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ionization collisions hetween hydrogen and hydrogenlike atoms at high energies
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An improved impulse approximation is used to investigate the ionization collisions between two excited one-

electron atoms at high energies. It is shown that the cross sections can easily be estimated by using the

quantities calculated in the case of the collisions between two excited hydrogen atoms.

Within the framework of the improved impulse
approximation' we have studied the energy and
state dependence of the ionization cross sections
for the collisions between two excited hydrogen
atoms. ' ~ In this note the following processes
involving hydrogenlike atoms are investigated
theoretically at high energies for both cases of
simultaneous excitation (n„&n'„) and deexcitatiou
(n„&n„') of atom A by using the improved impulse
approximation:

A' J "+(n l )+B'~s "+(n l )

nonrelativistic, collision energies.
We present a brief review of the improved im-

pulse formula for the cross section averaged over
l~ in the high energy limit. The average cross
section for process (1) is expressed as

g(z) =c(n„i„,n„f„,n, :~z,*~)/z (z--),
where C( ~ ~ ~ ~ ) is a constant defined as (in atomic
units)

C(n„i„,n„f„,n, :iZ;i)

-A~ ~ "'(n'f') +B s' + eA A

with

(2)

Here n and l are the principal and azimuthal quan-
tum numbers, respectively, and Z the nuclear
charge. Condition (2) is the requirement from the
utilization of the impulse approximation. Our
primary purpose is to find a scaling rule which
relates the cross sections averaged over /~ to
those for the ionization collisions between hydro-
gen atoms. When both atoms A and B have net
charges (Z„,Zs ~ 2), the improved impulse ap-
proximation can be employed only at very high
energies, since the relative motion between atoms
in this approximation is described not by a Cou-
lomb wave, but by a plane wave. Therefore, we
confine our discussion mainly to the process (1)
in which one of the atoms is a hydrogen atom,
i.e. , to a special case of ZA =1 or Z~=1. Since
we use in the present discussion the Born approx-
imation to the electron-atom A scattering ampli-
tude, the collision energy E in the case of ZA ~ 2
and Z~ = 1 should be higher than that allowed for
the utilization of the Coulomb-Born approximation.
Thus the present discussion will be restricted to
the case of Eq. (2) and also to the high, though

with

P, = (2M ~Z,'~)'~2,

where M = 1 + 1/Ms (Ms is the mass of ion core
B'), and

~
Ze

~

is the ionization potential of atom B.
Substituting the trans formations

into Egs. (4) and (6), we can easily obtain

c(n„i„,n„i„,n, : ~z,*~)

= -" —', C(n„f„n„i„,n, : (Z„t),
&a

(8)

where
t Z'„~ is the ionization potential of a hydro-

p dp g cj'
&

~A ~Ap
0

The notations employed here are as follows: p, and
p.,A are the reduced masses of the atom A-atom
8 and electron-ion core A' systems, respectively;
P is the magnitude of the momentum transferred
to atom A; e"(x) is the form factor of atom A.
The function J(y) is defined as

'"' = (~"1)"2(."1)'2""'. (5)

The quantity y~ is given by

2 (P,/P -P/P, )

20 421 1979The American Physical Society



T. SHIRAI, Y. NAKAI, AND H. NAKAMURA 20

g„(x) = ,'n —-J(y „),
h(x) =!..(x)! /xs,

y s = —,'(1/nx —nx),

(10)

n = (Z„/Z, )n, .
In E(ls. (10) and (11)we have employed the mass-
disparity approximation (M,„=1, M = 1) and

(Z.!
= 1/2;.

In the special case of ZA = Z~, C is identical to
that for the collision between two hydrogen atoms
with the same quantum numbers, and the cross
section is proportional to Z„' (= Zsa). When Z„
and Z~ make such a combination that n becomes
an integer, the coefficient C is equal to that for
the case of hydrogen atoms with n instead of n~.
Therefore, the values of C already evaluated for
the various combinations of the quantum numbers
of hydrogen atoms' can be readily used to estimate
the cross sections.

In the general case of Z„and Z» all we have to
do is carry out the calculations of C by using the
form factor & "(x) of a hydrogen atom for the trans-
ition n„L„-n~L„'. The coefficients C(n„, n„', ns),
which denotes 8'(n„l„,n„'L'„, ns) averaged over l„
and summed over E„', are calculated for some
combinations of the quantum numbers for the two
cases of Z„= 1 and Z~ = 1. The results are shown
in Tables I and II.

In order to see the dependence of the cross sec-
tions on Z~ and Z„ for large Z~ or Z„, we try to
take the limits of E(I. (9) for n 0(Zs--~) and
n-~ (Z„-~or ns-~). Since we have

h(x)-C, /x (x-0)

x-2( lg+l~g)-1l (x (g&)
2

and

g„(x)-C,n'x' (x-0 or n-0),
(x-~ or n-~),

(12)

where C~'s are certain constants, the function
g„(x)h(x) converges uniformly to 0 in the order of
C,n'x'h(x) as n 0 Thus -we. can easily show

C(n„l„,n„'l„', ns) ~n' = [(Z„/Zs)ns]' (n-0),
which means

gen atom in the state n~, p, ~ is the reduced mass
of two hydrogen atoms, and

c (mJ„, e„)„',n':
~

E'zi ) =
&

w „f dx g„(x) h(x),
0

(9}

TABI K I. Values of C(nA, nA, nz) in units of (keV) vrao
for various Zs (Zz =1) [or n (=Z~n@Zs)]

(nA, ~„,n, )
{1,2, 10) {2,1, 10)

10

9.344(1)

5.767 (1)

3.900(1)

2.753 (1)

1.998(l)

1.480 (1)

1.115(l)

8.520(0)

6.591(0)

5.156(0)

2.336(l)

1.442(1)

9.749(0)

6.883 (0)

4.995(0)

10

i0
3
5
Y

5
Y
10

5

10
8

~The number in the brackets indicates the power of 10
by which the entry must be multiplied. denotes the
process, not satisfying the condition given by Eq. (2).

gccZ 5 (Z e)). (14)

TABLE II. Values of C{nA, nA, nz) in units of (keV) 7[.ao
for various Zz (Zs = 1) [or n (=ZJ(ns/Zs) j.

ZA
(nA, nA, n~)

{1,2, 1) (2, 1, 1)

10

4

5.152(0) '
1.997(1)

3.458{1)

4.708{1)

5.766 (1)

6.673(1)

7.463 {1)

8.160(1)

8.782(1)

9.344(1)

4.993(0)

8.646(0)

1.177(l)

1,442 (1)

l.668 (1)

1.866(1)

2.040(1)

2.196(l)

2.336(1)

The number in the brackets indicates the power of 10
by which the entry must be multiplied. denotes the
process, not satisfying the condition given by Eq. (2).

This dependence can be confirmed by numerical
calculations of C for n~0.j. It should be noted,
however, that condition (2) gives n„~n; hence the
mathematical limit of n-0 does not have any sig-
nificant physical meaning. The numerical results
presented in Table I show roughly the Z~' depen-
dence for 1.0 ~ n ~ 2.0. When n -~, on the other
hand, the function g„(x) h(x) does not converge
uniformly to —,')r h(x). Therefore, lim„„C is not
e(lual to 4vt(zs J"dx h(x), which diverges logarith-
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mically. However, we may consider that for a
large but finite value of n C is roughly equal to
4vy „j" dx h(x), since the function g„(x) behaves
like a step function when n is large. Thus we have

C(n„l„,n„'E„',n~) ~inn (n-~),

tained for the total inelastic cross sections for col-
lisions between atomic particles. '
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Actually, the numerical results presented in
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Z„~4. The similar charge dependence was ob-
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