above seem rather strange and unexpected.
For example, we see that for t » y 'the Quctu-
ations of the coordinate disappear, and high-energy
levels (in the representation of the quantum num-
bers of the undamped oscillator) are excited. But
there is no reason to say that these results are
wrong. To give the correct conclusion one should
analyze in detail the problem of measurements of
observables in the case of dissipative systems and
the problem of the correlation between the ob-
servables and quantum-mechanical operators in
this case. For example, what operator corre-
sponds to the energy of the damped oscillator —the
operator TV given in Sec. V, and how can this en-
ergy be measured? Or another example: We see
that(4R'}(&x') 0 when t-~ To concl.ude whether
this relation is incompatible with quantum rnech-
anics or not, one should understand what do we
measure in experiments —the velocity or the gen-
eralized momentum? If we measure the general-
ized momentum, then there is no contradiction
with quantum mechanics. Hamiltonian (1) is in-
correct only if we can measure the velocity and if
the relation (b,R') {bx') ~ 8'/4m' must hold
(m =const). But in such a case, why can we not
measure simultaneously all three components of
the velocity in the presence of a magnetic field?
Although these problems were discussed slightly
in some papers, "'"'"'"their complete solutions
have not been obtained.

If all the models mentioned above are correct (in
the sense that they do not contradict the principles
of quantum mechanics) and nonetheless lead to dif-
ferent physical results, although all of them were
constructed to describe the same system (a quan-
tum damped oscillator), one can ask what is the
reason for such a strange situation. We believe
that this situation is by no means strange but, on
the contrary, quite natural, because it is the con-
sequence of the general fact of the nonuniqueness
of the quantization of the given classical system.
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Indeed, what do we mean when we say that we
quantize the given classical system described by
an equation of the motion of the type x =F(x, x, f)?
One of the possible definitions based on Feynman's.
approach to quantum mechanics4' may be the fol-
lowing. To quantize the classical system means to
replace the classical trajectory x(t) by the tran-
sition amplitude (the Green's function) G(x, t; x„ t,).
But to calculate Feynman's integral to determine
the function G one should know the classical La-
grangian (or Hamiltonian) leading to the given
classical equation of the motion. At the same time
it is well known that the same classical equation of
the motion can be obtained from many quite differ-
ent Lagrangians. 4'43'44 It can be shown that dif-
ferent Lagrangians lead to substantially different
Green's functions; see Ref. 45, in which the prob-
lem of the nonuniqueness of the quantization of the
given classical system was considered in detail.
Therefore, to know only the classical equations of
the motion is not sufficient to quantize the. classi-
cal system uniquely, but some additional informa-
tion is needed. In the case of the usual quantum
systems (without dissipation) this additional infor-
mation consists of the implicitly imposed require-
ment that the Hamiltonian must coincide with the
energy of the system: H=p' /2 I+V( x). When this
requirement cannot be fulfilled, as in the case of
dissipative systems, for example, then we have no

generally accepted rule of quantization, and dif-
ferent methods of quantization lead to various dif-
ferent quantum models of the same classical sys-
tem.

For example, if one requires that the equation
of the motion x+2yx+co,'x=0 would be the con-
sequence of a certain system of equations describ-
ing the interaction of the usual (undamped) oscil-
lator with some reservoir consisting of a large
number of particles in the equilibrium states, then
the quantization leads to the density-matrix de-
scription of the quantum damped oscillator given
in Refs. 31-36. Making other additional conjec-
tures on the physical sense of this equation, one
can obtain other quantum models corresponding to
the same classical equation —in particular, the
models considered in Befs. 13-23, 3V, and 38 and
in the present paper or the models given in Refs.
3S or 40. All of them are correct, but they de-
scribe different physical systems. In particular,

the model based on Hamiltonian (1), perhaps de-
scribes the motion of the particle with a time-
variable mass rather than the system in Refs.
31-36. In any case all the models mentioned above
deserve studying because for each of them there
undoubtedly exists a real physical problem to which
this model can be applied.
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APPENDIX

Let us consider some curious consequences of
the formulas of Sec. II in the case of the free mo-
tion with damping, i.e., when &o, =f(t) =0. Accord-
ing to Eqs. (10) and (14), in the limit t- ~ the
widths of the Gaussian wave pa, ckets (coherent
states) tend to the constant value o' =-,' tA'+(2yX) '] .
Therefore, they cannot be less than p';„= (2y) '. In
the dimensional units one obtains (b,%');„=5/2my,
where m is the mass of the particle. If one sup-
poses that the friction arises due to radiation
losses, then y =2e'&@20/Smc', where td, is a cer-
tain "proper frequency" of the particle. It is
natural to assume &o, = rn c'/k Then o.ne obtains
the result

It is well known that particles cannot be localized
in the regions with the dimensions less than Comp-
ton's length because of the effect of pair creation.
Formula (A1) shows that the radiation damping in-
creases the lower limit of the region of the pos-
sible localization of the particle to a whole order.
Of course, these reasonings are very speculative,
but perhaps they contain a grain of truth.

Moreover, it is well known that in the case of
the free motion without friction any wave packet
diffuses because of the uncertainty relations. Per-
haps the interaction of the particle with the vacuum
fluctuations of the electromagnetic field (the radi-
ation friction and the damping coefficient y can be
considered as the phenomenological description of
this interaction) prevents such a diffusion.

~E. Schrodinger, Naturwiss. 14, 664 (1926)
2R. J. Glauber, Phys. Rev. Lett. 10, 84 (1963); Phys.

Rev. 130, 2529 (1963); 131, 2766 (1963).
3J. R. Klauder and E. C. G. Sudarshan, Fundamentals

of Quantum Optics (Benjamin, New York, 1968).
4J. S. Langer, Phys. Rev. 167, 183 (1968); M. M. Nieto,

ibid. 167, 416 (1968).
J. C.' Botke, D. J. Scalapino, and R. L. Sugar, Phys.



V. V. DODONOV AND V. I. M AN'KO 20

Rev. D 9, 813 (1974); 10, 1604 {1974).
D. Stoler, Phys. Rev. D 1, 3217 (1970); 4, 1925, 2309
(1971); 11, 3033 (1975); D. A. Trifonov, Phys. Lett.
A 48, 165 (1974).

~E. Y. C. Lu, Lett. Nuovo Cimento 2, 1241 (1971); 8,
630 (1973); H. P. Yuen, Phys. Rev. A 13, 2226 (1976);
F. T. Hioe, J.Math. Phys. 15, 445 (1974).

SI. A. Malkin and V. I. Man'ko (unpublished); V. I.
Man'ko, in Coherent states in quantum theory (in Rus-
sian) (Mir, Moscow, 1972), p, 5.

9H. R. Lewis and W. B. Riesenfeld, J. Math. Phys. 10,
1458 (1969).
I. A. Malkin, V. I. Man'ko, and D. A. Trifonov, P. N.
Lebedev Institute of Physics (Moscow) Reports, No. 5,
20, 27 (1971);J. Math. Phys. 14, 576 (1973); Phys.
Rev. D 2, 1371 (1970).

~~V. V. Dodonov, I. A. Malkin, and V. I. Man'ko, Teor.
Mat. Fiz. 24, 164 (1975); Int. J. Theor. Phys. 14, 37
(1975); J. Stat. Phys. 16, 357 (1977).

~2I A Malkin, Sov. Phys. Dokl. (to be published).
P. Caldirola, Nuovo Cimento 18, 393 (1941).
E. Kanai, Prog. Theor. Phys. 3, 440 (1948).

~5W. E. Brittin, Phys. Rev. 77, 396 (1950).
~~W. H. Stevens, Proc. Phys. Soc. 72, 1027 (1958).
~~E. H. Kerner, Can. J. Phys. 36, 371 (1958).

F. Bopp, Z. Ang. Phys. 14, 699 (1962).
9G. J. Papadopoulos, J. Phys. A 6, 1479 (1973); 7, 183
(1974).

2 I. R. Svin'in, Teor. Mat. Fiz. 22, 97 {1975).
2~R. W. Hasse, J. Math. Phys. 16, 2005 (1975).

L. H. Buch and H. H. Denman, Am. J. Phys. 42, ,

304 (1974).
3V. W. Myers, Amer. J. Phys. 27, 507 (1959).
4V. I. Ritus, Zh. Eskp. Teor. Fiz. 51, 1544 (1966)
[Sov. Phys. JETP 24, 1041 (1967)]; Ya. B. Zeldovich,
ibid. 51, 1492 (1966) [ibid. 24, 1006 (1967)].

25S. Flugge, Practical Quantum Mechanics (Springer-
Verlag, Berlin, 1971).
6B. I. Dunlap and L, Armstrong, Jr., Phys. Rev. A 6,

1370 (1972).
V. V. Dodonov and V. I. Man'ko, Nuovo Cimento B 44,
265 (1978).

28N. B. Narozhny and A. I. Nikishov, Yadernaya Fiz. 11,
1072 (1970).

SD. A. Kirzhnits and A. D. Linde, Ann. Phys. 101, 195
(1976).

3 D. M. Greenberger, J. Math. Phys. 15, 395, 406 (1974).
I. R. Senitzky, Phys. Rev. 119, 670 (1960).

32J. Schwinger, J. Math. Phys. 2, 407 (1961).
33R. P. Feynman and F. L. Vernon, Ann. Phys. 24, 118

(1963).
34M. Lax and W. H. Louisell, IEEE J. Quantum Electron.

3, 47 (1967).
35R. J. Glauber, in Lectures at the International School

of Physics "Enrico Fermi, "XLII Course, Varenna,
Italy, 1967.

3~G. S. Agarwal, Phys. Rev. A 4, 739 (1971).
37A. Tartaglia, Lett. Nuovo Cimento 19, 205 (1977).

P. Caldirola, Lett. Nuovo Cimento 20, 589 (1977).
~M. D. Kostin, J. Chem. Phys. 57, 3589 (1973).
H. Dekker, Z. Phys. B 21, 295 {1975); Phys. Rev.
A 16, 2126 (1977).

4~P. Havas, Nuovo Cimento Suppl. 5, 363 (1957); Acta
Phys. Austriaca 38, 145 (1973).

2R. P. Feynman, Rev. Mod. Phys. 20, 367 (1948);
R. P. Feynman and A. Hibbs, Quantum Mechanics and
Path Integrals (McGraw-Hill, New York, 1965).

43D. G. Currie and E. J. Saletan, J. Math. Phys. 7, 967
(1966); Y. Gelman and E. J. Saletan, Nuovo Cimento
B 18, 53 (1973); G. Caratu, G. Marmo, A. Simoni,
B. Vitale, and F. Zaccaria, Nuovo Cimento, B 31, 152
(1976).

4 J. Douglas, Trans. Am. Math. Soc. 50, 71 (1941).
V. V. Dodonov, V. I. Man'ko, and V. D. Skarzhinsky,
Kratkie soobsheniya po fizike FIAN, 5, 27 (1978) [Sov.
Phys'. -Lebedev Institute Reports (1978)];P. N. Lebed-
ev Institute of Physics, Preprint No. 216 {1978) (to
.be published in Hadronic Journal).


