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Angular-spectral distribution and polarization of synchrotron radiation from a "short" magnet
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Power per unit solid angle, spectrum and polarization as a function of angle, and integrated spectrum are
calculated for the radiation from a beam' of ultrarelativistic (y&&l) charged particles in a magnet causing a
deflection much smaller than 1/y, with an arbitrary form of the magnetic field B(z). Some examples are
given, and the connection with the "edge effect" is shown.

I. INTRODUCTION

When emitting synchrotron radiation, an ultra-
relativistic (y» 1) charged particle is seen by the
observer over a piece of its trajectory of length
I., =mc/eB, where m is the mass, e the charge, B
the magnetic field, and MES units are used. If"
over such a dista. nce the magnetic field B is uni-
form, the spectrum of the ra.diation is the well-
known synchrotron spectrum. If it is not, the vari-
ation of both B and the direction of motion of the
pa, rticle will influence the spectrum, which, in the
general ca.se, will have to be ca,lculated by nu-
merical methods. In the case in which the length
of the magnetic is much shorter than L, (which is
equivalent to saying that the deflection is «1/y;
we could call this a "short" or "weak" magnet),
the calculation is easier Iit is, in a certain sense,
the case opposite to the "usual" synchrotron ra-
diation, since only B instead of only f(8, y) is
varying in Eqs. (2) below].

Historically, the first example of what we would
call a (periodic) short magnet (or a, succession of
short magnets) is the "undulator" described by
Ginzburg' and by Motz": in this case B(z) is
sinusoidal, and in each period the maximum de-
flection is «1/y, that is, the spectrum is a single
narrow band. Recently, a greater interest has de-
veloped in undulators for a.pplication to production
of narrow-band x and vuv radiation and to "free-
electron lasers, "

a,nd some devices have been
constructed" ' or are under construction.

Another example was the remark by Robinson'
that in a. sufficiently short magnet the radiation
would be emitted, at a given wavelength, under a
larger angle than in usual synchrotron radiation.
Recently it has been also remarked" that if the
length of the magnet is I.& I.„the cutoff frequency
is greater than the usual "critical frequency";
this would be relevant, in practice, for electrons
in low magnetic fields (say 100 G) or for protons.
The cutoff frequency for radiation emitted by pro-
tons could easily be increased by a factor 10 or

50, getting visible light instead of infrared in 300-
GeV machines. With certain approximations, the
"edge effect" foreseen in Ref. 8 can also be cal-
culated utilizing the resUlts for "short" magnets
(see Sec. VII).

An interesting aspect of "short" magnets is
that, in principle, it could be designed to give an
arbitrary spectrum (or even two different arbi-
trary spectra for two orthogonal polarizations).

We want to see now how to calculate the com-
plete angular-spectral distribution and polariza-
tion of radiation from a "short" magnet in the gen-
eral case [that is, for any function B(z); most re-
sults reported up to now a.re only for undulators],
and to present simple examples.

II. GENERAL PROCEDURE

The starting point is, as usual, ""I ienard's
expression for the far fields emitted by a point
charge:

-()-„,'„.( ",')'
Vx n)& n —-- xa
C

B(t) =(1/c)nxE,

with the usual meaning of symbols, and n= —r/r,
v(t ') = -d r/dt ', X(t ') = d v/dt ', 8 is the angle be-
tween n and v, and q the angle between the plane
containing v and a and the plane containing v and
n. We define, as in Ref. 10, an amplitude U(t) pro-
portional to rE such that its modulus square is
the instantaneous power per unit solid angle, and
the modulus square of its Fourier transform is
the power per unit bandwidth per unit solid angle,
and considering that v. a=0 and y»1 (then the ra,-
diation is mainly concentrated within an angle of
the order of 1/y), we can make the approximations:

v/c= 1 —I/2y', 8'«1, sin8=8, (1 —cos'8)' '=8,
a.nd write
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(2a)U(t ) = Cy'B f (8, y)

where B (magnetic field) and f must be evaluated
at the time t'= t —y(t')/c and C = (e'/wm)(1Aoc)'~
=1.74x10 'kg 't" m sec' 'C, or

=—r'f'())y)(), +r'&') f&(~)«. (6)

C = —
„. = 5.5 x10-' cm'~' sec-'/',

m mc"'

(2b)f(8 p) =f)(i((+fiii
where i~~ arid i, are unit vectors parallel and per-
pendicular to the acceleration, and

f((:(1 +y 8 ) (1 —y 8 +2y 8 sin qt)

f~ = —2(1+y'8') 'y'8' sin(t) cosy.
(2c)

f(8, y) =f i „+f,i, ,

g, = (1+y'8') '(1 —y'8') cosy,

y, = —(1+y'8') '(1+y'8') sing.

(2e)

These expressions are always valid, but the re-
lation between t ' and t is, in general, . not simple;
it is always true that

2p
dt 1+y'8

but, in general, 8(t') is not constant. In our case
(short magnet) we suppose o.y«1, or

B(z) dz «1, (4)
vlc

and then we consider 8 as constant and write (with
a suitable choice of t =0)

t '/t = 2y'/(1+ y'8'),

then the time scale'of B(t') =B(z/c) has to be
compressed by a factor 2y'/(1+y'8'). The rela-
tion between the power seen by the observer (a
function of t) and power emitted by the particle
(a function of t '), i.e. , the power seen by the ob-
server, is 2y'/(1+y 8 ) times bigger and its dura-
tion is 2y'/(1+y'8') times smaller.

III. ANGULAR DISTRIBUTION AND POLARIZATION

The energy, per unit solid angle, emitted by an
electron in the whole "short" magnet is obtained
by integrating U'(t):

The total power (both polarizations) will be pro-
portional to

f'=f((+f', =(I+y'8') '

x [(1—y'8')'+ 4y'8' sin'y]. (2d)

In some cases it is more useful to decompose f
in directions parallel and perpendicular to a plane
containing v and n, i„and i, :

This result is valid not only for the energy
emitted in both polarizations, but also for each
polarization separately if instead of f' we write

2 2
f(( orf '

If the beam is not modulated (then amplitudes
add incoherently), the power emitted by the whole
beam (per unit solid angle) is dP/dQ=n dW/dQ,
where n =1/e is the number of electrons per sec-
ond. The same applies for the other quantities
defined below.

The total energy emitted by one particle is ob-
tained by integrating f '(8, y)(1+ y'8') over the
whole solid angle (the variable 8 is changed to y
=1+y'8', then dy =2y'8d8, with J dy extending
from 1 to ~):

)v =. (rc' /sc)y' f)) (z) « .

The result is the same as the energy emitted in
any magnet (the difference is that in a "long" mag-
net this energy is swept over different directions
as the particle is deflected)

Let us consider now the polarization character-
istics: E(ls. (2a)-(2c) show the instantaneous dis-
tribution, which also represents the polarization
distribution of the energy emitted in a plane tra-
jectory.

We remark that f~ = 0 when sing cosy = 0, or on
the axes q&=0 and y=w/2, while f(( =0 when 9)
= arcsin(1/M2)(1 —1/y'8')'~'. At the intersection
of these two curves, at 8=1/y, y=0, and y=v,
the intensity is (obviously) zero. In all directions
the radiation is 1inearly polarized. If we integrate
f ',

)
and f ~ over the whole solid angle (as for E(I. 7)

we find that, if we call W~~ and W~ the energies
emitted in the two polarizations (and W = W(, + W~),

W((/W= ()

(6)

W, /W= 8 .
This result [valid for any form of the field B(z)]
is the same as for the usual synchrotron radia-
tion. The difference is in the angular distribution
of the perpendicular polarization, which ha.s in
this case a fourfold symmetry, while in the usual
(uniform field) case the symmetry is twofold.

The radiation is concentrated mainly within L9

& 1/y [see E(ls. (2c), (2d), and (6)] and the perpen-
dicular polarization is distributed mainly at (rela-
tively) large angles: only ~» of the total intensity
is out of the cone 8 = 1/y; ~», for the parallel po-
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larization and P, for the perpendicular one (then
out of 8 = 1/y the ratio of perpendicular to parallel
intensities is ~»).

Looking at Eq. (2e) we can see, for example,
that if B is helical, the polarization of the radia-
tion will be circular at 0=0, linear on the circle
8 = 1/y, and, in general, elliptical, with ratio of
amplitudes

f./f. = {1 r'-8')/(l. y'8')

(which generalizes the result of Ref. 12). For any
"elliptical" field B (superposition of helical and
plane sinusoidal) we have linear polarization on
the circle 8=1/y and circular in two symmetrical
points inside it.

IV. SPECTRUM

The spectral distribution dW/dAdv of the energy
(per unit solid angle dQ) of the radiation seen by
the observer (which, multiplied by n, gives the
power per unit bandwidth and dQ for the whole
beam) is obtained by Fourier-transforming U(t):

&f'& =y '(y' —2y+2),

&f ((& =y '(z y' -y + 2),

&f'& =y '(2y'-y+ z)

(12)

V. .UNDULATOR

To illustrate the preceding statement and to
make a first example of a short magnet let us
take an undulator, with period A.o and length A

))A, o.'

The polarization ratio W((/W, [see Eq. (6)] will
be different from 7 if only a part of the spec-
trum is taken (&7 at higher frequencies, &7 in the
lower part of the spectrum).

Even in a plane field B(z), the spectra of the
two orthogonal linearly polarized components are
not the. same because of the different angular dis-
tributions of the two polarizations (and the depen-
dence of the time scale t on 8).

An alternative approach to get dW/dv would be
to consider the Fourier components of B(z); each
of them is an (infinitesimal) undulator, for which
dW/dv can be calculated, and then the result in-
tegrated over all components.

B(f ') = B,cos2)) v, t 'rect(A, /A)vol ' (13)
1=-,'C y f'() +y'9)B(

2y
where v, =c/A, = v /2y', and rect x= 1 for ——,

' &x
& —,

' and =0 elsewhere. Its FT is
where by 6."{B(t)}we mean the Fourier transform
{modulus square) of B())), and by

A . A v'
B(U') = slllc ———

()A, ovo Ao Vo
(14)

we mean a function obtained by the following pro-
cedure: take B(t ') = B(z/c), make its Fourier
transform (FT) and substitute the frequency vari-
able v' with v(1+y'8')/2y (in the case we have the
advantage, useful for numerical calculations, that
we make the FT with respect to a variable t '
which is independent of 8).

The spectral distribution of the energy collected
over the whole solid angle (in pra. ctice a solid
angle»~/y' around 8= 0) can be calculated by in-
tegrating Eq. {10)with respect to dO=OdOdcp:

2' Oo

— = —C'y' dy 8 dOf '(1+y'8')'
t& 4 o p.~("' )

= —))C' y'&f'&(y)B' .y dy,
4 2y

where (f & is the average off ' over y, and y =1
20

Also., Eqs. (10) and (11) can be referred either
to both polarizations, or to each polarization sep-
arately, using f ((

and f 2~ instead off'. We have:

where sine x=(sinwx)/)Tx. Squaring and approxi-
mating for A/Xo-~ (sine'(A/X, )x-. (A, /A)6(x)) we

obtain

B (v') = Bo—5 ——1
i

.A p'

Ao . vo )

Substituting into Eq. (10) and integrating over
angles, we obtain

"~""'-=-",a".~—', (i-~—'.~ —'. ), (-' )),
(16)

where p =2y'vo is the maximum frequency con-
tained in the spectrum (the one corresponding to
8 = 0).

If we consider again a general short magnet
B(z), and write B(t ') as a sum of contributions of
undulators of square amplitude B'(v,)(c/A) dv„ then
the total energy per unit dv is

=~C' —
2 1 —2—+2 2, '~ d~,

which is identical with Eq. (11) except for the
physical meaning of the integration. variable.
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VI. EXAMPLES

As an example, let us take a, simple analytical
form of B(z), i.e. , a I orentzian field of length 2I.
[full width at half maximum (FWHM)]:

(y '-2y '+2y '}e "" dy
1

2 2
=

4 2 BOL—'[,'e "—(I+4x')+x)) v(1 +~3x') erfcx

B(z) = B,/(1+z'/L');

the FT of B(t') is (v'&0)

B(v') =(n/c)B, Le "
Then, from Eqs. 6, 7, 10, and 11, we have

Q2
y'BOL(1+y'8')f ',

gCW= yBL,

(18)

(19)

(20)

(21)

-x'Ei(-x')],
where x= )t2 v/v„v, = 2y'c/v L, and

2 "
—.2erfcx= e " dx

v x

(complementary error function).

VII. CONNECTION WITH THE "EDGE EFFECT"

(29)

2 2

=, . 'B'. '( ~ ' ')'f'

I.(1+y'e')
xexp -4m-

2y c

dg mC
dv 4c

(y-' —2y '+2y ')e "'dy

(22)

3 2

, B',L'[ ', e "(1+x-+ —,'x') + x(1+x ——,'x')
4c

x Ei(-x)],
where x=4vlv„v, =2y'c/vL, and

X gX
Ei(x}= —.dx

OQ X

(22)

2 2
B(z) = B e ' I~ (24)

(exponential integral).
As another example to compare (and to show

that qualitatively the results are the same), let us
take a Gaussian field, a.iso of length -2L (1„66I.
FWHM):

In the case' of a charged particle entering (or
leaving a "long" uniform magnet, when the length
I of the edge (fall-off distance of the magnetic
field) is «L„ the field U(t) seen by the observer
is composed of two parts: a sharp rise, with a
rise time -I/2y'c, followed by a fall, with fall
time -1/v, where v, is the usual critical frequency
(or the reverse sequence in the case of the parti-
cle leaving the magnet). In the case that one is
interested only in the higher part of the spectrum,
with frequencies»v„zone can make the approxi-
mation that, after the rapid rise, the amplitude
remains constant (neglecting the contribution of
the slower fall). In this case the calculation pro-
cedure can be the same as with a short magnet,
except that in this case the calculated lower part
of the spectrum, up to frequencies above v„ is
meaningless. In order to calculate the spectrum,
it can be useful to express the field B(z) as the
integral of its derivative with respect to z,

zz(z) fzz'(z) dz = =zz (z) h(z), '

In this case the FT of B(t') is

B(v') = ~m B,exp[-[v(L/c) v']'j,

and then,

c2
4B2L(1+ 282)f 2

dn 2M2c

~'~'c'
W= 6~ ByL o)

C2.r'B'.L'(I + r'tt'}f '

xexp —2 2 v

(25)

(26)

(27)

(28)

where * represents convolution and h is Heavi-
side's step function, and use the convolution theo-
rem in the Fourier transformation (the step func-
tion contributes a 1/v' factor in the power spec-
trum}.

As particular examples, let us take an arctan-
gent and an error function.

First example: arctangent function.

(1 1 z B, 1
B(z) =B,

)
—+—arctan —= ', , *h(z),'k2 7r 1T +z

B, ~—exp
~

-2v-yv Q y t I, gv)
2y 7T vg ( c 2y j

dW C' y', t I. yv)
=4 2 2f Boexp~ -4&

dadv 4v v '
), c 2y&'

=——,B',S(x)=, B',L' —,S(x),
dv 4g v c x
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S(x) = f () ~x SS
1

=~e-"(& ~x+)7x2 3xsp —'x4)

+~x'(1 —,'x+~x') Ei(-x),

where x = 4v/v~, and vt = 2y c/z I.
Second example: error functi:on.

z B,B(z) = —,'B,~1+erf—= ' e ')~ *g(z),

dS' C y' 2 Lyv '
dAdv 4w' v'f ' 2 'c

=—~By( ) =
dv 4m v c ' x'

S(x)=f (f )x*"dx
1

=~se " (~-—2sx'+Bx')+-', )/)) x'(1+—', x') erfcx

+ x'Ei(—x'),
where x= v2 v/v, and v, =-2y'c/wl. .
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