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A semiclassical treatment is given for the serial, near-resonant interaction of three waves in seven
equivalent four-level atomic or molecular systems. Explicit equations are presented for the complex
susceptibilties for the three waves, valid for tpT„which contain implicit ac Stark-shift and -splitting
information, and can be separated into one-, two-, and three-photon contributions. For the case of a weak
third or terminal wave, equations for the degree of ac Stark shifting and splitting are found and indicate that
the three-photon or triple-resonance contribution is immune to the optical Stark effect if the remaining two

.waves are tuned to at least two-photon resonance conditions. The conditions for Doppler-free triple resonance
are outlined, and it is shown that an equivalent ac Stark broadening may exist but may also be minimized

by an appropriate choice of field intensities.

I. INTRODUCTION

V

Multiple-wave or multiphoton interactions in
atomic and molecular systems are of continual
interest from the standpoint of linear and non-
linear spectroscopic applications, energy. transfer
studies, laser induced reactions, and coherent
source generation. Two-wave interactions in two-
and three-level systems have been intensively
studied, both theoretically and experimentally,
during the past decade leading to new insights
and applications. For example, saturation or
Lamb dip spectroscopy, Doppler-free two-photon
absorption spectroscopy, near resonant stimu-
lated Raman emission, optically pumped lasers,
line and mode coupling in lasers, and double
resonance effects are all. characterized by at
least two waves interacting with a medium in a
naturally occurring or constructed situation. "

Similarly, three-wave interactions exist under
varying conditions and configurations, some of
which are graphed in Fig. 1. In Fig. 1(a) is
shown a three-photon absorption event, which has
also been observed under Doppler-free condi-
tions, ' and could illustrate a three-photon or
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cascade emission which might exist in, for ex-
ample, multiline CO lasers and exists in optically
pumped far-infrared (FIR) lasers. 4 Figures
1(b)-1(d) show two-photon pumping, including
hyper-Raman, which has been used in alkali
metal vapors and CO, laser-pumped ir and FIR
lasers. ' ' Figures 1(e) and 1(f) illustrate cases
of normal one-photon pumping with a laser or
stimulated Raman emission followed by a cascade
transition, observed in optically pumped D,O and

, HCl and forming three of the four steps in the
four-wave parametric mixing schemes in the

alkali vapors used to generate tunable near in-
frared radiation. ' " Figure 1(g) illustrates
another variation of one-photon pumping, a situa-
tion which exists in optically pumped FIR lasers,
ir -microwave-microwave tr iple resonance, and
could exist in He-Ne lasers if the 1.15-p,m,

0

6328-A, and 3.39-p,m lines interacted simulta-
neously. " " Situations involving noriserial or
sequential transitions and parametric interactions
also exist but will not be discussed.

It is the objective of this paper to develop and
discuss the analytical solution of the three-wave
four-level system problem, with particular
emphasis placed on field coupling coefficients
and ac Stark shifts and splittings which may easily
occur under the conditions of strong field inter-
actions. Previous treatments of these interactions
were based on a simple one-photon rate equation
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(b)

(e) (f) (g)

FIG. 1. Seven possible configurations involving the
sequential interaction of three photons or waves.
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analysis or a perturbation treatment of a three-
wave interaction, the I.atter of which could only
yield the ac Stark shifts to lowest order. Alter-
nate treatments which do contain the ac Stark
shifts and splittings have been presented, but
were restricted to full res ance. ' I o t ast,
soluable situations exist for the semiclassical
approach which have the capability of yielding
field coupling coefficients and Stark shifts val. id
for higher-order interactions. In Sec. II, the
basic equations, assumptions and solutions ap-
propriate to the three-wave four-level system in

Fig. 1(g) are outlined. In Sec. III, the transforma-
tion of these solutions appropriate to the other
configurations in Fig. 1 is discussed along with
optical. -polarization effects. Section IV contains
a discussion of. the solution presented in See. II,
followed by a summary and conclusions of the
treatment and major results.

The density matrix p for this system contains
16 elements, four population or diagonal el.e-
ments and 12 off-diagonal elements of which only
six need be considered because of the Hermiticity
of p." Using the electric-dipole approximation
with nonzero transition-dipol. e moments p», p»,
and p.34, the equations of motion. for the off-di-
agonal elements appropriate to Fig. 2(a) are,
from Schrodinger's equation Sp/Sf = [H, p]/ih:

Bt
-- '"12' T P12

12

P„E(p„p„-)+p „E.p„
ik

bt
-- '"l3' T P13

13

+ I 23 EP12 I 43 P14 ~12 P23.
ih

H. DENSITY-MATRIX TREATMENT 14 T P14

The energy-level structure and wave interac-
tions to be treated are shown in Fig. 2(a) along
with the state, frequency, and field labels used
below. It is clear from this diagram that there
may exist three one-wave interactions or transi-
tio«(l 1&- I2&, I2& - I6& and I3&- I4&), two two-
wave interactions (II)- 13& and 12&-14)) and one
three-wave interaction (~ 1)- ~4)), all of which may
be important simultaneous l,y.
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8t
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34
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- P44) —P 32

' EP24
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where the phenomenological T, dephasing times
are labeled as T;& and the transition frequency
is defined in terms of the eigenenergies E; as
0;~ =(E; —E&)/h and has sign dependence.

Similarly, the equations of evolution for the
diagonal elements are found to be

e ~Pll pl. l Pll p'l2 E (P12 P21)

e~p„p„-p»
~t T22

(P21 P12) p'23 E(P32 P23)
N

FIG. 2. (a) Energy-level notation and field labels for
the configurations under consideration. (b)—(d) are al-
ternate interaction orderings involving the same fields.
Levels are assumed nondegenerate.

sp.~ p„-p3, + p23 ~ E(p„-p„)—P34 ~ E(p42 —p„)
T33 Sk

e
p44 p44 +

p'34' E(p43 p34)
~t T44 N
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where the phenomenological T, decay times are
- labeled as T;q with equilibrium diagonal elements

e
Pw

The solution of these coupled equations is made
tractable by introducing certain assumptions.
First, we seek solutions on a time scale which is
long compared to the T, values which mean tran-
sient nutation effects wil. l be ignored. Second,
since we are interested specifically in near res-
onant interactions, the rotating-wave approxima-
tion will. be assumed along with a near resonant
approximation, the effect of which is to ignore
the alternate absorption/emission sequences,
examples of which are shown as graphs in Figs.
2(b}-2(d). The driving field is chosen to be of the
form E =E, cosa, t+E, eos~, t+E, cosy, t with
amplitudes E~ varying, at most, slowly on a T,
time scale. With these approximations and as-
sumptions, inspection of Eqs. (1)-(6) results in

the identification of the dominant Fourier coef-
ficients as p» —=p, e '"~', p = p e' "' "~"

assumed steady state (in an adiabatic sense) com-
plex amplitude. " Equations (l)-(6) are reduced
to a set of algebraic equations by substituting the
assumed Fourier coefficients into these equations,
multiplying through by the conjugate of the phase
factor of p~& and performing a short time average
on the right-hand side to eliminate rapidly oscil-
lating terms. The subsequent solution of these
algebraic equations is tedious but straightforward.

The resulting solutions will be presented as
complex susceptibilities X& for the ith wave.
These are identified and extracted from the
driving terms in Eqs. (V)-{10)by noting that those
terms should be of the form @&I& where the
"Beer's" coefficient is given by c4; =I'2, lm(g;) and
the flux is I; =cco~E&~2/2k&v&. Thus, for example,

one photon
or 1aser

1 12 +1 / 121

2 Q23 +2 / 23 i

3 34 3 / 349

(12)

(13)

(14)

R» = Q13 —(&d1 —QJ2) -2/T13 ~ (15)
two photon
or Raman R24 = Q„- (1o3 —1112) -i /T„; (16)

three photon T =Q„- (&F3+&@,—&o2) -i/T„;.

the S„' can be expressed as follows:

1 A' "
18,' = —1+ ' {1—E3) —+-

L3 ~ D ' L3

(18)

A', 1—
L3R,4D „L, R„

(20)

where

A'

Qg3 L] Lo T

~A' ~A' ~A'
(22}

and

D = (1- E,)(1 —F3}— '- ' —+—

A, = jj.» ~ E,/2h, A, = P, 23
~ E2/2II and A, = P,34

~ E3/M
and complex detuning functions defined as

X3 (» [2 P34 ~

3 '0

In terms of the solutions of Eqs. (1)-(6), the
susceptibility can be written in the .form

&3=f 34' 3 O/f 1 33 44

+~'."(p,. p..)—
3 (P11 P44)] I

where 0; is the polarization unit vector of the ith
wav e and S„' are complex frequency respons e
functions for the ith wave and nth photon inter-
action. Thus S,' is a two-photon or stimulated
Raman interaction and S,' is a three-photon
interaction, both affecting the propagation of
wave 3.

With the wave Babi frequencies defined as

These results, while somewhat nontransparent,
are general in the sense that possible ac Stark
contributions due to all waves in a11 orders of
interaction are explicitly contained in the S~'~

functions. The remaining susceptibilities and
S„' functions are listed in Appendix A. The next
stage of the calculation entails the solution for
the individual population values which can then be
used to evaluate a particular g; for specified field
and equilibrium. populations. Examples will be
given in Sec. IV.

III. OTHER CONFIGURATIGNS AND LEVEL
DEGENERACY

Although the solutions outlined in Sec. II were
specifically for the ease of the nondegenerate
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level configuration in Fig. 1(g), the results can
be generalized to be applicable to the other con-
figurations in Fig. 1 and can be modified to in-
clude level degeneracy.

TABLE I. a; multipliers.

(a) (b) (c) (d) (e) ' (f) (g)

A. Other configurations

The major distinguishing features between the
configurations shown in Fig. 1 entails whether
a particular wave is absorbed or emitted and are
formally manifested in the sign of the frequen-
cies in e"""or in 0&&+ v, . Thus the functional
form of the S„' and X; will be the same for all.
configurations in Fig. 1, differing at most by
changes in sign and detuning definitions. The
complex detunings can be written in a generalized
form as

LI, =QI3 —&g&I -3/TI31

L„—Q33 —a3 I@3 —3 /T, 3,

L, =Q3, —a3m3-i/T34,

J~„=Q„-(a,~, + a3~3) —3/T

=Q34 (a3~3+-a3~3) 3/T34, -
T =Q,4-(a](d\+IZ3(d3+Q3(d3) 3/T]4

which are to be used in the S~'~ functions a, long
with replacing a& by a;a;. The constants a~ have
a value of +1, the signs of which have been de-
termined and are l.isted in Table I for the seven
configurations shown in Fig. 1.

B. Level degeneracy

As is well known, the inclusion of level de-
generacy may lead to a tensorial population
distribution, optical polarization dependence and

to degeneracy-sublevel-dependent ac Stark shifts
or spl. ittings. " If all these features are thought
present, then Eqs. (t)-(11), (A3), and (A4) have to
be solved simultaneously for all sublevels, a task
best suited to machine computations. For the
specialized case of weak Stark shifts or splittings
and rapid cross relaxation between the degenerate
sublevels, a simpl. e orientational average of Eq.
(11) can be performed which will yield the polari-
zation dependent coupl. ing of the waves.

It is clear from the form of Eq. (11), that each
term should be summed over the degenerate sub-
levels in I1), I2), and I3) which connect to some
sublevel in I4), the results then being summed
over all the sublevels in I4). In terms of averaged
emission transition moments p, 2;,- and total popula-
tions p; =gIp;&, Eq. (11) can be rewritten, in the
above l.imit, as

V„ I g~ i, (E„a',)4, ~p ~p)Xs = ~s—
3~&0 Ls g4 L2Ls~24 g. g.

~b(C„R„e,)A'3A~ 1 1
~p ~p

L,L3R I.3R 34 T L, g 4 g4

with A3 =p»E,'/48', A', = p3'3E, /48', and the two-
and three-wave coupling coefficients are defined
a.s

b3(s„ C3) =
3 Q Q Q l&3, &I p &, I4, I) I'l&2, flu &, 13,»I'

2 2
I"s4L"s2

3 3, k p, ~R 4, l .2,j p. ~ R 3, k l, i p. ~ ~&12,j
3( 11 21 3)

I"S4&S2&12

withe, j, 0, and l the labels for the sublevels in
states I1), I2), I3), and I4).'~ The matrix elements
can be reduced with the aid of the Wigner-Eckart
theorem leaving sums over angular elements. "
For the case of /. inearly polarized radiation and
M degeneracy associated with rotational quantum
number J; the b values tend to constants in the
high-J limit. This limit is convenient in estimat-
ing the optimum polarizations for molecular sit-

f

uations. Table II contains the b, elements for
various transitions and polarizations in this
limit while Table III contains the corresponding
b, elements for various transitions, polarizations
and directions of propagation. The normalizations
of the b's are such that for unpolarized waves 1
and 2, b,A,'- —,'A,' and bsA2A1 9A2Alt the clas-
sically averaged results. The relative b, coef-
ficients are consistent with the relative b, coef-
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Transition
branches

A bi6j
zx, zg

Optimum
polarization'

TABLE II. b2(62, 63) coefficients in the high-J limit. fluence of arbitrary E, and E, on the third wave
2ellel9s20

3 ~

A. Weak-field limit

3
5

i
5 In the limit of very weak fields such that D- 1,

the leading contribution to S~' are
2

5

3
io

P, Q, R stand for AJ= -1, 0, + 1. The b2 elements
are invariant with respect to the branch ordering.

"Polarization direction, invariant with respect to
order.

'Polarization of one wave relative to the other for a
maximum b2 coefficient.

ficients for E, and E„and E, and E, taken
s eparately.

TABLE.H:l. b3(&i, &2, &3) coefficients in the high- J
l.imit.

Transition
branches

Optimum
zzz zzx zxx zxy ' polarization

i5 3 3

P P P

R R R

P Q Q

Q Q

Q P P

4 4
705 T05 ~05

2 9
705

Q R R 2

i05 42

Q R P

6 ii

P, Q, R stand for AJ=-1, 0, +1. The b3 elements
are invariant with respect to the branching order.

"Polarization directions, invariant with respect to
order.

'This case requires noncollinear propagation.
Polarization of two waves relative to the third for a

maximum b3 coefficient.

IV. DISCUSSION OF SOLUTION

The solutions given by Eqs. (18)-(20) can best
be appreciated by first treating selected weak
field limits before considering stronger field
cases. Since these solutions revert to the solu-
tions for the usual two-wave interaction in the
limit that either E, or E, tends to zero, then the
discussion to follow will be directed at the in-

( 3) 1 (0„-u&, +i /T, 4)
L, (0„—(u, )'+ 1/T'„'

S~'~ = (A2A2/L, L,R,3R„)(1/T + 1/L, ) .
The S,' term can thus be recognized as a corn-
plex Lorentzian response function, the imaginary
part of which'yields the usual homogeneously
broadened line shape. The S,' term is of the
form of a standard two-wave or stimulated
Raman emission result driven by E, since S,'
has a maximum imaginary part when Q„=+2

QP3 the Raman res onance condition. " The
presence of the complex terms L, and L, is a
manifestation of the near-resonant interaction and
yields the detuning conditions (of e, and &u, ) for
resonant enhancement. For this case, the en-
hanced requirement is simply ~2 =032.

The new term S,' represents a three-photon
or three-wave interaction since it depends on the
product of the intensities of waves 1 and 2. The
form of S,' is interesting in that it yiel. ds two
conditions for a maximum imaginary part. For
IQ» —&u, ~»1/T„such that 1/L, -O, maxima will
occur when the triple resonance condition is
satisfied, Q4, ——co, —~, —u„and when either

03l That is, for fized ~„amaximum inter-
action will occur when A@3 is on one photon res-
onance with ~, at two-photon resonance or when

~3 is on two-photon resonance with m, on one-
photon resonance. This is again a consequence
of resonant enhancement as reflected by the
presence of the I's and 8's in the denominator
of S(3)

B. ac Stark shifts

For stronger fields, shifting and splittings may
occur, the description of which must be con-
tained in the full form of Egs. (18)-(20), each
term of which can be manipulated to extract the
degree of shifting or splitting. However, there
is a much simpler functional form which can be
derived which contains all the desired spectro-
scopic information. This is obtained by noting
that the susceptibility in Eq. (11) is a linear func-
tion of the diagonal elements, each of which may
be a nonlinear function of the fields. Because of
this linear dependence, we may use superposition
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to simplify g3 by setting p„=p„=p» ——0 leaving
what might be termed a reduced g3 which is re-
sponsible for the inverse of the one-, two-, and
three-photon "gain" processes. This reduced
X3 is thus proportiona 1 to S,' +S,' +S,' which
will be labeled as S„', and equated to 1/I, „„.
Hence

S(3) g(3) +g(3) +S(3)net 1 2 3I.„,1

(24)

which clearly contains the one-, two-, and three-
photon complex detunings. Without loss in gen-
erality, the roots may be obtained in the sharp
line limit by setting the i/T3 terms to zero,
simplifying the root equation to a real equation

O=L+ 34T-A,'L3-A3T

or

(Q34 ~3)(Q34 ~3+ ~3)(Q14- ~3 —(d1+ (d3)

= (Q„- (d, )[(Q„—(d, ) —(Q„—(u, )]
X [(Q,4- (()3) + (Q„—(u, ) —(Q„—&3)]

(Q34 3)A1 [( 34 +3) + ( 12 +1)

—(Q„—(d3)]A', , (26)

which is an equation cubic in 034 M3 ~ The left-
hand side of this equation clearly specifies the
zero-field one-, two-, and three-photon res-

To implement this equation, we merely seek the
roots of the Re(L„„)=0 which must contain the
one-, two-, and three-photon resonance condi-
tions.

As a specific result, we take the case where
E, is a weak tun. abl.e probe wave such that A, -O.
For this limit, from Eq. (23), D—= (1 —E3)(l - F,),
which allows Eq. (24) to be written in a very
compact form as

(25)

onance conditions, while the right-hand side must
then be responsible for shifting and splitting.
Because Eq. (26) is a simpiification of Eq. (24),
the right-hand side of Eq. (26) is understood to
be zero if A, =O.

A very important result may be obtained by
setting ~3 to the zero-field triple resonance
(&u3 = Q, 4

—e, + v3) for which the root equation is
identically satisfied if additionally ~3 034 which
also requires 0„—~, =0„-cu, . Thus the triple
resonance is not shifted when co, and u, are at
least on two-photon resonance ((d3 —(d, =Q»).
In fact, for this condition the solutions to Eq. (26)
are simple to obtain and are

(Q„—(d3) =0, (27)

(Q„-103) = 3((Q„-(u3) + [(Q„-u)3)3+ 4(A', + A33)]'~3],

(26)

(Q, —co, ) = —'((Q„—&u3) —[(Q„—a&, )'+ 4(A', +A, )]~'] .
(29)

Equation (28) can easily be recognized as the ac
Stark shifted two-photon or Raman condition
while Eq. (29) can be identified with an ac Stark
shifted one-photon interaction. For the special
case of 0„-~, =0„-e, = 0, the normally
degenerate one-, two-, and three-photon inter-
actions are split into a triplet, one component at
line center which is the tripl. e resonance and two
components at Q„- (()3 =+(A,'+A3)13, the two-
photon analog of Autler-Townes splitting. " These
results and identifications are in complete agree-
ment with recent calculations using dressing trans-
formations of the atom plus field eigenstates,
with numerical solutions of the QED equations of
motion of three levels coupled by two strong fields,
and with the previously mentioned resonant three-
wave case.""'"

Next we consider the shift in the triple reso-
nance when 0„—' cu, 00„-~,. Considering small
shifts only, the approximate resonance obtained
from Eq. (26) is given by

A,
{0„—td, )((o„—~, ) —(0„—~,)) —Al ) ' (30)

which does yield an ac Stark shift for (Q» —&u, )
33 (Q» —(d3), and which indicates a shift primarily
dependent on A, . Hence only under the conditions
of at least two-photon resonance is the triple
resonance ac Stark free. Finally, the effect of
A, 4 0 may be treated perturbatively, an approach
which has the result of adding a term proportional
to A,'(Q„—v3 —~, + (()3) to the right-hand side of
the root equation, Eq. (26). This term is clearly

zero on triple resonance indicating an additional
lack of ac Stark shift contribution, in this case
from A, 0 0. Other cases may be handled from the
general results in Eq. (24).

C. Strong-field solutions

The shifts and splittings can be further illus-
trated with numerical evaluations of Eqs. (V)-(11)
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FIG. 3. Calculated Beer's coefficient &3 for Fig. 1(g) from Eq. (11)vs detuning T2{» —3). For these calculations
all T2 and Tt values were set equal and p'(4 = pft = ~~= 3. &~ is in units of ksl 4434 ea) N/K pewhere N is the total number
density in the four states. Except where noted, A3T2= 0.001, A2T2 =10, A~T2=10 (solid line) and 5 (dashed line). (a)
(O~q —co~)T2= (g2 —('2)T2= 0, fu11 resonance showing Autler-Townes doublet. (b) Same as (a) except A3T2=-5, showing
saturation and power broadening. (c) {~~2—&&)T2 = (2 —~2)T2 = 15, two photon resonance. Labels l, y, and I; are the
one-, two-, and three-photon contribution with zero field values indicated as $p &p, and gp. (d) (Q)2 —cvf)T2 10,
(~ —cv2)T~ =20 showing ac Stark shifts for all contributions.

and (18)-(20) for selected cases. For purposes
of illustration, all T~ values will be set equal
with Rabi frequencies and detunings measured in
units of 1/T, . The graphs will be the normalized
Beer's coefficient of wave 3 versus detuning
(Qs4- 4d, ) for fixed &u„&o„A„A, and for two values
of A, . The first example is given in Fig. 3(a) for
full resonance illustrating the triple resonance
contribution at line center and the Autler-Townes
doublet. The doublet spacing calculated from

Eqs. (28) and (29), +11.2 and +14.1, is in agree-
ment with Fig. 3(a), for both vaiues of A, . Fig-
ure 3(b) is the same as Fig. 3(a) except for a
strong A, illustrating saturation and power broad-
ening. Figure 3(c) is the same as Fig. 3(a) ex-
cept that ~, and ~, are set to two-photon reso-
nance. Labels l, x, and t refer to the one-,
two-, and three-photon contributions with the
zero fieM locations indicated by a subscript
zero. The one-photon resonances from Eq. (29)



S. J. PETUCH0%SKI, J. D. OBERSTAR, A, 5 D T. A. De TEMPI. E

-10

FIG. 4. Graphical solu-
tion of Eq. (26) for the case
of Fig. 3(d). The 5-shaped
curve is the left-hand side
of Eq. (26) with the high- .

lighted sections showing the
magnitude and direction of
the ac Stark shift as A~T~
increases from 5 to 10.

are at -6 and -8.5 while the two-photon or
Raman resonances from Eq. (28) are at 21 and
23.5, again in agreement with Fig. 3(c). Figure
3(d) represents the case where ~, and ~, are not
on separate one- or two-photon resonances. The
ac Stark shift of the triple resonance is evident,
is in direct contrast to the unshifted cases in
Figs. 3(a) and 3(c}, and is qualitatively described
by Eq. (30). A simple graphical solution of Eq.
(26), shown in Fig. 4, yields one-photon reso-
nances at -5 and -5.4, two-photon resonances at
25.6 and 28.6, and three-photon resonances at 9
and 6.5 in accord with Fig. 3(d).

V, SUMMARY

In this paper, the analytical description of
three waves interacting serially and near-
resonantly in a four-level system has been pre-
sented for the first time. The solution was
shown to be applicable to seven different con-
figurations. The weak-field optical polarization
coefficients were also derived for the high-J
limit, appropriate to molecular interactions. With
the availabil. ity of these'solutions, it is now pos-
sible to treat selected interactions which are known
to occur. Examples of these will be given later
for infrared interactions in D,O and NH3. '4

Aside from the explicit equations for the Beer's
coefficients, one additional. outcome of this study
was in the development of a very simple equation,
Eq. (25), the roots of which yielded ac Stark shifts
and spl. ittings. The form of this equation man-
ifestly contains multiphoton interactions and their
respective contribution to the shifts and are doc-
umented in Eq. (27}-(30)and Figs. 3 and 4. Since
the assumptions needed to deri, ve this equation
(p« ——1, A, -0) place no restrictions on A, or A„
then Eq. (25} may be considered exact to all
orders in these fields. " Of course, there is
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APPENDIX

The remaining susceptibilities identified from
Eqs. (7)-(10}are

and
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additionally the nonresonantly enhanced quadratic
Stark shift contributions associated with each
state which has not been included because of the
number of levels treated. These can be added by
setting E; =E;+&E;(E„E„E3),where &E; rep-
resents the combined Stark shift due to all waves
and depends on coupling to all states excluded from
the configurations in Fig. 1.

One very interesting outcome of this study was
the lack of Stark shift of the triple resonance
under certain conditions, suggesting possible
spectroscopic applications which can be explored
further. The generalized condition for Doppler-
free triple resonance can be stated as a,k, +a,k,
+ Q3k3 0 and may require none o11in ear propagation
to be satisfied. ' Because of the various detuning
contributions to the St'l terms in Eqs. (18)-(20),
the Doppler-free triple resonance may be super-
imposed on a Doppler broadened background. "
In addition, because of velocity-subgroup de-
tuning dependence, there may exist an equivalent
Stark broadening of the Doppler-free triple res-
onance. This can be treated using Eq. (30) by
replacing cu;- ~;+k; v and assuming Doppler-
free triple resonance (k, +k, =k ). One interesting
limit occurs for at least two-photon resonance and
for large A, . For this case, the equivalent Stark
broadening of the triple resonance is approximate-
ly given by &&a~,A', /A', , where «u» is the Doppler
width of the [3)- ~4) transition. Thus if A', &&A'„
the Stark broadening of the Doppler-free triple
resonance may be minimized. This requirement
is a consequence of the fact that the dominant
Stark shift of the triple resonance is due to A„
as indicated by Eq. (30) and further illustrated
in the case of Fig. 4. This leads us to the con-
clusion that resonantly enhanced triple resonance
can be made Doppler-free but may suffer from an
equivalent Stark broadening which might be
minimiz ed.
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In these results, the S„' terms cannot be sepa-
rated into identifiable one-, two-, and three-
photon terms as was done for waves one and three.
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