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Coulomb deflection in ion-atom collisions
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The Coulomb-deflection factor, defined as the ratio of the Coulomb to plane-wave Born cross sections, is

derived for slow but classically moving ions, and found to be in agreement with the data for K-shell
ionization. When the half distance of closest approach in a head-on collision, d, is comparable to the

important impact parameters (-1/qo, where qo is the minimum momentum transfer), this factor simplifies to
exp( —n.dqo) as it has been employed in the inner-shell-ionization theory. When the impact parameters are
small on the scale of the projectile de Broglie wavelength, as they are in nuclear phenomena, the Coulomb-
deflection factor tends .to exp( —2m;dqo). An extension of our results to screened Coulomb repulsion gives

good agreement with the semiclassical calculations and the data for K-shell excitation in Ne -Ne collisions.

I. INTRODUCTION

In quantum-mechanical and semiclassical ver-
sions of the standard Born approximation, the pro-
jectile is described, respectively, as a plane wave
or as a classical particle moving along a straight-
line trajectory. This approximation becomes in-
adequate when the projectile moves so slowly that
the plane wave is appreciably distorted by the
Coulomb field of the target nucleus or the classi-
cal particle is significantly deflected into a Kepler
orbit. In consequence, with decreasing ion velocity
experimental cross sections for inner-shell va-
cancy production in ion-atom collisions become
significantly smaller than the predictions of the
plane-wave or straight-line Born approximation.

This discrepancy has been confirmed for K-
shell vacancy production by semiclassical cal-
culations. For K-shell ionization, Bang and Han-
steen' showed that the calculations with a hyper-
bolic trajectory can indeed yield order of magni-
tude smaller cross sections than the approxima-
tion which assumes a straight-line path for the
projectile. Similarly, Briggs and his collabor-
ators'"' found that the cross sections for K-shell
excitation in slow ion-atom collisions are marked-
ly different when evaluated with various forms of
the internuclear potential between the projectile
ion and the target atom; the calculations with the
Coulomb and screened Coulomb potentials re-
sulted in significantly smaller cross sections than
the approach in which the internuclear potential
was neglected (straight line ap-proximation).

From the formulas of Bang and Hansteen, '
Brandt and his co-workers"" have extracted the
Coulomb-deflection factor which was questioned
on the basis of numerical" "and analytical" ""
reexamination of the Bang and Hansteen calcula-
tions. The approach of Briggs' and co-workers

relies on numerical solutions of coupled-state
equations. Although an elegant scaling' ' from one
collision system to another was shown to be pos-
sible when the internuclear potential was neg-
lected or Coulombic, no Coulomb-deflection fac-
tor has been extracted from the calculations.
Moreover, the scaling" between different colli-
sion systems is not reliable' for screened Cou-
lomb potentials which have to be employed to ob-
tain agreement with experimental cross sections.

%e derive a Coulomb-deflection factor C in an
essentially quantum-mechanical treatment of the
first Born approximation. The factor C —= o "e"/
0 " "has a universal character in that it scales
the plane-wave Born approximation (PWBA) cross
section 0 to the Coulomb-wave Born approxj. -
mation (CWBA) cross section oc"e" for any in-
elastic collision in which the low-velocity projec-
tile suffers relatively small loss of its energy.
Because of the equivalence of the quantum-me-
chanical and semiclassical treatments in the Born
approximation for such collisions, ".the factor C
allows one to scale the cross sections calculated
for straight-line trajectories to the cross sections
which are based on hyperbolic-trajectory calcula-
tions. This factor greatly simplifies analysis in
that it avoids difficult numerical calculations with
a hyperbolic trajectory. Moreover, in the slow
collision limit of interest, the straight-line cross
sections are often given analytically.

The derivation of the Coulomb-deflection factor
is presented in Sec. II. In Sec. III, this factor is
compared with data and calculations' "for K-
shell vacancy production in a target atom of atom-
ic number Z, which is much larger than the atomic
number Z, of the projectile ion (Z, «Z, ) and, also,
in a homonuclear system (Z, = Z,). In the Appen-
dix, we show how to extend our approach to in-
elastic scattering in screened Coulomb potentials.
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II. COULOMB-DEFLECTION FACTOR

Consider a nonrelativistic ion-atom collision in
which the projectile ion with initial energy E ~

(velocity v, and momentum K,.=Mv,.) loses the en-
ergy hE:

~E= E, —E,.= .'M (v-; —v', ).= (1/2M)(SC', IC',). (1)

in terms of its final energy Ez (velocity vz and mo-
mentum K&= Mv&) and the reduced mass of the ion-
atom system, M. In the independent-eLectron ap-
proximation, one electron is excited while all oth-
er electrons remain in their initial states and
screen the nuclei. Here we consider pure Coulomb
deflection, i.e. , the internuclear interaction is
given by the unscreened Coulomb potential. The
internuclear screening is discussed in the Appen-
dix as an extension of the results obtained in this
section.

In the first Born approximation the transition
amplitude T,.f is given by

T.&= &
R

&
r 8 R, r $,. R,. r d'gd'y,

(2)

where 8(R, r) is the perturbing potential, g, &(R)
are the solutions of the nuclear part of the unper-
turbed Hamiltonian

Coulomb scattering, d/v, , to the time of transi-
tion, 1/b, E.

Our derivation of the Coul. omb-deflection factor
is based on the assumption that one can extract
multiplicative constants N,. &

which relate the Cou-
lomb wave functions Pc& to plane waves P~&, as

(~)

these constants will be determined as pc z/g~«
evaluated at R for which- the excitation probability
attains its IQaxlmum. Since fol plane waves the
cross section is proportional to the ratio of the
final to the initial current densities of the scat-
tered particles jI/j, , where j,. z

= v,. z ~¹z ~' for
gc

&
of Eq. (5) and j~& ——v,. &

for P~&, we obtain
immediately that the ratio of the Coulomb cross
section o. "~"to the plane-wave cross section
gPWBA

c= (6)

Alternatively, one derives this equation through
the renormaiization of amplitude T,z, Eg. (2)., to
yield the Rutherford cross section when i =f. The
necessity for the renormalization of the Coulomb
scattering amplitude is well established, ' '" al-
though "a clean derivation within the general

- framework of renormalization theory has so far
not been accomplished. ""

When the Coulomb and plane waves are compared
at their origin (R= 0), the multiplicative constants
N,. &

can easily be determined as

X,=e '",~ "r(1+i@,)
so that, with

~

I'(1+ in,. &)
~

= mal,. &/sinh(w7i, . z)

and with

2FR j
~ fLf

Not surprisingly, Landau" found —to within a co-
efficient slowly varying with energy —the same
Coulomb-deflection factor in the WEB approach
that was appIied 50 years ago to explain nuclear
disintegration. " Gamow' interpreted Landau's
result as essentially the ratio of transparencies
for the 'deflected and incident particles traveling
through the Coulomb potential barrier. The WKB
treatment is justified when the transparencies are
small" as they are in the slow collision regime
(q,. &»1), and its result is identical with Eg. (8).
The same e "~"factor is obtained in studies of
Coulomb excitation of nuclei when hq- ~ (Ref. 26):
the monopole term (I = 0) of a multipole expansion
for the perturbing potential vanishes, the dipole

(Ref. 18). The minimum momentum transfer q,
=—E,. -K& can be approximated, respectively, by
bE/v. for direct and by hE/v, + ,'v. for rearrange-. —

ment collisions. The adiabaticity parameter hei
determines the ratio of the characteristic time in

with R being the position of the projectile with re-
spect to the target, "and p«(r) are the unper-
turbed wave functions of the active electron. at the
position r. In the PWBA, Z,Z,/B is removed from
Eq. (3) and added to 6(R, r) in Eq. (2) where, due
to the orthogonality of Q,. and Pz, it gives no con-
tribution to T,.&.

We restrict ourselves to slow collisions for
which a classical description of the projectile is
possible so that one can use the quantum-mechan-
ical Coulomb-deflection factor in the scaling of
straight-line semiclassical calculations. The de
Broglie wavelength of the projectile, 1/K, , is
then much smaller than the half-distance of closest
approach in a head-on collision, d=—Z, Z,/Mv', , and
yet the projectile orbit is not significantly modi-
fied because of the finite energy loss. With the
notati. on q,. &

=Z,ZPI/K, &, —these restr. ictions, q,
=K,.d»l and r E/E, «1, lead to.

nTl:—q& —q,. =—dqo and hq/q, =2 hE/E, «1 (4.).
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I„=K, p, =-K,a. ,/q, =A.,q, /~q»1. , (9)

where A, =—poq, is of the order of unity. On the
other hand, I., =0 for nuclear phenomena since
then pp being the s ize of nuc le i becomes neg lig ible
in comparison with de Broglie wavelength of the
projectile, 1/K, In fact, we will retrieve Eq. (8)
as a particular result of our approach in the I.,

0 limit.
To within a phase factor, one has

Fg,(n;, g, pi, g}
g(ii i, Lo', Pi i )

p ~

g p ~ g
(10)

where E~(q, p) is the regular Coulomb wave func-
tion. " In the q-0 limit F~(q, p) reduces to the
partial wave j~(p) p of the plane-wave expansion
with j~(p) being the spherical Bessel function and
p-=ED the internuclear distance A on the scale of
the projectile's de Broglie wavelength. Since Cou-
lomb deflection can be viewed as a result of pen-
etration into the classically inaccessible region,
the knowledge of F~(q, p) is required 'in the 0 ~

p ~ p, range, where p, =@+ [q'+( L1+) ]L'~' denotes
the distance of closest approach in Coulomb scat-.
tering.

One can generate F~(7i, p) through a single re-
cursion formula once E,(q, p) is given. " The L= 0
functions, however, are tabulated only for p &20
(Ref. 30) or for p & 40 with values of q & 12 (Ref.
31) which are too small for typica, l atomic colli-
sions. Above all, tabulations allow one to calcu-
late F~(q, p) only at certain discrete points in the
7l-p plane whereas the knowledge of F~(q, p) for a
continuous set of g and p values is desired in eval-
uation of C of Eq. (6) with N, &from Eq. (10). A. l-
though the I", function can be computed for all g
and p by a number of well-known methods in vari-
ous regions of the q-p plane, "such a calculation
would involve somewhat cumbersome numerical
procedures. Therefore, in our calculations of C
we have used the WKB form for E~(q, p) which,
with the substitution of L(L+ 1) by (L+~)', was

term (l= 1) has the cross section o (I = 1) propor-
tional to e""~",~ and the higher terms (t&1) are of
no significance since

o(f)/o(1 =1)"(&n) "' '"'
(Ref. 26).

It is not appropriate, however, to compare the
Coulomb and plane waves at the origin when atomic
collisions are considered. The important impact
parameter po in the straight-line approximation
for such collisions is of the order of q,'. Thus ln
the expansion of the projectile wave function into
the partial waves with respect to the angular mo-
mentum L, the dominating L, wave is such that

shown to be accurate to within 5% even for q= L = 1
as long as p ~ 1.+ 2." We found that the tabulated
values" of E~(q, p) are reproduced to within 1%
when L, &10, g&5, and p is not larger than L, + 2.
Thus the WKB formula for Ez(rl, p) is sufficient
when one considers slow collisions (q» 1) in which
the I, =L,,»1 waves dominate [Eq. (9)].

The important p, at which Eq. (10) should be
evaluated is determined in the straight-line ap-
proximation as Kp, = I.,= A,q,./hq so that

IF, (q„L,) I'
C,(~ri' p= L }=

~E ( L ) ~. ~

JO ~gr 0

The form e '~" used by Brandt and his co-work-
ers"""as the Coulomb-deflection factor obtains
when p= q. The WEB Coulomb wave function'
duces at this distance to

Once Carlini's formula" is rewritten as

j (q)q= 2 '~'sin' '(-'u ) ta,n +'~'(-,'u, )

x exp [(I.+ —,')/ cosu, ],
we find immediately from Eq. (10) that

i, f()ief & 'p )i,f}
= (cos-,'u' ~ ~)'i'exp(-2m', . &),

which by Eq. (6) leads to

C~(b, 7); p= rj) =—e '~".

(13)

(15)

The approximate equality sign in Eq. (15}applies
in the sense that

cos(-,'u' ~ ~) =- [-'.(1+1/(1+ [q,. z/(L+-')]')'~')]'~'

is a very slowly varying function of ql(L+ —,') and,
in fact,

cos(—,'u~)/cos( —,'u,') = 1.
For L = I.„Eq. (15) is identical with our Coulomb-
deflection factor [Eq. (11)]when ay=A, . To dis-
cuss the deviations of this factor from e '~" which
is used in the literature, ' ""we will consider
C/e "".

Figure 1showsthatC~ of Eq. (11)ispractically in-
dependent of q,. and somewhat sensitive to the
choice of A, —=p,q, . The values of A, depend on the
method of deciding what is the most important im-
pact para. meter p, in the P(p)p distribution, where
P(p} is the excitation probability for a given colli-
sion process a,s calculated in the straight-line
approximation at the impact parameter p. One
can define p, as the impact parameter at which

E~(ri, p= q) = 2 '~'sin~"(-,'u, ) cos ~(,'u„)—

x exp [--,'7iq+ (I.+ —,')/ cosu, ], (12)
where

sinu, = q/[q'+ —(L+ ,")']'~'.—
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FIG. 1. Coulomb-deflection factor C~p (&p Lp) de-
rived from Eq. (11) and divided by e 7L~7), as a func-
tion of 4 p —Qgp for various choices of g& —=Z &Z 2/v;
with Ap -—1 (lower figure) and of A p =ppgp with g;=20
(upper figure). Note that CL is virtually independent
of g& for all 6g and closely equal to e ~~" when 4q
=Ap, By Eq. (7) Lp=Appg/6&»1.

P(p)p attains a maximum or take

Po= PP P PdP
0

P(p)pdp.

Correspondingly, we obtain" Ao= 1.2 or 1.8
for ionization of an s state, A.0=1.7 or 2.3 for
ionization of a p state, and &0= 0.8 or 0.9 for K-
shell exciation in the homonuclear collisions con-
sidered by Briggs. ' In Sec. III, we will assume
that AO= 0.85 for K-shell excitation in Ne'-Ne col-.
lision, and AO= 1.5 and 2 for s- and p-state ioniza-
tion.

Figures 2 and 3 illustrate, respectively, how
critically the Coulomb-deflection factor depends
on the choice of the partial wave at L= L, and at
p= L, We have evaluated C~(~q; L,) for the 0.3
& L/L, &3.0 range which covers about 9(P/~ of the
area under the normalized P(p) p curve. As shown
in Fig. 2, F~ gives the same result as E~ to with-

0
in a factor of 3 even when''7 is not close to unity.
Actually the uncertainty of the Coulomb-deflection
factor is somewhat smaller because already —', of
the normalized P(p)p distribution is covered when
0.5 & L/L, & 2.0 and the underestimate of the C.

0factor for L(E,
O appears to nearly offset the over-

estimate for L&LO Figure 3 shows a similar
compensation when C, (b,q; p) is considered. 0
around p= L, (filled circles). The open circles
represent the calculation at p= g which results es-
sentially in the e ''" dependence given by Eg. (15).

0.3
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FIG. 2. Coulomb-deflection factor C&(bq;Lp) divided
by e 7I+7) as a function of L/Lp for q; =20 and various
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FIG. 3. Coulomb-deflection factor C& (4q; p) divided
by e" +" as a function of p/p for various upwith

p, =-q, + [q'+ (L +-')']'/'

and g&=20. The open circles at p=vj are according to
Eq. (15) and the filled circles at p.=L

p are calculated
from Eq. (11). The dashed curves are drawn where the
WEB evalaution of I"I (q, p) begins to lose its validity,
and the stars at p= p~ mark the points where CL,
p~)=1 as expected on the basis of Eq. (16).

The Coulomb-deflection factor reduces practically
to unity at the distance of closest approach in the
C oulomb scattering

p, = q+ [q'+(I. +-,')']'"
since for q»1(Ref. 37) the function

~~(n, p= p, )
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has an extremely weak dependence on t). The p/p,
& 1 region is expected to become insignificant since
for such p values F~(rt, p) exhibits an oscillatory
behavior, and, therefore, tends to cancel out with
contributions of other I'. ~ functions in the transi-
tion ampli. tude T,&of E. q. (2). On the other hand,
the p/p, «1 values become accessible in nuclear
collisions. At p=- 0 Eq. (10) reads"

N& f(7f&f t 9 )

&Oi, f y ~0i f {17)

III. INNER-SHELL-VACANCY PRODUCTION: A TEST
OF THE COULOMB-DEFLECTION FACTOR

A. K-shell excitation in symmetric collisions (Z& =12)

Briggs and co-workers' ' have reported calcu-
lations for K-shell excitation in Ne -Ne collisions.
These semiclassical calculations were performed
numerically with the neglect of the internuclear
potential as well as with the Coulomb potential,

With q,. &» 1 and p being identified with L, (the L,
-0 limit), Eq. (17) leads to

C (bq. 0) e-2wkn

which, as anticipated, is identical with Eq. (8).
In the derivation of the Coulomb-deflection fac-

tor, Eq. (11), we have tacitly assumed that L,=Lz.
=L, since (Lz —L,)/L, =br. t/rt, «1 [see .Eq. (4)] so
that the classical projectile trajectory is well de-
fined. " It may be argued that such an approach is
strictly valid only as long as the angular. momen-
tum of the electron is conserved. This assumption
is made in the semiclassical calculations for K-
shell ionization" "which, in the monopole ap-
proximation to the perturbing potential, consider
only the transition to the ls state in the continuum
of the target, atom. ' However, these calculations
deviate from C~ of Eq. (11) and from e '~", Eq.

0
(15), as b, rt/tl, increases. One can view such de-
viations as an inherent breakdown in the equiva-
lence between a semiclassical approach and our
essentially quantum-mechanical treatment when

6t)/q, is not negligible.
We conclude that the form e '~", Eq. (15), ought

to give estimates of.the Coulomb-deflection fac-
tor, Eq. (11}or Fig. 1, good to an accuracy of a
factor of -2. Given the straight-li. ne impact-pa-
rameter-dependent probability P(p} for a specific
collision process, we can determine A, and the
PWBA cross section which is easily scaled to the
CWBA results by multiplication with e '~" or
C~ (brt;I.,), where L, is A, rt,/bq. .

Z, Z,/R, and Bohr's screened Coulomb potential. ,
Eq. (Al). The resulting cross sections varied by
orders of magnitude depending on the choice of
the potential; very close agreement with experi-
ment" was obtained when the screened potential
was used.

B' the internuclear potential is neglected, gb
initio 2P7t'-2Pg coupled-state. calculations yield a
straight-line impact-parameter -dependent func-
tion P. This probability of producing a hole (or a
K-shell vacancy in the separated-atom nomencla-
ture) in the collision is solely dependent on (k/
v,.)'~'p if one sets bE= kR', ,with k —= —,', Z,*Z,*(Z,*
+ Z,*)' in a small-R expansion. " By integration
over all impact parameters the straight-line semi-
classical, or equivalently, the PWBA cross sec-
tion is obtained as

(19)

We have read the P function from Fig. 3 of Ref. 7
and found that N, is 2.4 for N'-N collisions. Be-
cause of the universality of P, especially for sym-
metric collisions, one may use this constant in
Eq. (19) for the analysis of Ne'-Ne collisions.
With the identification b,vi=dq, [Eq. (4)] and with
the Coulomb-deflection factor 8 '~" or, more re-
fined, Eq. (11) at Ao= 0.85, we can scale v~"e" to
~C WBA

We determine q, as q, = {bE)lv,, with

«(R.)P(p)p dp P(p)p dp (2o)

bE(R, ) = kR,'/ [1+ 0.122(bR,)'

+ 0.0729(bR,) ]'i'.
With Briggs' reduced unit of length

b =(z,*'z,*'[-.'(z,*+z,*)]'M/(z, z,)] ~',

(22)

Eq. (22) reproduces to within 8/0 the Hartree Fock-
results for d E that were used in calculations of
Briggs and co-workers (see Fig. 4 of Ref. 7). Such
a fit, valid for all internuclear separations R, is
necessary because the deflected projectiles do not
probe the small-B-expansion region. If one were
to evaluate in Eq. (20) bE(R,) at R,= p, corre-
sponding to undeflected projectiles, the data plot

For Rp we take the distance of closest approach,
i.e. , the solution of

E,.(1-P'/R,') = V(R,), (21)

which is R,=d+(d'+ p')'~' for the pure Coulomb
potential V= Z, Z,/R. As discussed in the Appen-
dix, for screened Coulomb potentials Ro &0,
d-d', q-q,', and bq-bq'=d'q„'. For bE(R,) in

Eq. {20), we take
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as the open circles in Fig. 4 in gross disagree-
ment with the e '~" factor.

Figure 4 displays the ratio of K-shell excitation
cross sections for Ne'-Ne collisions calculated' '
with a hyperbolically deflected trajectory to the
cross sections evaluated with the straight-line
path or equivalently C= oc"s"/o~"s". The dash-
dotted and dashed curves versus mhq and mug',
respectively, are the C's for pure' and screened'
Coulomb potentials. The closeness of these curves
indicates that our procedure developed to incorpo-
rate the screening effect (see the Appendix) is
adequate; the difference between them reflects on
the inherent difficulty in the determination of (d E).
The solid line represents the C= e ", with g = mug
or mug'. Good agreement with the data" is ob-
tained when the experimental ratios are plotted as
a function of mug', the screened argument of the
Coulomb-deflection factor. As an example of the
difference between the Coulomb and the screened

l.4

CS X

1.0

0.8

0.6

I 007 050 45 0 40 0 I35

7t tie
0.50
It

0.275

I.O

R/o with 0= I/IO

O.95 I.O l.05 I.I I. I 5 l.2 I25 Ib

4
x=mQq'

FIG. 5. Screened Coulomb-deflection factor divided
by 8 " ~ for &-shell excitation in Ne'-Ne collisions.
The semiclassical calculations (dashed curve) of Ref.
8 and the data of Refs. 39 and 41 are in good agreement
with the screened Coulomb-deflection factor C
=Cl' (Ag';Lo) of Eqs. (A5), (A6), and (11) (solid curve).

O. I

O.OI

O.OOI
2

x= ~h,~ or +6''

FIG. 4. Coulomb and screened Coulomb-deQection
factors, C(x), for K-shell excitation in Ne'-Ne col-
lisions. The dash-dotted and dashed curves plotted,
respectively, vs x = m 4g and x = m 4g ', are the results
of the semiclassical calculations with Coulomb (Ref.
2) and screened Coulomb (Ref. 8) potentials. They
follow closely the solid line e ". Experimental
cross sections (Ref. 39) divided by the PWBA cross
sections, Zq. (19), based on Ref. 7, are in agreement
with this line only when plotted vs x= xAg' (solid sym-
bols). The open symbols result if 4g' is determined
from (b E) being evaluated with b E(p) instead of
AE(RO). As discussed in the Appendix, it is necessary
to employ a screened Coulomb potential when Ã0/a &1.

Coulomb potentials, one has for a Ne'-Ne colli-
sion at g,.=0.3 the values m.hq=9. 26 and

mdiv'

= 4.16. Then e" "=164, i.e. , the measured
cross section at g, = 0.3 is two orders of magni-
tude larger than the prediction of the theory which
assumes that the internuclear potential is purely
Coulombic. The curve drawn on the basis of Eq.
(A5) would be indiscernibly close to Briggs'
screened Coulomb curve (dashed curve)

The Coulomb-deflection factors for screened
Coulomb repulsion are examined in a magnified
way in Fig. 5. In addition to the data" shown in
Fig. 4, we plot the data from Ref. 41 which agree
with those of Ref. 39 except of the lowest velocity
g,.= 0.3; other data" for Ne'-Ne collisions are
within the -20% experimental uncertainty but they
do not extend down to g,.= 0.3. ' The Coulomb fac-
tor, although it changes by almost three orders
of magnitude, is predicted by e '~"' nearly to
within the uncertainties of the data and agrees to
within -30% with Briggs' calculations. ' The di-
vergence between the solid and dashed curves at
the lowest velocities may be due to inherent dif-
ficulties in our determination of (hE) which is
needed to obtain d g'. Good agreement is also
found between the exponential factor, the data,
and calculations that were reported, by Peterson
et gl. ' for the isotope dependence of the E-shell-
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FIG. 6. Isotope effect for E-shell excitation in Ne'-Ne

collisions: the larger cross sections for Ne than Ne22 20

are explained in terms of the smaller Coulomb-deflec-
tion effect for the heavier isotope. The data and the re-
sults of the semiclassical calculations (dashed curve)
are shown as reported in Ref. 44. The solid curve is
based on the simple approximation. to the screened-
Coulomb-deflection factor derived in this work. As can
be seen from Fig. 5, Kq. (A5) would be in excellent
agreement with the dashed curve and the data.

vacancy production in slow Ne'-Ne collisions (see
Fig. 6).

B. Inner-shell ionization in nonsymmetric co11isions (Z& (Z2 )

Based on the perturbed stationary-state (PSS)
approach, "Brandt and coworkers"" have devel-
oped a direct ionization theory for Z, «Z, . Since
electron capture contributes negligibly to inner-
shell ionization in such collisions, the ratios of
experimental cross sections to predictions of the
PSSH theory —which accounts also for the relativ-
istic (R) effectinthedescriptionof an inner shell"—
determine semiempirically the C oulomb-deflec-
tion factor. Figure 7 demonstrates that the locus
of these ratios based on the data for K x-ray
production by protons follows C= e '~"0."

They do not confirm the result of semiclassical
calculations in the monopole approximation.
Their scatter does not allow one to decide whether
the refinement of the Coulomb deflection as cal-
culated from Eg. (11) is warranted.

O.ol

~ b,

MOhlOPOLE APPROXIMATION:

BRUNNER ( I972)
OO KOCBACH (I974, l976)

BRANDT LAPICKI (1979) P

I I

2
w hqo

C. Summary

Vfe conclude from Figs. 4-7 that the form e '~"
introduced as Coulomb-deflection factor in inner-
shell ionization theory' is reliable within the scat-
ter of data. Just as e "~"is appropriate for nu-
clear processes so is e '~" for slow ion-atom col-
lisions which occur at impact parameters com-
parable to the half-distance of closest approach,
d [see Eg. (15)]. When collisions take place at
other impact parameters, one should use the more
general Eq. (11) or Fig. 1 to determine the Cou-
lomb-deflection factor. Even then its values may
differ by a factor of 2 because of the uncertainties
in the choice of parameters which enter in Eq.
(11). Equation (15) was found to be in good agree-
ment with the Coulomb-deflection factor derived

FIG. 7. Coulomb-deflection effect for K-shell ioniza-
tion by protons in the Z~ «Z2 collisions. The closed
circles represent a semiempirical determination of this
effect once the ratios of the x-ray production data (Ref.
46) to the predictions of the PSSR theory for direct ion-
ization (Refs. 10 and 15) are plotted vs 7t Dg as explained
in Ref. 47. The open symbols and dashed curve are the
numerical (Refs. 11-13)and analytical (Ref. 15) results
of the semiclassical approach {Ref.1). The dash dotted
and solid curves are based on, respectively, e ~+'Io,

and Eq. (11) with Ao =1.5 and q; =20 as derived in this
work. As discussed in the Appendix, it is sufficient to
use a pure Coulomb potential when Ro/a &1.
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in semiclassical calculations for K-shell excita-
tions in homonuclear collisions. It is expected to
apply in any slow atomic collision for which a
classical description of the projectile is possible.

Our derivation is basically quantum mechanical
in that it considers the propertie's of the wave
function of the projectile. One might be surprised
that, by comparison with semiclassical calcula-
tions, its results are more accurate for quasi-
molecular excitation than for inner-shell. ioniza-
tion with Z, «Z, in which the Coulomb deflection
is of lesser significance. This apparent paradox
may be resolved if viewed as the lack of equi-
valence between the quantum-mechanical and semi-
classical treatments when the energy loss AE can-
not be neglected in comparison with the projectile
energy E, We note that in Ne'-Ne collision b,E/E,
barely exceeds 1% whereas in inner-shell ioniza-
tion nE/E, can be a. s large as 10/o. Although the
Coulomb-deflection factor derived in this work
gives overall a better agreement with experiment
than the factors found in semiclassical approxima-
tion, the results of both approaches should be
treated with caution unless EE/E, «1. Ot.herwise,
calculations based on a fully quantum-mechanical
theory with projectiles described by Coulomb
waves or a semiclassical approximation with the
consideration" of projectile energy loss are
needed.
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APPENDIX: SCREENED COULOMB-DEFLECTION FACTOR

It is necessary to account for screening of the
nuclei when the projectile does not penetrate deep-
ly into the K shell, i.e. , when g02 ~. Here &0 is
the distance of the closest approach evaluated for
a screened potential at

screened potentials are the Bohr potential4'

V'(R) = Z,Z,e a"/R,

—(Za/3+ Z2/3)1/2
1 2

and the Firsov potential"

V (R) = Z,Z,4(i,R/0. 66SS)/R, (A2)

ith p, ~=—(Z', '+ Z', ')' ', where @ is the Thomas-
Fermi screening function. For small B, these po-
tentials can be approximated by

V'(R) = Z„Z,(1-Ai R)/R, (As)

the Coulomb potential minus the constant Z, Z2A p,

which is independent of the internuclear distance
A. The major contribution to inelastic collisions
comes from the distances for which pg&l. We
find that Eq. (A3), with A, = 0.60 and i/, standing for
p, ~ or p, ~ depending on the choice of potential, fits
Eqs. (Al) and (A2) to within 20/o over the 0 ~ i/R
~1.2 range. The Lindhard form for the screened
Coulomb potential" is approximated by Eq. (A3)
with even greater accuracy. A 20% uncertainty is
usually associated with the statistical model for
the internuclear potential" and is comparable
with the uncertainties encountered in the quantum-
mechanical calculation of the neon-neon interac-
tion. " The solutions of

(A4)

are still given by Coulomb wave functions, Eq. (3),
but with the elgenenergles E~ f=Ef f+APZ1Z2
Thus we obtain the screened Coulomb-deflection
factor C through the replacement of hq= dq0 in
the argument of the Coulomb-deflection factor,
Eq. (11) and e '~", by aq'=d'q, ', i.e. , with L,'
=A,7),./~q'

C = C, (br/'=d'q, ', L'). (As)

Here

d'=-d/(1+Ai/, Z,Z, /E,.) =d/(1+ 2Apd)

and

p~(p)p dp q,
' -={aE)/ [e,(l+ 2A pd)'/'], (A6)

and g is the K-shell radius. On the other hand,
the screening is of no importance when A0'«g.
In particular, the screening plays no role in the
Z, «Z, inner-shell ionization processes unless
one considers the high velocities at which the Cou-
lomb-deflection effect ceases to be significant
(see Fig. 7).

We extend the validity of Eqs. (11) and (15) to
screened Coulomb potentials. Commonly used

(6E)= hE(R')I'(p)p dp
0

is with R,' found by numerical solution of Eq. (21)
in which V(RO) is givenby Eq. (Al) or (A2).' Equa-
tion (As) is rigorous as long as 2A pd «1.Note that
in the 0 & iLR & 1.2 range of validity for Eq. {AS),
pd&0. 6 or, withA =0.60, 2Ai/d&0. 72 since R-
is the distance of closest approach.
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