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Expressions for the kinetic energy T (and incidentally also for the exchange energy E„) of a ground-state
inhomogeneous electron gas as a functional of the electron density n(P), and for n(P) as a functional of the
one-electron potential V(P), are readily generalized to the case of two unequal spin densities n, (f) and n, (P).
As an example the authors consider the expansions of T up to fourth order in the gradients of n, and of n up
to fourth order in the gradients of V. These expansions are tested for the extreme case of one- and two-
electron atoms. It is found that (i) The n[V] expansion contains serious pathologies, while the T[n]
expansion leads to much more reasonable results when applied to either the exact density n(P) or to an n(F)

'

obtained by minimization of the approximate total-energy functional E[n]. (ii) Good approximations to E and
n(f) in one-electron atoms are obtained only when the complete spin polarization of a single electron is taken
into account via T[n„n„,]. (iii) Within a variational calculation, the inclusion of second- and fourth-order
gradient corrections to the zeroth-order (Thomas-Fermi) approximation for T leads to systematic
improvements in the analytic behavior of n(P) near the nucleus. The authors also compare the local-exchange
approximation with the local-exchange-correlation approximation in one- and two-electron atoms, and find
that correlation should not be neglected.

I. INTRODUCTION

TInt, nt] =Q Q (g I-sv Ig„)9(p. —e ) (1.1)

(in atomic units S =m =e' = 1), where o =0 or 0 and

I.--,'V'+ I .(r)]y .(r) = e..y..(r). (1.2)

Here V, (r) is a self-consistent one-electron po-
tential which is chosen so that the actual spin den-
sities for the interacting system are

(1.3)

One approach to density-functional theory'4
proceeds via the construction of the self-consis-
tent single-particle wave functions Q, . The only
approximation in this approach is-the approxima-
tion for the exchange-correlation energy E„as a
functional of n, for which a local approximation'4
is often made. This approach tends to be more
accurate but computationally heavier than the
second approach to density-functional theory,

The ground-state properties of a system of inter-
acting electrons are known" to be functionals of
the electron density n(r), or more generally' ' of
the spin-up and spin-downelectrondensitiesnt(r) and

n&(r). Inparticular the ground-state energy E as a
functional of n obeys a well-known variational princi-
ple' which permits the egsy calculation of E and
n (without recourse to the many-body wave func-
tion) once the explicit dependence of E upon n is
known or approximated. An important ingredient
of E is the (noninteracting) kinetic energy, defined
as

which approximates the exP/icit functional depen-
dence of T upon n (and sometimes of n upon V) so
that even the self-consistent singl. e-particle wave
functions are not needed. An example of this sec-
ond approach is the Thomas-Fermi" approxima-
tion and its systematic generalization as a grad-
ient expansion. " Followj. ng a long per j.od of
relative neglect, recent years have seen a rebirth
of interest in the gradient expansion" "for cal-
culations in atoms, molecules, solids, and sur-
faces. It is beginning to appear that the gradient
expansion can usefully supplement, and for some
limited purposes even replace, the more exact
method of Eqs. (1.1)-(1.3). The gradient expan-
sion also admits the possibility of generalizations
which will improve its accuracy. One simple and
direct example is the spin-dependent generaliza-
tion of this paper, but further and less direct gen-
eralizations may also be possible.

In their derivations of the second- and fourth-
order terms in the gradient expansion, Kompaneets
and Pavlovskii, ' Kirzhnits, ""and Hodges" con-
sidered only spin-unpolarized electron systems.
Thus most, tests of the accuracy of the gradient
expansion have been restricted to such systems,
e.g. , the noble gas atoms" or the surfaces of
paramagnetic metals. "

In this paper we show that the spin-unpolarized
expressions for 7 and ~ may be generalized very
simply to the case of arbitrary spin densities.
We test the gradient expansions of T and n for
the hydrogenic atom, treating it both improperly
as a spin-unpolarized system and properly as a
polarized sys' tem. In fact the original motivation
for our work was the observation that Wang, Parr,
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II. SPIN-DENSITY EXPRESSIONS

Suppose we know the kinetic energy T[n] as a
functional of the electron density n(r) for a spin-
unpolarized (ni =n/, =-, n) electron system, and
want to know T[n~, n~] for an arbitrarily-polarized
system. By Eq. (1.1),

T[n, , n, ] =T[n, , O]+7[O, n,],
and in particular for the unpolarized system

T[n] =T[—,'n, o]+T[0, gn] =2T[0, an].

It follows that

T[n, , n, ] =-,'T[2 n, ]+-,'T[2n)]

(2. 1)

(2.2)

(2.3)

As an example of the application of Eq. (2.3),
consider the spin-unpolarized gradient expansion"

T[n] = To[n] +T,[n] + T,[n]+ ~ ~,

where

(2.4)

T,[e]=+(Sr'['~'f d'rn' ', I (2.5)

T [n] =— d'r [~n ['
72 n

(2 6)

1
54O(32)'"

(2.7)

This expansion is expected to converge rapidly
when the density n(r) varies slowly on the scale of
the local Fermi wavelength XF =2m/(3v'n)"', i.e. ,
when the gradient of XF is small":

2' fwn (
l&&r I =3(3 2.1/3 4/3 ~

7T J 'Pl
(2 6)

Murphy, and Henderson" obtained accurate re-
sults for the kinetic energies of all the noble gases
including even helium, but poor results for hydro-
gen, from the spin-unpolarized gradient expan-
sion of T. As me mill see, taking account of the
spin-polarization of hydrogen completely removes
this anomaly and also greatly improves the den-
sity obtained from a variational calculation. We
believe that the spin-density gradient expansion
of the kinetic energy, or some suitable generaliza-
tion of it, will have a useful role to play in calcu-
lations of many physical and chemical properties
of atoms, for mhich the active outer electrons are
often spin polarized.

Applying Eq. (2.3) to (2.4) gives

T[n, , n, ] = Q T„[n,, n, ]
l =0

= g -'(T„[2n ] +T„[2n ] ) .
1=0

(2.9)

A particularly simple result is obtained when the
relative spin-poj. arization x is constant over all
space, i.e. , when n~(r) = —', (1+x)n(r) and n&(r)
= —,'(1 —x)n(r):

T,[n~, n~] = —,'[(1+x)' '+(1-x)' ']T,[n],

T,[n l, n ~]
= T [n],

T,[n, , n, ] =-,'[(1+x)"'+(1—x)"']T,[n].

(2. 10)

(2.11)

(2.12)

For complete spin polarization (x =1), the leading
or Thomas-Fermi" contribution to the kinetic
energy is enhanced by a factor of 2' ', while the
fourth-order contribution is reduced by a factor
f 2-2/3

Of course these simple results have not been un-
anticipated in the literature. Golden" used an ex-
pression equivalent to Eqs. (2. 10) and (2.11) with
x=o or 1 (and without T,), although his version
of T,[n] was too large (by a factor of [[3) to be cor-
rect in the slowly varying limit. Kautz and
Schwartz" gave correct general expressions for
T,[n&, n&] and T,[ni, n&], in agreement with Eqs.
(2.9), (2. 5), and (2.6), but their derivation of
T, [n&, n&], which is based on the random-phase-
approximation (RPA) linear response function,
cannot be applied to yield T,[n&, n&], which contains
contributions from nonlinear response [viz. , the
second and third terms in Eq. (2.7)].

Incidentally, if we choose to define" the ex-
change energy E„of the inhomogeneous system in
terms of density-functional orbitals P, (r) instead
of Hartree-Pock orbitals, then the same argu-
ment leading to Eq. (2.3) gives

E„[n&,n&] = ~E„[2n&] + 2E„[2n~],

and the analog of Eq. (2. 10) becomes

(2.13)

E„[n&,n&] = q[(1+x) + (1 —x) ]E„[n], (2.14)

within the local approximation" for exchange.
While the long range of the Coulomb interaction
does not admit" a gradient expansion for E„, other
nonlocal approximations for E„[n] have been pro-
posed recently. ""

Next, suppose we know the electron density
n([V]; p, , r) as a functional of the one-electron
potential V(r) (and as a function of the chemical
potentials) for a spin-unpolarized system, and
want to know the up-spin density n&([V&]; g&, r) for
a spin-polarized system. The analog of Eq. (2. 1)
is simply
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n([v]'t) r) = gn2)([V]'p r)
l =0

where

n, =k,'l3w',

1 (V V)' V'V)
w' 24ko 12k ) '

1 V'(V'V) 1 (V'V)'
w' 240k,' k,' 96

(v, v, v)' v v. v(v'v) 't~

12O 4O

) 5(VV)'O'V VV V(V))')
k0 96 32

35(v v)'
384k90

and

k. = [2(t —V)1"'.

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

n(r) = n)(r) +nl(r), (2. 15)

with n, {r) given by Eq. (1.3). Proceeding by the
analog of Eq. (2.2), we find the analog of Eq. (2.3):

n&([Vi];V, r) =-.'n([V]; p, , r) ~, =, „„. (2.16)

As an example, consider the spin-unpolarized
gradient expansion",

nucleus), with the number of distinct exponential
regions equal to the number of shells. However,
since the total energy is dominated by the spin-
paired inner electrons, the suitability of this ap-
proach for the description of the physically and
chemically active (and often spin-polarized) outer
electrons remains uncertain.

In order to test the spin-density gradient expan-
sion of Sec. II, we will apply it to one- and two-
electron atoms, for which all of the electrons are
"outer. " For these atoms, the Wang-Parr" vari-
ational form for the density reduces to a single
exponential

n(r) =~(g'lw)e "", (3.1)

~VXF
~

=1.98K "'et't'lt" (3.2)

is greater than 1 even at r =0, and diverges as
r- ~. Second, the (unknown) sixth-order (T,) and
higher-order contributions to the kinetic energy
are divergent for the density (3.1): From the de-
finitions (1.1)-(1.3) it follows that, under the num-
ber -conserving scale transformation

where the variational parameter f can be regarded
as an "effective nuclear charge, " and where X=1
or 2 is the number of electrons. Two caveats are
in order here. First, the formal validity condition
(2.8) for the gradient expansion is not satisfied by the
density (3.1); in fact,

Applying the spin-polarized generalization (2.16)
to this expression introduces only a trivial factor
of —,'. p,

&
is determined by the condition

n(r) - y'n(yr),

the kinetic energy transforms as

(3.3)

d'rn, ([V,];p, r) =X, , (2.22)
7'[n] —y'T[n].

'

(3.4)

where &&, the total number of spin-up electrons,
is constrained to be some positive integer, and

+~+N& is a fixed positive integer. In evaluating
Eq. (2.17), care must be taken to evaluate the
right-hand side only over a region of space in
which it is real, positive, and integrable; the
density must be set equal to zero in any regions
where Eq. (2.17) does not satisfy these physical
constraints.

III. APPLICATIONS TO ONE- AND
TWO-ELECTRON ATOMS

In an interesting recent paper, Wang and Parr"
have applied the spin-unpol. arized gradient expan-
sion of the kinetic energy (To+T,) in a variational
calculation of the total energy and electron density
of first- and second-row atoms. They find good
values for the total energy, and even obtain the
correct shell structure of the density when the
density is constrained to be a piecewise exponen-
tially decaying function of r (the distance from the

Thus, if we write the 2lth order gradient term T„
in terms of a kinetic energy density" " t»..

T„[n]= d'r t„, (3.5)

we find that t» is homogeneous in n of degree

—,'(5 —2f) . (3.6)

For 21~ 6, t» diverges exponentiall. y at large ~.
Nevertheless, the fourth-order expansion is known
to work well for other problems to which both
caveats apply; in particular, Ma and Sahni" ob-
tained good results for the kinetic energy of the
metal surface from T[n] = To+ T, +T,.

The spin-density gradient expansion in the form
(2.10)—(2.12) applied to the density profile (3.1)
gives

T[ng, n)] =A(N, x)Vr', (3.7)

where x=o (spin unpolarized) or 1 (fully polarized).
(Here we do not consider the possibility of non-
uniform relative polarization. ) Table I shows the
values of A(N, x) so obtained, which may be com-
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TABLE I. Kinetic energy T of an N-electron atom
with exponential density profile (3.1) and uniform rela-
tive spin polarization x is T=A(N, x)N& . Values of
A(N, x) given by the spin-density gradient expansion of T
are here compared to the exact value. The first column
is for a (hypothetical) spin-unpolarized one-electron
atom, while the second column is for a spin-polarized
one-electron atom or a spin-unpolarized two-electron
atom.

0.8.

~ 0.7-0
0.6-

0.5

0.4

/I
I \
I \
I I

1
I \
I
I I

C I
I 'I

I I
I I
I l

Order

To
To+ T2

T0+ T2 + T4
Exact

N=l, x=O

0.2891
0.3447
0.3696

(a.u.)
N=1, x=1 or

N=2, x=0

0.4590
0.5145
0.5302
0.5000

0.2

0.1

2 3

Z r ( gu. )

E[n t, n)] =T[n), n~] + U[n], (3.8)

where

(3.9)

TABLE H. Results of variational calculations for one-
electron atoms of nuclear charge Z, using the exponen-
tial density profile (3.1). g is the variaiional parameter,
and E the total- energy. Results obtained with the fourth-
order spin-density gradient expansion of the kinetic en-
ergy are here compared with the ex',ct results. The
first row is for a (hypothetical) spin-unpolarized (x= 0)
one-electron atom, and the second and third rows are
for a spin-polarized (x= 1) one-electron atom.

(a.u.)

pared with the exact value A = —,
' (for ~= 1 or 2)

given by the definitions (1.1) and (1.3). Note that
while inclusion of 7', improves the value of A(P&, x),
the further inclusion of T4 slightly worsens it (in con-
trast to the situation for the metal surface, '~ where T4
improves the kinetic energy). Note further that rea-
sonable results for one-electron atoms are obtained
only when the complete spin polarization of a single
electron is taken into account; in fact A(N, x) is
the same for spin-polarized one-electron atoms
as it is for spin-unpolarized two-electron atoms.

%e next ask whether reasonable total energies
and density profiles can be obtained variationally
from the spin-density gradient expansion of T.
First we discuss the simpler case of one-electron
atoms of nuclear charge g, for which the total
energy is

FIG. 1. Density profiles for one-electron atoms of nu-
clear charge Z found from variational calculations with
the exponential density profile (3.1). Dashed curve:
found from the fourth-order gradient expansion
(To+T2+T4) of the kinetic energy assuming no spin po-
larization (x= 0); dash-dotted curve: same expansion
assuming full spin polarization (x=1); solid curve: ex-
act profile for hydrogenic atoms.

For the density profile (3.1), we have

(3.10)

Cx (1-r/a)8 (r( a),
nr)=

0 (r) a)
(3.11)

The results of minimizing (3.8) with respect to g,
using the fourth-order gradient expansion of T,
are shown in Table II and in Fig. 1. Note that
application of the spin-unpolarized gradient expan-
sion to this spin-polarized system leads to an
energy that is far too low and a density that is
far too localized near the nucleus, while the spin-
polarized gradient expansion remedies these de-
fects.

It is of some interest to ask how the truncation
of the gradient series for T at various orders
affects the shape of the electron density profile.
We anticipate that higher-order gradient correc-
tions will mainly improve the density in the vicinity
of the nucleus for one- and two-electron atoms,
since (a) the "small parameter" (3.2) of the expan-
sion is smallest there, and (b} the series depen-
dence on powers of n [see Eq. (3.6)] suggests best
convergence'in regions of highest density. ln
order to investigate this idea, we have considered
the three-parameter power-law density profile

Order

To + T2+ T4
To+ T2+ T4
Exact

1.35
0.94
1.00

EtZ2

-0.676
-0.472
-0.500

(where C normalizes the density to N=1}. This
is a rather versatile profile which recovers the
correct Thomas-Fermi Amaldi" (T =7,) profile
when 0. = -& and P =+ 2, and also recovers the expo-
nentialprofile (3.1) when a = 0 and P, o. -~ with
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TABLE IG. Results of variational calculations for the spin-polarized {x=1) one-electron
atom. of nuclear charge Z, using the power-law density profile (3.11). The parameters n, P,
a, and C of the density profile, and the total energy E, are shown for the zeroth, second-,
and fourth-order spin-density gradient expansions as well as for an exact treatment of the
kinetic energy.

Order
{a.u. )

Za C/Zs Z/Z2

TQ

TQ + T2

Tp + T2 + T4
Exact

-1.5
-0.62

0.00
0.00

1.5
0.72{2Za)
0.94(2Za)
1.00(2Za)

$.0478
0.153
0.267
0.318

-0.721
-0.518
-0.472
-0.500

P/2a= g. All the required integrals can be done
analytically, using the formula

y (a'}!(p'}!
(1 —3') =

(
I + p

I ~1) t
1 (3.12)

where x!=I'(x+1) and 1 is the gamma function.
These integrals converge for o. '&-1 and p'&-1.

We also note that, since U is properly homo-
geneous, i.e. ,

v[n]- yv[n] (3.13)

under the scale-transformation (3.3}, the result
of minimizing F. with respect to g automatically
satisfies the viral theorem U =-2T. The mini-
mizing a is proportional to 1/Z, while the mini-
mizing o, and p are independent of Z. The results
of such a minimization for the spin-polarized one-
electron atom are shown in Table III and in Fig. 2.
Note that for T =T, the density at the origin
diverges as y ' ', while for T =T, +T, this diver-

gence is considerably weakened to -r '". Since
the total energy equals --,'(Z/r), this improve-
ment in n at small r leads to a significant improve-
ment in the energy. Finally for T = T, +T, +T4,
the divergence at the origin is completely elimina-
ted, i.e. , n. -r, and in fact the minimizing profile
is exponential, as in Eq. (3.1).

One peculiarity of T4 deserves mention. Unlike

T, and T„T4 can be negative, and this can lead
to instabilities for certain pathological density
profiles. With the profile (3.11), T, is finite only
when n is strictly zero or else greater than three.
A true minimum was found only for z =0, but a
negative divergence of E was found for the (un-
physical) case o. &3. Specifically, E--~ when
e-10.3, P-24.3 and g-0.

We turn now to the expansion of the spin-density
yg in gradients of the potential t/', i.e. , to the eval-
uation of Eqs. (2. 16)-(2.21). We have evaluated
these expressions for the spin-polarized one-

0.8 0.8

0.7-

0.6- 0.6-

0.5

04

0.3

C 0.2

0.1

c 0.2

It0.1 (

Z I

4

( a. u. ) Z
3 4

( a. u. )

FIG. 2. Density profiles for one-electron atoms of nu-
clear charge Z found from variational calculations with
the power-law density profile (3.11), employing the spin-
polarized (x=1) gradient expansion of the kinetic energy
to zeroth, second, and fourth orders. Dashed curve:
T=Tp, dash-dotted curve: T=TQ+T2, solid curve: T

TQ+ T2+ T4 ~

FIG. 3. Density profiles predicted for one-electron
atoms of nuclear charge Z from the expansion of the
spin density in gradients of the one-electron potential,
to zeroth, second, and fourth orders. Dashed curve:
n =np for which p= —0.240Z; dash-dotted curve: n =np
+n2 for which p=-0.237Z; solid curve: n=np+n2+n4,
for which no normalizing value of p was found.
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electron atom, for which V=-Z/r; the results are
displayed in Fig. 3. The zero-order term n, is of
course just the Thomas-Fermi-Amaldi" density
[(3.11) with a= —2, P = 2, and p, =-Z/a=-0. 240Z ].
Inclusion of n, hardly changes g(=--0.237Z'), but
forces the density to zero for r& 0.016 a.u. The
further inclusion of n4 leads to positive divergen-
ces of the density at both large and small r, so
that no normalizing value of p, was found; the
figure shown is for p, =-0.23VZ'. The small-r
singularities of this n[V] expansion arise from
the -Z/x singularity of V, while the larger-r
singularities arise from the existence of a clas-
sical turning point [ko(r) =0]. Thus the ))[V] expan-
sion, unlike the T[n] expansion, appears to be
useless for atomic problems. Even though the
T[n] expansion was derived from the n[V] expan-
sion in the work of Kirzhnits' and Hodges, " the
T[n] expansion is much less singular.

IV. EXCHANGE AND CORRELATION

where

"
d, , n(r)n(r')

—r (4.2)

and where the exchange-correlation energy
E„,[ni, n&] must also be approximated. Gunnarsson
and Lundqvist" have presented a strong case for
the spin-density version' of the local exchange-
correlation approximation' (LXCA),

So far we have discussed mainly the one-elec-
tron atom, for which we can use the energy func-
tional (3.8), in which only the kinetic energy
T[n&, n&] is approximated. For atoms with arbi-
trary numbers of electrons, the total energy' be-
comes

E[n&, n&] =T[n&, n&] +U[n]+Us[n] +E„,[ni, n&], (4.1)

where

& =U„/N+E„, . (4.8)

For N = 1 the "self-interaction" UH/N should ideal-
ly be cancelled by Z„so that 6 = 0, while for N =2
we still expect a near cancellation and a small
value of b. . (Complete cancellation is achieved in
the Hartree and Hartree-Fock approximations. )

To test the LXA and LXCA, we have used the ex-
potential density profile (3.1), for which

UH[n] =0.3125N f,
and (in the LXA)

E„[&]=-0.212 74N'I't,

(4.7)

. (4.8)

TABLE IV. Results of variational calculations for one-
and two-electron atoms, using the energy functional (4.1)
and the exponential density profile (3.1). E is the total
energy, and 6 is the sum of the self-interaction UH/N
and the exchange-correlation energy E~. The kinetic
energy is treated exactly, and the results of various
approximations for E„,are compared with each other and
with experiment. LXA: local exchange. LXCA: local
exchange correlation. H: Hartree. HF: Hartree-Fock.
Xe: Slater Xn with & = 0.777. One-electron atoms are
regarded as spin polarized (x=1), and two-electron
atoms as unpolarized (x=0). (Experimental energies
from Ref. 25.)

with E[n&, n&] given by Eq. (2.14). The correlation
energy e, (n&, n&) .was taken from the work of Gun-
narsson and Lundqvist. " We have minimized (4.1)
with respect to g„using now the exact kinetic ener-
gy T[n&, n&] [Eq. (3.7) with A = —,'] instead of the
gradient expansion.

Results of this variational calculation are pre-
sented in Table IV. While the density profiles
found in the LXA are similar to those found in the
LXCA, the LXCA gives better energies because it
does a better job of cancelling the self-interaction

Z„[r&,r&) = Jd'rr(r) r„(r&(r),rr&(r)), (4.3)
Approximations

(a.u.)

~„,(n, , n,)- e, (n, , nl)

= ——'[(1+x) +(1—x) ] (3/4w)(3(('n)' (4 4)

To investigate exchange and correlation, we
apply the energy functional (4.1) to N-electron
atoms where N=1 or 2. We rewrite (4.1) as

E = T + U+(1 —I/N)U„+4, (4.5)

where e„,Qi, n&) is the exchange-correlation energy
per electron of an electron gas with uniform spin
densities n& and n&. Here we compare the LXCA
with the local-exchange approximation' "(LXA)
used in the atomic calculations of Wang and Parr. "
The LXA is the same as the LXCA except that cor-
relation is omitted, i.e. ,

H

He'

He

H

INCA

LXCA
H, HF, Xe
Expt.
IZM
LXCA
H, HF, Xa.
Expt.
LXA
LXCA
H, HF, Xe
Expt.
INCA

LXCA
H, HF, Xp
Expt.

0.96
0.97
1.00
1.00
1.96
1.97
2.00
2.00
1.64
1.66
1.69

0.64
0.68
0.69

0.043
0.008
0.000
0.000
0.087
0.040
0.000
0.000
0.146
0.008
0.000

0.057
-0.032

0.000

-0.457
-0.492
-0.500
-0.500
-1.912
-1.959
-2.000
-2.000
-2.700
-2.839
-2.848
-2.90
-0.414
-0.505
-0.473
-0.529
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(i.e. , b. =0). (This remarkable cancellation in the
LXCA was first observed for hydrogen by Gunnar-
sson, Lundqvist, and Wilkins. ") Note in partic-
ular that only the LXCA (and not the LXA or the
Hartree or Hartree-Fock approximations} correct-
ly predicts that the negative hydrogen ion H is
stable with respect to the neutral atom H. It is
also worth noting that the LXA results can be im-
proved (and in fact made equal to the Hartree
and Hartree-Fock results) if the LXA approxi-
mation to the exchange-correlation energy is multi-
plied by 2n, where n =0.777, in the spirit of the
Slater Xn method. "

V. CONCLUSIONS

We have presented a spin-density gradient ex-
pansion of the kinetic energy (up to fourth order in
V), and have shown that it gives reasonable results
in variational calculations of the ground-state
energy and density, even for one- and two-elec-
tron atoms which are formally well outside the
domain of convergence of the expansion. Reason-
able results for the one-electron atom are obtained

only when its complete spin polarization is taken
into account. We believe that this expansion, or
some suitable generalization of it, will prove to
be useful, along with the spin-density local ex-
change-correlation approximation (in preference
to the local exchange approximation) for easy cal-
culations of the physical and chemical properties
of atoms and molecules. In particular, we believe
that a proper treatment of the active outer elec-
trons of atoms cannot neglect spin polarization.
Variational calculations employing the spin-den-
sity gradient expansion of the kinetic energy may
also provide a useful zeroth approxi'mation for the
spin densities in the iterative solution of the self-
consistent single-particle equations (1.2} and (1.3).
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