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The problem of scattering by a local potential in the presence of an intense radiation field is studied for the
case where the potential is Coulombic at great distances. The effect of the Coulomb tail on the asymptotic
dynamics is accounted for here through a modification of the form of the wave functions which describe the
time evolution of the system in initial and final states. This is in analogy with previous treatments of field-
free Coulomb scattering. Starting from the time-dependent picture, the. author obtains a time-independent
formulation of the problem and then applies it to the derivation of a low-frequency approximation. In the
simplest version of this approximation the transition amplitude is represented as the product of a known field-
dependent factor (a Bessel function) and the physical field-free scattering amplitude, thus generalizing an
earlier result of this type derived for the case of a short-range potential,

I. INTRODUCTION

The problem of electron-atom scattering in the
presence of an intense radiation field has received
a fair amount of attention in recent years. ' In the
case where the target is an ion with a net charge,
additional complications arise as a result of the
long range of the Coulomb potential. Our purpose
here is to reformulate the scattering theory to ac-
count for the effects of the Coulomb tail. For sim-
plicity we ignore the internal structure of the .tar-
get, representing the scatterer by a local potential,
and consider an idealized single-mode radiation
field. Even in such a model the prescription for
calculation is quite complicated, but it simplifies
considerably in the dipole approxiMation and in the
low-frequency limit, as discussed below.

A time-independent method for calculating scat-
tering amplitudes in the presence of an intense
laser field has been described previously for the
case of short-range potentials. ' As for the field-
free scattering problem' a time-independent formu-
lation can be derived from a time-dependent de-
scription based on the use of wave packets. (A
quantum, rather than classical, treatment of the
radiation field is somewhat more convenient for
the purpose of arriving at a time-independent for-
mulation, although the two are physically equiva-
lent in the intense-field case considered here. ) In
order to extend this method to include Coulomb
scattering it is necessary to properly account for
the role of the Coulomb tail on the propagation of
the system during the initial and final stages of the
scattering process. In particular, the time-depen-
dent asymptotic solutions which go into the con-
struction of the wave packets should be such that
the packets follow Coulomb-modified classical tra-
jectories, as would be expected on physical

grounds. Modified asymptotic solutions for Cou-
lomb scattering in the absence of an external field
were first introduced, and justified mathematical-
ly, by Dollard. 4 In the approach adopted here we
introduce a Coulomb modification not of the free-
particle solution but of the solution appropriate to
an electron moving in an intense radiation field.
In passing over to a time-independent formulation
we are led to a rule (generalizing one obtained ear-
lier' ' for field-free Coulomb scattering) for deter-
mining the elements of the scattering matrix by ex-
tracting the coefficients of certain singularities in
the matrix elements of the resolvent operator.
These are branch-point singularities, not the sim-
ple poles which arise in the case of short-range
potentials. One possible practical procedure for
extracting these coefficients would involve an ex-
trapolation from complex energies, along the lines
discussed, in the field-free case, by McCartor
and Nuttall. ' An attractive feature of this proce-
dure is that it requires the use of the same basis
states as in the short-range case; these are plane
waves modified by the presence of the radiation
field alone.

Section II is devoted to an 3-matrix formulation
of the problem of bremsstrahlung in the absence
of an external radiation field. Our purpose here
is to introduce, in the context of a relatively sim-
ple and mell-understood problem, some of the
heuristic methods and specific results to be used
later on. The stimulated bremsstrahlung process
is taken up in Sec. III. The choice of asymptotic
states is justified here using physical arguments
based on a wave-packet picture. Mathematical
questions dealing with the existence of the wave
operator. .and the scattering operator lie outside
the scope of the present investigation. " The as-
sumed existence of the scattering operator im-
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plies the existence of certain branch-point singu-
larities in the resolvent. In the dipole approxima-
tion these singularities can be exhibited; their co-
efficient, then provides an explicit expression for
the scattering matrix valid for real values of the
energy. The necessity of extrapolation from corn-
plex energies is avoided here, though at the ex-
pense of introducing, as input to the calculation of
the initial —and final —state wave functions, solu-
tions of the Schrodinger equation in the local po-
tential. The form of this result, derived in Sec.
III 8, suggests an iterative solution, with the fre-
quency of the field playing the role of the small ex-
pansion parameter. The first term in this expan-
sion is of a particularly simple form. As shown in
Sec. III C, it can be determined from a knowledge
of the same free-free matrix element which ap-
pears in the treatment of bremsstrahlung in the
absence of the field. Further simplification is ob-
tained from an approximate evaluation of this ma-
trix element. The result, Eq. (3.42), expresses
the amplitude for scattering in the presence of the
field as a product of afield-dependent factor (a
Bessel function) and the physical field-free scat-
tering amplitude, thus generalizing an earlier re-
sult derived for scattering by a short-range poten-
tial 9-11

H =K+H~+H'+ V, (2.1)

where K=pm/2ti is the electron kinetic energy op-
erator, H~ is the free-field Hamiltonian, and H'

takes the form

II. BREMSSTRAHLUNG IN A COULOMB FIELD

We are concerned in this section with the scatter-
ing of an electron in a potential V(v), with V-g/v
for large g, in the absence of an external field.
In the course of the scattering a single photon is
produced. The interaction H' between the electron
and the radiation field will be treated to first or-
der. The Hamiltonian of the system is

We turn now to a discussion of the asymptotic
states 4, and 4&. The system is initially in the
state ~$,&~0&, corresponding to an electron with
momentum 'P, with no photons present. An ap-
proximate description of the time evolution of this
state, valid for t,--, is given by

~4, (t,}&=exp[ iE-,t,jn.' t; »(- 4E t*/@}II&;&I o)

Here we define E;=p', /2ti .and

({=kg/@PI.

(2 5)

(2.6)

The time dependence of the final state is taken to
be

~ e,(t,}&
= exp[ i(E~+ -S(u)t,/n

-i~, ln(4E, t, /a)j$, &)k, T&, (2.7}

corresponding to the presence of a single photon,
the electron having momentum fit. Following Dol-
lard, 4 we have included the logarithmic phase fac-
tors in Eqs. (2.5} and (2.V) to account for the ef-
fect of the Coulomb tail. In fact, each of these
states satisfies an equation of the form

(K+If +~-i& —I4 (t)&= ~- ~~
I4 (t)& (2 8)

dt V P~t)

%'e should, of course, be working with a wave
packet, obtained by superposition of modified
plane waves in such a way that the center of the
packet moves according to

P&=——t. -gp, ~ (signt)ln~t~,(5&

p

the averages being -taken over the packet. Such a
packet will satisfy an equation of the form (2.8},
with $ and 'P on the right-hand side replaced by
their averages. The right-hand side will then
vanish faster than 1/V, indicating that the Coulomb
tail has been accounted for in an approximate way.
Dollard was able to show that this is sufficient to
guarantee the existence of the limit

H'= (e/gc) p X+-(e'/2p, c')A' (2.2) ]jm e {I{+VI{2h~@ (t )) ~ (2 9)
The vector potential for a single-mode field is

+=(27ISc /(oL )i '(aXe{ ~+atXwe ' ') (2.8)

where +=Ac, L, is the quantization volume, and
operator a destroys a photon of polarization X and
wave number k. The contribution to the field en-
ergy H~ is I~a a. In general, of course, we must
sum over modes, with L 'Z~-(2I{) 'f d'ti in the
usual way.

The S -matrix element of interest is
ei {r+v)t2 lb —

I eiet2/Ilg(E )dE
I

27ri
(2.10)

-+ -oo

this wave function satisfies (K+V-, E,)~u&'I&=0 with
outgoing wave boundary conditions. A wave-pack-
et superposition of states is to be understood in
the interpretation of Eq. (2.9).

A useful time-independent reformulation of Eq.
(2.9}follows from the introduction of the identity

8,.= lim ({t (t,)~e ~"I. '2' "~4;(t,)&.
g,~ oo

(2.4) where g(E)=(E-K V) ' and where th-e integration
contour runs from+~ to - above the real axis.
To carry out the limit in Eq. (2.9) we write E =E,+it,
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with a —0+, and make use of the relation"

lim lim g' ~o ~' ' ]g;~n(-4E t2/&)n~~ t n-+-~ (E +i~ E )1 it-

=-2vi6(z, -z,.)g, ,

with

g,.=-(4E,.)*t;e t; -in/I (1;t,.).

(2.11a)

(2.11b)

an expansion of a different form in the Coulomb
case. ' Presumably an analysis of the quantum
mechanical matrix element would lead to a similar
modified low-frequency expansion but we shall not
enter into such an analysis at the present time.
However, if we confine ourselves to the dipole ap-
proximation the leading term in the expansion may
be derived without difficulty. " Thus, we write

The existence of the limit in Eq. (2.9) implies the
alternative representation

(uI&-)I $Iu&')&=(z,. -E,)-'R„.,
with

(2.17a)

Iu&')&= lim (ie)' "g,.g(z,.+ie)IQ,.&. (2.12a)

A similar analysis of the final-state wave function
leads to

(uI& 'I=KI lim (ie)' "I($,I g(EI+iE). (2.12b)

These representations can be verified directly
within the time-independent formalism. "

Returning now to expression (2.4) for the S-ma-
trix element we introduce

G =G,+G,H'G, +G,H'GH'G„ (2.14)

with G,(E)=(E K V H~)-'. -On-ly the second term
on the right-hand side of Eq. (2.14) contributes to
the photon production process in first order. The
limits in Eq. (2.4) can now be carried out using
the relations

e-iH&t) t2) in —-' e &E&t) -t2) in -G(z) dz (2 12)
z "c

with G(E)=(E-H) '. It will be convenient to ex-
pand the resolvent as

N„.=(uI& )
I [$, (z+ v)]Iu & )&.

Our approximation for N&,. consists of setting ~=0
in the energy conservation condition E&=E,. —A(d.

Going back to Eqs. (2.12) we then have

(2.17b)

N,. =-g',. Iim (i~)'&' *&)fi i
. q~o+

x(Q, Ig(z,.+i~)[$, (sc+y-Et —t~}]

xg(z,.+;~)Iy,.&.

This reduces to

NI;—=('0I-5;)f(%I 5t).

(2.18)

(2.19)

where, for pI2/2It=p', /2y=zt a. nd f. iIeg, ,

f(QI, 'p,.)=g',. lim (i~}n&) "t')
q~0+

x (y, I g(z,.+i~)
I y,.& (2.20)

represents the physical scattering amplitude. ' The
approximate bremsstrahlung amplitude then takes
the form

G (E)I'0;&l0&=10&g(z }I5;&

along with Eqs. (2.12). This leads to

SI,= —2t&i 6(EI+K(d-E;)MI;,

with

(2.16a)

(2.16b)

(2.16a.)

x (Et-EI) f($q, fi;}. (2.21)

We conclude this section with a remark on the
integral equation for the Coulomb wave function
which will be relevant to our later discussion.
Suppose we introduce the form

2maC' '" ~e I—IX*.(uI& )I ge-t~' Iu&')&.
(d L p.c

(2.16b)

For a potential of short range, the Lippmann-
Schwinger integral equation can be used to derive
an expansion, in powers of the frequency, of the
matrix element in Eq. (2.16b}; the first two terms
in the expansion can be evaluated from a knowledge
of the on-shell field-free scattering amplitude. '4

Now the Coulomb wave function satisfies the homo-
geneous version of the integral equation" (we shall
return to this point in the following) so that the
standard derivation for short-range potentials is
inapplicable. In fact a classical argument leads to

g(z) =g.(z)+g.(z)IIg(z ), (2.22)

where g,(E)=(E-K) ', into Eq. (2.10); this may
be combined with Eq. (2.9) for the wave function.
The contribution arising from the first term on
the right-hand side of Eq. (2.22) is

(E p-E )t2/ &

llm
2m' „„',„„E,+a~ -E,.

x et tt )n & 4)tt t n I n )
Ig&-

To interpret this expression we replace the plane-
wave state I$,.& by a wave-packet state. The log-
arithmic phase factor then introduces a, rapid
oscillation, which leads to vanishing contribution
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in the limit t, --~; the singularity (E,+is -E,)
is too weak to prevent this. ' Taking into account
the second term in Eq. (2.22) we obtain the homo-
geneous integral equation

~u!' &= lim go(E;+i@)V~u!") . (2.23)

This result may be verified directly by showing
that the right-hand side satisfies the Schrodinger
equation and has the correct asymptotic form. ""

III. STIMULATED BREMSSTRAHLUNG

A. General formulation

We begin with a description of the asymptotic
states appropriate to the case where the electron
interacts with an intense laser field as it scatters
from the potential V(x). The field might be repre-
sented as a pulse of radiation, moving along the
z axis, say, with vanishing intensity for large val-
ues of ~z —ct~. A wave-packet solution" may be
constructed from a superposition of states, each
corresponding to a definite field frequency and
asymptotic electron momentum. In analogy with
Eqs. (2.5) and (2.7} we represent these elementary
states as

~C,.(t,)) = exp[- iE„~ t,/s

H,+&-is —~e(t)&= &- ~g
~C(t)&.

dt ~ P )t~
(8.5)

U„(t}=U,(t) exp[i (p g/hp) ln(- 4'/I)], (3 6)

with Uo(t)=exp(-iKt/5'). As a natural generaliza-
tion appropriate to the case where the field is
present we take ~C, (t))=U„(t)

~ fi,.&~ n&; U„(t) is of
the form shown in Eq. (3.6), where now Uo(t) is
the evolution operator for the "dressed" electron.
The equivalence with the original form (3.1a) may
be established through a constructive procedure '
in which U, is represented as

We see, as discussed earlier in connection with
Eq. (2.8), that wave packets built up from the func-
tions 4(t) will represent asymptotic solutions, the
effect of the Coulomb tail being accounted for by
inclusion of the logarithmic phase.

We remark, parenthetically, that the asymptotic
wave functions defined in Eqs. (3.1}can be express-
ed in terms of certain asymptotic time-evolution
operators, in analogy with earlier work. '" Thus,
in. the absence of the radiation field the wave func-
tion of Eq. (2.5) can be expressed as ~4, (t)&

=U„(t)~$,.&~0), where U„(t) is Dollard's asymptot-
ic evolution operator

+i~, I ( 4E,t,-/a)]~.q„; &,

~ C, (t,)) = exp[- iE„-, t,/s

(3.1a)
U,(t)=exp[-z(Z+H )t/S]Z(t).

Then Z(t) satisfies

HO= K+HF +H,

E„&=P /2p+n K&u+&,,

(3.3)

(3.4a)

b. = (e'/2 pc'}(4'ac'/(ol. '). (3.4b)

(In the intense field limit considered here photon
depletion effects are negligible. The level shift 4
is then state independent and plays no essential
role.") The asymptotic states defined in Eqs.
(3.1) then satisfy equations of the form

i~, In(4-Z, t,/h)]~ q„-, &. (3.1b)

The electron-field stateS ~(„-&, introduced pre-
viously, ' "may be thought of as evolving from the
unperturbed state jn;$& as the interaction is switch-
ed on adiabatically. Here ~n,'$& corresponds to an
electron with momentum 'fi, the field consisting of
~ photons each with polarization X and wave num-
ber k. The interacting states satisfy the time-in-
dependent Schrodinger equation

(3.2)

where

i s —Z (t)=H'(:) Z (t),
dt

where H'(t) is the electron-field interaction in the
interaction representation, its time dependence
being generated by the free Hamiltonian K+HF.
The differential equation for Z (t) is easily solved
by exponentiation. The desired initial condition is
imposed by assuming that the interaction H (t) is
switched off adiabatically for t--~. The result
(omitting details here) is that Eq. (3.1a) is recov-
ered along with a rule for constructing the states
~g„-& (as an expansion in unperturbed states). This
rule agrees with that obtained in Ref. 11 through a
solution of Eq. (8.2).

We assume that the asymptotic solutions discuss-
ed above are sufficiently accurate to ensure the ex-
istence of the limits in the definition (2.4) of the S
matrix. To pass over to a time-independent form
we make use of the identity (2.13). Then, with the
asymptotic states given by Eqs. (3.1) the S matrix
for scattering from an initial electron-field state
~n;; g,.& to a final state

~ @,. fi&& becomes
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)& -~(z-z -)~,la8 nfpf

)(G(E )~i (E -R ) t2l t)

4 1 ( 4E t2-I)).)I ( )qP

The resolvent can be expressed as

G =Gp+GpTGp

where G,(Z)=(Z-H, ) ' and 7' satisfies

(3.V)

(3.8)

phase factors. The possibility of numerical im-
plementation of this idea, for the case of field-
free scattering, was discussed by MeCartor and
Nuttall. '

t

B. Dipole approximation

If we ignore the effect of electron recoil in the
emission and absorption process the general ex-
pression given previously" for the state g„- as an
expansion in unperturbed states simplifies to

(3.14}

The expansion coefficients are given by

V'(Z)=V+VG, (Z)T (E). (3.9) y„(5 ~)=c ™~„(o), (3.15)

The contribution to Sf,. coming from the first term
Go in Eq. (3.8} can be evaluated by making use of
the eigenfunction expansion

c,(z)= g d'p
tl nP

(8.10)

and the orthonormality relation

&0„-, I4„-,&= &„„~(Ã-'W.

We then see that the contribution from G, vanishes
due to rapid oscillations introduced by the logarith-
mic phases. The absence of the "no scattering"
contribution to the S matrix has its counterpart in
the case of field-free Coulomb scattering. ' tThe
effect is similar to that responsible for the appear-
ance of the homogeneous integral equation for the
continuum Coulomb wave function, as indicated by
the argument leading to Eq. (2.23}.] We then ob-
tain, with the aid of Eq. (2.11) to evaluate the lim-
its, the result

where J is the Bessel function of the first kind,
and p and 0 are real parameters defined by'p

(—,
'

a(u) pe'8 = (2vrie'n/p, (uI.'}'i'(fi.X). (3.16)

Gp= d Pp Z, +ie-p'/2p, '. (3.1V}

The error in this approximation is

Gp —Go=Gp~~Go ~ (8.18)

With the neglect of recoil effects the general ex-
pressions (3.13) for the transition matrix can be
put in more explicit form, leading to particularly
simple approximations in the low-frequency do-
main, as w'e now show.

We begin by introducing a low-frequency approxi-
mation for the free Green's function Go(F. -+is),
obtained from the eigenfunction expansion (3.10)
by setting &d =0 in the energy denominator. Thus,
we define

Sy = —2vi5(E E)Mf(, -fi tff Pg tLP. f~ ~

where

M~,.= lim K~g, (ie)' '"~'V
p+

(3.12) with

))',= g fd p~ )4t-) m~;)a'ia( . 1) (3.19)

(3.13a)

M„.= lim 0,l;(ie) '&"0)&tl); IT(E„;+is)I&„~).
q ~ Pt i

x &q, )C(E &
+;~)I q„;)

i

This generalizes Eq. (2.20) for the Coulomb scat-
tering amplitude in the absence of the field, re-
ducing to it for H'-0. An alternative version of
Eq. (3.13a) is

Using the Graf addition formula for the Bessel
function the sum over photon states can be per-.
formed, " leading to

tdsp 1%&%I (E „.,).
E)+pe p /2$

(3.20)

this is to be understood as a unit operator in the
space of photon states. To include the effect of
the potential we introduce

(3.13b) G'=Go+Go~G (3.21)
As a calculational prescription this form requires
the evaluation of the 7-matrix element using, e.g.,
the Lippmann-Schwinger equation (3.9), with e)0.
The physical amplitude is determined by analytic
continuation, . with the removal of the singular (8.22)

which, according to Eqs. (2.22) and (8.20) is just
g(E, +i&). Comparison of Eq. (3.21) with the cor-
re sponding equation

I

G =Gp+G VGp
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for the exact resolvent leads to the identity

G =G'+(1+GV)(G —G')(1+VG'). (3.23)

G =G'+G W;G'.

A similar analysis leads to

(3.24a)

This reduces, with the aid of Eqs. (3.18}, (3.21),
and (3.22) to

For a potential of short range this matrix element
represents the physical scattering amplitude,
while in the Coulomb case a singular phase factor
appears and is cancelled in Eq. (3.28).]

The remaining contribution Mf',-' to the transition
matrix element arises from the last two terms in
Eq. (3.25a). When these are inserted in Eq. (3.13a}
w'e obtain a result of the form

G=Gf+G WfG,

which can be inserted into Eq. (3.24a) to give

M~&', &=((.„'
& l W, w, G(E„;)W, lq„l, &

Here we have defined

(3.31)

G=G'+G W;G" +G WfGW;G'.

The equivalent form

(3.25a)
lg„' .&= 1~m t, (ie)' "~G*l(„;&.

"f i
(3.32)

G =Gf+Gf WfG'+G f
WfG WiG' (3.25b)

is obtained by inserting the expression (3.24a) into
Eq. {3.24b).

Ne proceed by introducing the representation
(3.25a) into the expression (3.13a) for the transi-
tion matrix element. [ The following analysis can
be repeated, starting instead with Eq. (3.25b); the
same final result is obtained in either case.] We
w'rite

Mf;=Mf; +Mf;,(&) (2) (3.26)

where Mf",.' is the contribution arising from the
first term G' in Eq. (3.25a). It can be evaluated,
with the aid of the addition formula for the Bessel
functions, as

(3.2V)

In the case where the electron gains or loses a net
amount of energy to the field, i.e., ~fez, , Mf",.)
vanishes since, for Ef cE;, the matrix element
($&lg(E;+is)$,& is not sufficiently singular to
compensate for the vanishing factors of e in Eq.
(3.2V). More explicitly, we can use Eq. (2.12a) to
write

(3.28)

Using the expansion (3.14) and the identification of
G' with g(E, +is) t.he limit can be evaluated in terms
of the Coulomb wave function represented in Eq.
(2.12a), with the result

(3.33)

In a similar way we find

lg„' p)=lu~ '& Qy (fi~. x)ln+m&. (3.34)

We note that (within the dipole approximation) a
result of the same form as that shown in Eqs.
(3.30) and (3.31) can be derived from the scatter-
ing formalism set up previously for the ease of
short-range potentials. ' Thus all of the specifical-
ly Coulombic effects are contained in the scatter-
ing amplitude and wave functions which appear in
these expressions.

One can think of the operators W,. and Wf as mea-
suring an average fluctuation energy of the field
in interaction w'ith the electron. Treating these
operators as small perturbations in the low-fre-
quency domain w'e ean set up a procedure for de-
termining the resolvent in Eq. (3.31) based on
iteration of Eqs. (3.24). In Sec. III C we analyze
the "Born" approximation associated with this
iterative procedure.

From the integral equation (2.23) we have

„., &0 IVI l'&.
1

(3.29)

My' =yoB; -py] &)f(5g j5;)5„,..~ (3.30)

[The same result for ~= s,. is obtained by making
use, in Eq. (3.29), of Altick's evaluation" of the
matrix element ( fill Vl u I') in the limit pz -p, .

This expression is bounded for Ef WEi so that the
limit in Eq. (3.28) is zero. For the case.y=g,. we
may use Eq. (2.20} for the physical Coulomb scat-
tering amplitude; Eq. (3.2V) then becomes

C. Low-frequency approximation

The specification of the order of the terms in
arriving at a low-frequency approximation re-
quires some care since the limit ~-0 would be a
singular one for the expansion coefficients y .
The singularity appears in the defimtion (3.16)
for p, with y a function of p as shown in Eq.
(3.15}. The infrared difficulties encountered in
perturbation theory are avoided by treating the p
dependence (and hence the ~ dependence) of the
coefficients y exactly. If multiphoton effects are
to be significant in practice the parameter p must
be of order unity or greater, and in fact this range
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This term is not necessarily of first order since
the matrix element can be singular [as may be
anticipated from the appearance of the & ' singu-
larity in the bremsstrahlung amplitude shown in
Eq. (2.21)].

The Born term may be expressed in the more
convenient form

Bq, =X ~ (u.q '(($, -$})u3'),
where

2ws8 fgX=-
/, (dI.

(3.36)

(3.31)

This result is easily verified using the addition

formula and recursion relation satisfied by the

Bessel functions [as shown in more detail in the

passage from Eq. (3.26) to Eq. (3.29) of Ref. 11].
With the inclusion of the term shown in Eq. (3.30)
the low-frequency approximation becomes

Mg)= ro([5; -—'5g] &)f (vy, 5;)&„.

is experimentally accessible. ' For definiteness in
the following w'e take p and the expansion coeffi-
cients, which are smooth functions of p, to be of
order unity. Then W~ and Wz in Eq. (3.31) are of
first order. The "Born" approximation is M&",.'
=—B&,, with

(3.36}

gonality of the wave functions allows us to write

m« —=-X.&u~&-&~g~uI &}. (3.39)

This becomes, with the additional approximation
shown in Eqs. (2.17a) and (2.19},

I„.==- X (&, -&,.)(Z,. -Z,)-f(&„$,). (3.40)

From the definition (S.SV) and the Bessel-function
recursion relation we have

X 0; -Pf)=r„~([u; -5y] &)(~y -n;)s~. (3 41)
t?g

This, along with the energy-conservation condition

E; -EI=(n& -n;)Ru leads to the approximation

~y;=r„.([5; -5~] &)f(5g, '5;) (3 42)

This provides a generalization of Eq. (2.21), re-
ducing to it in the appropriate weak-coupling lim-
it.

For the case n& =n,. we keep only the first term in
Eq. (3.38}; this term is of order unity while the
second term is of first order in the frequency. "
Thus Eq. (3.42) holds for this case as well.

For a potential of short range the free-free ma-
trix element appearing in Eq. (3.38} can be expand-
ed in powers of the frequency and the coefficients
of the first two terms can be expressed in terms
of the on-shell scattering amplitude. This pro-
vides an approximation for M&, , an improvement
over Eq. (3.42), which can be shown to be equiva-
lent to that obtained previously. " As indicated
earlier in the discussion following Eq. (2.16b)
such a procedure must be modified in.the Coulomb
case. We hope to return at a future time to furth-
er consideration of this point.

+X (uq '~($, —fi))uI'&) . (3,38)
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