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Coherent dynamics of N-level atoms and molecules. III. An analytically soluble periodic case
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By employing an analogy with a spin-J system in a constant magnetic field the authors obtain a simple
soluble model for stepwise laser excitation of an N-level system {N = 2J + 1), including analytic treatment of
Doppler detuning and of ionization loss. The solutions are periodic and hence permit complete population
inversion. A simple graphical realization of the population dynamics, a generalization of the Feynman,
Vernon, and Helhvarth vector model of the two-level Bloch equation, is then described.

INTRODUCTION a level not included in the iV-level sequence):

The dynamics of incoherent radiative atomic ex-
citation, known since the days of Einstein, dif-
fers qualitatively from the behavior of systems ex-
cited coherently: retention of phase memory dur-
ing coherent excitation leads to oscillatory or
fluctuating excited-state populations, whereas in-
coherently excited populations typically tend mono-
tonically toward equilibrium values. '

The increasing experimental study of single-
and multiple-laser excitation, in atoms and in
molecules, ' brings growing interest in simple
analytically soluble theoretical models of the ex-
citation dynamics. Over the last few years
many authors have explored aspects of one such
model, the N-level atom (or molecule), which
idealizes a linkage of excitations driven siraultane-
ously be monochromatic light tuned to (or near)
the Bohr resonance frequencies. (Some authors
have examined general formalism, " ' others
have examined numerical and analytical results
applied to molecular multiphoton excitation,
while others have described simple analytically
soluble cases. ' ') In elementary form the model
expresses the population P„(t) of level n at time i
(for 1 ~n ~N) as the absolute square of a complex-
valued probability amplitude C „(t) obtained as the
solution to the rotating-wave-approximation (RWA)
time-dependent, Schrodinger equation

i—„C„(f)=P W„.C.(t) .
For the simple cases considered in the present
paper, ' stepwise excitation of nondegenerate
levels, the a%A Hamiltonian W' is tridiagonal.
Diagonal elements $V„„have as their real parts the
cumulative detuning A„of n —1 successive lasers
away from the corresponding sum of n —1 Bohr
frequencies, and have as their negative imaginary
parts half the probability loss rate y„ from level
n (e.g. , ionization loss or spontaneous emission to

The nonzero off-diagonal elements of 8', those
linking adjacent levels, are proportional to the di-
pole transition moment d„ linking levels in n and
n+ 1 and to the (possibly complex-valued) electric
field amplitude B„whose carrier frequency mat-
ches the Bohr frequency for the n- n+ 1 transition:

W„„,( —---(1jh')d„h„*=W„",) „

Following now common usage, we refer to the pa-
rameter Q„as the Habi frequency for step e. Thus
the N-level atom comprises a sequence of N —1
values for the parameters A„and of N values
for the parameters ~„, y„. In principle each of
these quantities may be fixed arbitrarily: the
Habi frequency by adjusting laser intensity, the
detuning by adjusting laser frequency, and the
loss, if any, by imposing additional ionizing lasers.
This N-level model, though highly idealized as a
model for laser excitation, provides useful insights

'

into the details of coherent excitation and into the
relationship between the physically adjustable pa-
rameters and population variations. '

Equally im-
portant, simple analytic solutions can provide a
valuable check upon purely numerical methods of
solution.

A traditional method for solving systems of lin-
ear first-order ordinary differential equations
with constant coefficients, Eq. (1), proceeds
through the construction of eigenvectors of the
coefficient matrix 5':

g(W„„-~„&„.)(m i~,) =O.

Using these, one readily constructs the time evo-
lution matrix exp( —i Wt) and so obtains the ex-
pression for probability amplitude C„(t) as
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C.(f) =Q p &n I & )exp(-i&, &) (x„ I m&C (0) .
k m

(5) with a specific magnetic sublevel labeled by eigen-
value M of J,:

I. SPIN MODEL

Our model rests upon mathematical analogy with
a spin-J system in a constant magnetic field. We
identify the number of atom levels N with the spin

, degeneracy 2J + 1, and we identify the nth level

TABLE I. Analytic N-level solutions.

Eigenvectors

Q()

Qovn
Q (4 -2) i/2

Qon

Q, [n(W- n)]"'

0
0
0

2n —1

4on on

Chebyshev
Hermite
Legendre
Laguerre

Jacobi

This formula expresses the solution C„(t) as a
discrete Fourier series, with frequencies equal to
the eigenvalues Ak of the matrix O'. One readily
sees that, in general, populations vary periodical-
ly in time only if the eigenvalues are commensur-
able (exceptional cases of periodicity occur when
eigenvector components vanish). Thus, although
the two- and three-level resonant (6„=0) lossless
(y„=0) atoms are strictly periodic, the solutions
for N) 3 are not generally strictly periodic. 32 33

(Solutions will, of course, come arbitrarily close
to repetition over sufficiently long time. ) lt is
natural to ask if general cases can be prescribed
which are periodic for N&3. The present paper
describes such a case.

The constructive algorithm presented in Eqs. (4)
and (5) poses no difficulty for a digital computer,
and one can in practice readily evaluate numerical
solutions for arbitrary values of the model param-
eters and for N as large as several tens. Never-
theless, it is useful to know particular parameter
choices which admit tractable analytic solutions,
i.e., those for which the eigenvectors are expres-
sible in terms of well-known special functions.
Table I lists the previously reported ~' 3 analy-
tically soluble cases and names the functions
which provide the eigenvectors in these cases.
For completeness we include, as a final line, the
present-model solutions. In none of the previously
studied cases are the solutions generally strictly
periodic for N& 3. (An exception occurs for level
3 of the 5-level atom having equal Rabi frequen-
cies.32'33) Furthermore, none of the previously
studied cases include probability loss. The follow-
ing sections describe a simple analytically soluble
case which is strictly periodic and allows both
detuning and probability loss of a special form.

,'(i + ic)v'n(-N - n) .
Thus this model represents the sequence of Babi
frequencies

n„=n, /n(N -n), (10)

where Qp is an arbitrary complex-valued scale
factor; the detunings and loss rates vary linearly
with excitation n: .

= plDp +Dp p =spp
I

where &p and Dp are arbitrary real numbers and

y, is a non-negative real number. [Do=d —2a(N
—1)]. It should be emphasized that the formal
analogy with a spin-J system places no restriction
on the energy levels Z„(n = 1, . . . ,N) of the N-
level atom. The energy levels and associated Bohr
frequencies do not appear explicitly in the above
formalism, and hence are entirely arbitrary.

To construct eigenvectors of 8'we need only
recognize that W, acting upon basis states INn)
or I JM), behaves a.s an angular momentum vector
having Cartesian components g, b, c. We intro-
duce a coordinate system oriented along this vec-
tor, i.e. , rotated by Euler angles (o. , P, y). The
length of W is, (a + 5 + c )'i', so that in the new
(primed) coordinate system we have the simple
expression

Wl (
2 + 52 + c2)1/2gl +d (12)

The matrix 5' is diagonal in this aligned coordin-
ate system. The eigenvalues are simply

N=2J+ 1, J= ~(N —1),
n= )VI+-8+ 1, M =n--,'(N+ 1) .

We thereby create a one-to-one correspondence
between basis states INn) and those of a pseudo-

. angular-momentum representation I ZM):

INn) = I/M) .
It is now a simple matter to evaluate matrix ele-
ments of the operator

kS'=aJ, +bJ„+cJ,+d

first in the JM basis and then, by change of nota-
tion, in the Nn basis. The matrix W is tridiagonal,
with diagonal elements

Q„„=Ma+d

=na+ [d —,a(N —1—)]

and off-diagonal elements

W„,i, „=W„"„,) ——2(5 +ic)v'J(J+ 1) -M(M + 1)
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lid( 2+ b
2 +c 2)~ i 2+ d

=—neo+ A .

That is, the eigenvalues are evenly spaced at in-
tegral values of the basic frequency

( 2+b2+ 2)2i2

(14)

The additive constants d and A are arbitrary: they
express the choice for zero point of energy levels.
The simplest choice is A =0, so that ~„=nh.o.

Recognizing that a coordinate rotation diagonal-
izes S', we can immediately express the eigenvec-
tors

ikey

in terms of rotation matricespP:

0 2 0

i Z„) =Q I Nn "iD„.gn, P, 0),
n'

where

(15)

d=—2(N —1), !if = n —-2(N+1), 1'=n —2(—N+1).

Fl:G. 1. Representation of the Hamiltonian W as an
angular momentum vector: the component in the X-Y
plane is the Rabi frequency Op. the Z component is 6p
—gp p. The Euler angles are e, P, and A, p t;

=arctan[Im(Q p)/Re(Qp)],

P = arctan[(c'+ b')' '/a]

=arctan[ I Qp I /(t«p ziyp)] .
In turn we can write the probability amplitude
C„(t) as

(16)

C„(t)=Q D„„,(n, p, p)exp( —i!if'ypt —idt)

xD„,„„(c2,p, p) C „„(p),
where n'=—M'+ J+1, n" =—M" +J+1. All ampli-
tudes here include a common time factor exp(-idt)
which originates with our (arbitrary) choice of
energy-level zero point; we can incorporate this
phase into C„(t). The remaining factor exp(-iM'Xpt)
represents a rotation by angle Apt about the figure
axis. If we now assume all population resides ini-
tially in level np, so that C„..(0) = 6~.„, the pre-
ceding expression becomes

C~(t) =Q D~««1 (n «p«i«pt)D21 ~p(oi«p«0)* ~

n'

Thus we have the solution expressed in terms of
the rotation matrices; these in turn can be writ-
ten in terms of Jacobi polynomials of argument
cosP together with powers of cos —,'(P) and sin —,(P):

(d+ lid )!(J' —bf )!

The Euler angles specifying the coordinate rotation
are

n =arctan(c/b)

Figure 1 portrays the relationship between the
Hamiltonian 8', regarded as an abstract vector,
and the Euler angles n, P, and y=A. ot: the mag-
nitude of the projection of 8' onto the X-Y plane
is the Rabi frequency Qp, where Re(Qp) is the X
component, Im(Q, ) the y component; the detuning

+p and loss y, , are responsible for the Z compo-
nent of W. The figure axis Z" about which steady
turning occurs makes an angle P with the vertical.

II. RESONANT EXCITATION

Consider the special case of resonant lossless
excitation, ~0 ——y() —-0. Because the eigenvalues
are evenly spaced the probabilities are periodic
in time with frequency Qo. That is, the Rabi fre-
quency serves in this N-level atom, as it does in
the two-level atom, both as a measure of interac-
tion strength and of population oscillation frequen-
cy. Note that if 00 be fixed then the period is in-
dependent of the number of levels N: population
flows from level 1 to level N in time 7 =w/Qp.
Figure 2 illustrates this population flow.

Unlike other analytically soluble cases of the
N-level atom, the present choice of Rabi frequen-
cies Q„=Qpv'n(N —n) leads to complete PoPula-
tion inversion: if all the population resides in
level 1 at time T=0, then at time =2/ vQthpe

population is entirely in level N. The combination
of periodicity and complete inversion leads to an
N-level "area theorem": let all N —1 Rabi frequen-
cies share a common time dependence,

Q„=Qpv'n(N n)f(t) . —

«p)N'««««( «p) «««' 21-
px&

N'- N«v'+ hf
&( p) (20)

Then by defining a new timelike parameter

dT=dtf(t) «
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90' rotation of a cone whose height is +M, corre-
sponding to level n, produces a cone of height
-M, corresponding to level N —n. Note that when
N is an odd integer population confined at t =0 to
the middle level never accumulates entirely in any
other level.

Y

IV. DETUNING

X,Z"

FIG.. 4. Representation of population change as a
precession of the initial population cone about the axis
Z" of the Hamiltonian vector W. Here there is no

detuning or loss and Qo is real, so Z" coincides with
the X axis.

piete inversion. Figure 4 illustrates this progres-
sion.

It is interesting to note that if population begins
in level n of an N-level atom, then the m pulse
places all of the population into level N -n (see
Fig. 5). No other levels ever contain all of the
population at one instant in time. It is easy to
understand this very striking periodic flopping be-
tween levels n and N-n from the vector model:

aThe span-J model permits cumulative detunings
which increase linearly with level number:
= &On. Such detunings correspond to an idealiza-
tion in which each laser is detuned by the same
frequency, as would occur with Doppler shifts for
lasers of very nearly equal frequencies, The de-
tunings shorten the period of population oscilla-
tion, in the same way as occurs for the two-level
atom: The frequency A.o is the rms value of 00
and Ap.

the
The presence of detuning shifts the body ax' fy axis 0
e vector 5" toward the Z axis. This means a

corresponding tilt toward the vertical of the pre-
cession axis of the population cone for the vector
model. hen this occurs complete inversion
onger takes place. As we readily visualize from

the vector model, an increase in detuning forces
the population oscillations to remain within a de-
creasing band of levels. In the limit of very I'arge
detuning (small angle P) the population cone pre-
cesses about the Z axis and no population changes
occur.

0-

0-
1

0-
1

0-
0 4

FIG. 5. Effect upon
populations P„(t) for an
N=9 level atom of vary-
ing initial conditions.
Successive frames show
evolution of system pre-
pared, respectively, in
levels 1, 2, 3, 4, and 5.
Labels identify curves for
specific levels n.

0-
0
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V. IONIZATION

The angular momentum model also allows prob-
ability loss proportional to level number: y„=yon.
The losses give complex values of the population
pulsation period A.o leading, in turn, to solutions
which decay exponentially with time. The total
probability, summed over all N levels, falls expo-
nentially, modulated sinusoidally. The angle P,

and thence an argument of the rotation matrix, be-
comes complex (pure imaginary in the absence of
detuning. )
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