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Electromagnetic potential in Thomas-Fermi-Dirac atoms
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The authors discuss the relativistic Thomas-Fermi model for atoms and derive a relativistic extension of the
Dirac exchange term. As a result of this model the mutual cancellation of the exchange and relativistic
corrections to the energies of inner-shell electrons in heavy atoms (Z & 50) is demonstrated.

I. INTRODUCTION

The formation of quasimolecules in heavy-ion
collisions has stimulated interest in the calcula-
tion of relativistic molecular electronic states. ' '
The complexity of the collision constitutes a chal-
lenge to the theory to meet the needs of the exper-
imentalists and calculate for example the ioniza-
tion degree of the inner shells. 4 Although'recent
progress in solving the Dirac equation' ' provides
a satisfactory single-particle basis for such cal-
culations, it has been recognized that the screen-
ing of molecular states by the molecular electron
charge density is quite important. Recent efforts" '
to account for this effect have led to a revival of the
Thomas-Fermi (TF) model with a shift of emphasis
towards the computation of an effective local sin-
gle-particle potential following from the TF-model.
Such a potential should lead to a good single-parti-
cle basis when inserted into the Schrbdinger or
Dirac equation, in particular if exchange effects
and corrections for the electronic self-interaction
are included. Further, in the case of very heavy
ion collisions, relativistic corrections must be
taken into account too.

The first aim of the present note is to clarify
the definition of the effective potential when the
Dirac exchange correction (TFD model) is includ-
ed. The usual way of constructing an effective
single-particle potential from the TFD model,
first carried through by Latter, ' consists of the
following steps: (i) the TFD equation is solved
for the particular system yielding an approxima-
tion for the total electronic density p(x) (or equi-
valently an approximation for the total electro-
static potential of the system), (ii) a Slater-type
exchange potential' proportional to p(x)' ' is added,
(iii) a l/r behavior for large r is matched, cor-
recting for the electronic self-interaction in the
asymptotic region. In our formulation we shall de-
rive a differential equation not for the total elec-
trostatic but the effective potential itself; i.e., we
do steps (i) and (ii) at the same time. This proced-
ure has the advantage that certain difficulties in

the traditional step (i) arising from the structure
of the usual TFD equation can be avoided.

Further we include relativistic effects in the
model (RTFD) and discuss the consequences of rel-
ativistic and exchange corrections for the tightly
bound electron shells in heavy atoms. The mutual
cancellation of the relativistic and exchange cor-
rections, noted empirically' for the inner shells
of heavy atoms, is proved analytically as a conse-
quence of our approach.

Our paper is organized as follows. In Sec. II
we rederive the Thomas-Fermi-Dirac Hamiltonian
using a trial electronic wave function. Then, with
a physical choice for the effective single-particle
potential we obtain differential equations which are
free of the difficulties that beset the original TFD
method. For the sake of clarity we briefly illu-
strate these problems. Then, in Sec. III, employ-
ing the same methods we derive the RTFD equa-
tions that are considered qualitatively in Sec. IV.
Throughout this paper we use the atomic unit sys-
tem: lengths are measured in Bohr units [ao
= l37 (S/mc)] and energies in Hartrees [e'/a,
= mc'/(137)']

II. NONRELATIVISTIC THOMAS-FERMI-DIRAC MODEL

The Hamiltonian for an atom or ion with N elec-
trons is given by the following expression:

where W (&0 in the present notation) denotes the
Coulomb potential of the nucleus and T',. the kinetic
energy of the j th electron at the point x,

The energy E of the atom is obtained by taking
the expectation value of the Hamiltonian with re-
spect to a Slater determinant of single-particle
wave functions Q,. (x):
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E = Q (](),*(x)T(f),. (x) d'x — Q (t)*, (x)W(x)(t),. (x) d'x+-,' Q ' ', ' ' d x d'x'*,.(x),. (x) (t)g (x'), (x')

j-1 j-1 jy 0 —1

g, (x)y*,. (x')yg(x)(t)„(x') d,
j ~ k —1

(2)

K is the number of electrons considered. In the
Hartree-Fock approach the equations of motion
are obtained by varying the functions Q, (x) such
as to make (2) a minimum. In order to derive the
TFD energy functional we insert T =p'/2m and as-
sume the single-particle wave functions to be
plane waves

yj(x)=e*"* I p;I& Ip I, (3)

where p~ is the Fermi momentum. Then we re-
place the discrete sum over the electron wave
functions by the integral over the density of states
for the plane-wave electrons, d'p/(2m)'. That way
we obtain the well-known relation between the
Fermi momentum and the total electron density

N

p(x) = Q y,*. (x) (t),. (x)
f -1

where

c = (1/2m)(3n'')' ', c = (3/n)' '

We note that the term —c~'~' in Eq. (7), which
originates in the exchange term of Eq. (2), has
the same analytic form as the Slater exchange po-
tential (Ref. 8). It differs from the latter only by
a factor of —'., and thus represents, according to
Kohn et al. ,"'"the optimal choice for an exchange
potential.

As long as the density p is the only quantity of
interest, Eq. (7) provides an integr~ equation for
p. The issue we address ourselves to is to find an
effective single-particle potential which will gen-
erate good electronic states when inserted into the
Schrodinger or Dirac equation. Therefore we de-
fine the total effective potential V(x) (& 0 in our
notation) as the sum of the total electrostatic and
exchange potential

2
(ox)' f Ox' (4)

«p
—V(x) = —IV(x)+, ,

i

d'x ' —c,p'~' . (8)

and the total energy of the N electrons now be-
comes:

2 ~z p'
3 d'p — p X x)|( d'Z(2w)', 2m

P(x)P(x') d3+2 ~««p~ x x

2dx 3 Pd'p.

5[)(+V,f p(x)O'x]= 0, (6)

In view of Eq. (4), E may be considered either as
a functional of pz(x) or of p(x) only. The best p
(or equivalently, pz) is determined with the help
of the variation principle

By insertion of this equation into Eq. (7) we obtain
the following relation between the density and the
effective potential

p = (o/4r)(V —V,)'~', o = (8n /3v) .

Application of the V' operator to Eq. (8) leads,
after insertion of (9a), to the new nonrelativistic
TFD equation for the effective potential

V'V=o(V —V,)' '+5V'(V-V, )' '+4'„, 5=@2/v,

(Qb)

where p„ is the charge density of the nucleus.
We would like to illustrate the difficulties of the
usual TFD approach where the total electrostatic
potential

where V, is a Lagrange parameter that guarantees
constant particle number. This leads to the fol-
lowing equation

«p
—U(x) = —W(x)+ p, d'x'[x-x'[ (10)

-))(x) f(,]O'x+—x~'' +V, =O' , (O)

is taken as the basic quantity instead of the effect-
ive potential (8). In this case one obtains by in-
sertion of (10) into (7) and subsequent application
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of V' to (10) the usual TFD equations

p= (c/4~)[~+(U- V, + 7')"]',
V'U=c[7+ (U-V + v')' ']'+4'

with

7=1/W~~ .

(11a)

mation), one obtains up to second order

A(p, p') —= 1-[(p—p')'/4m'c'].

Inserting this into (13a) and evaluating the integral
over d'p', one obtains for the relativistic exchange
term up to second order:

III. RELATIVISTIC THOMAS-FERMI-DIRAC MODEL

We start again from the Hamiltonian (1), but
now we use for the kinetic energy the relativistic
Dirac operator T/ = n,.P,. + P,.mc'. As single-par-
ticle trial functions we insert the normalized
wave functions for a free Dirac particle

Xs
eip/(x)x

In view of nonpositive roots in Eq. (1la) the den-
sity p is not trivially normalizable. As a eonse-
quenee of this well documented" fact, the density
as well as the potential have to be truncated at a
certain critical radius. " These difficulties are
circumvented from the very beginning by con-
structing a differential equation for the effective
potential.

(13b)

(c p' '+m'c')'/'-mc'-W(x)

+ I 8X —C2P +C P=0p( ) 3 I '

) /3
X —X 2 4 (14)

where c, = (3m')'/' and c, = I/2(mc)'. We define as
the effective relativistic TFD potential

-V(x)=-W(x)+ ", , (f'x' -c,p'/'+c, p
t. p(x')

„' [x-x'[

The approximation (13b) of the complete relativis-
tic exchange term (13a) shows clearly that the
relativistic energy functional (12) reduces to the
nonrelativistic one for p~ «me. Again we obtain
the best p via the variational principle (6), which
leads to the following equation'.

[ p;(& j pz], E~ = (p'c'+ m'c')'/' .

By the same straightforward calculation as in the
nonrelativistic case, we obtain now in place of
Eq. (6),

which leads us to the relativistic analog of Eq.
(10)

d3 g ~2 $3p
p = (c/47r)[(V —V ) + (V —V ) /2 mc ]

v'V = c[(V —V,) + (V —V,)'/2~'] '/'

(16a)

px x 8x

I' p( ) p( ')

where the complete relativistic exchange term E„
is given by

+ 6V'[(V —V,) + (V —V,)'/2mc'j "
+ 'YV'[(V —Vo) + (V —Vo)'/2mc'] '/'+ 4'„

(16b)

with y=c,c/4m; see also Eqs. (9) and (14). These
are the relativistic Thomas-Fermi-Dirac equa-
tions.

with

" ~ d3p ~& d3p' A p, p'
(»)' . (2~)' (p- p')' IV. DISCUSSION AND CONSEQUENCES

OF THE RTFD MODEL

A(p, p' ) = (Z~ + mc') (E~.+ mc')4'" g

Expanding the function A(p, p' ) into a Taylor ser-
ies for small (p/mc) (weakly relativistic approxi-

In the following, we address our interest es-
pecially to the inner shells of heavy atoms where
the relativistic corrections are expected to be
important. The energy spectra of heavy atoms
obtained from a simple nonrelativistic TF poten-
tial' show a better agreement than could be expect-
ed in the energy eigenvalues for inner shells ob-
tained from relativistic Hartree-Fock-Slater
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(RHFS) calculations. " We thus recognize that the
relativistic correction and the exchange correction
cancel each oNer for the inner shells of heavy
a»ms. We expect that the same will happen for
the inner quasimolecular shells in heavy-ion col-
lisions. In the remaining part of this paper we
give qualitative reasons for the validity of this
result. In doing so, we establish qualitatively the
equivalence of our RTFD model with RHFS calcu-
lations.

For simplicity, we consider only the case of a
neutral atom, where V, can be shown to be zero."
Furthermore we restrict ourselves to the first
relativistic correction
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Fn. 1. Radius r 0 of cancellation between relativistic
and exchange corrections as a function of the nuclear
charge Z. Dotted, the expectation value (y) of the 1s
wave function; dashed, {y) +&a.

O'V = a V'/'+ (3a/4mc')V'i'+ 5V'V'/'

+ (y+ a/4m'')V'V"

+ (3y/4mc')V'V'~']+4'„. (18)

For the inner shells of an atom we can approxi-
mate the RTFD potential by the expression (see
March" )

which is a valid approximation for the inner shells
of atoms with g & 130. Under these restrictions,
Eq. (16b) assumes the following form for which the term in square brackets in Eq. (18)

vanishes, i.e., for any particular g there exists
a distance r, (Z) where relativistic and exchange
effects cancel each other. In Fig. 1, we show r,
as a function of g. The dashed curves denote the
range (r) + b,r of the Schrodinger ls electronic

3/4 - ( -2E)'i'2r
wave function $„=2 (-2E)' ' e ' 's' ", where
we insert the corrected eigenenergy E = --,'Z'
+1.79/' '. The cancellation of the exchange and

relativistic effects for the 1s shell thus occurs for
atoms with 58&g & 85.

V(r) Z/=r 1 —79Z. / ". '
ACKNOWLEDGMENT

With this approximative Ansatz we can show that
for any particular Z there exists a distance r,(Z)

Work performed under the auspices of the U.S.
Department of Energy.

*Permanent address: Institut fur Theoretische Physik
der Uni. versit'at, Frankfurt am Main, Germany.

~W. K. Meyerhoff, Science 193, 839 (1976), and refer-
ences therein.

2B. Muller and W. Greiner, Z. Naturforsch. , Teil A 31,
1 (1976).

3J. Rafelski and B.Muller, Phys. Hev. Lett. 36, 517
(1976).

4W. Betz, G. Soff, B.MGller, and W. Greiner, Phys.
Rev. Lett. 37, 1046 (1976).

5J. Kichler and U. Wille, Phys. Hev. Lett. 33, 56 (1974).
6K. Gross and H. M. Dreizler, Phys. Lett. A 57, 2

(1976).
VH, . Latter, Phys. Hev. 99, 510 (1955).

J. G. Slater, Phys. Bev. 81, 385 (1951).
~J. Hafelski, L. Fulcher, and W. Greiner, Nuovo Ci-

mento B 13, 135 {1973).
P. Hohenberg, W. Kohn, Phys. Hev. 136, B864 (1964).
W. Kohn, L. J. Sham, Phys. Hev. 140, A1133 (1965).

~2P. Gombas, Die statistische Theone des Atoms un/
ice An~endungen (Springer, Vienna, 1949).
3J. C. Slater, Int. J.Quantum Chem. Symp. No. 9, 7
{1975).

'4B. Fri.cke and G. Soff, Atomic Data Nucl. Data Tables
19, 83 (1977) and references therein.
N. H. March, Self-Consistent Fields in Atoms (Perga-
mon Braunschweig, 1975).


