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The electric field gradient along the molecular axis at the nucleus in D, has been calculated at R = 1.4
au. by means of the Kolos-Wolniewicz 54-term Born-Oppenheimer wave function. The result is a
confirmation of the Reid-Vaida value. A nonadiabatic calculation using a 540-term wave function (explicitly
containing the vibronic component) also confirms the earlier value of the electric field gradient and
necessarily, therefore, the predicted quadrupole moment of the deuteron (i.e., Q = 0.2860-4-0.0015 fm?).

I. INTRODUCTION

An accurate value of the quadrupole moment of
the deuteron @ is of pivotal importance in the
nuclear-structure theory of the deuteron, and
any nucleon model must satisfactorily account for
its value. Though there is no purely experimental
value, a semi-empirical value can be determined,
if the electric field gradient ¢ is known, from the
electric-quadrupole-interaction constant egQ/h.
The latter has been accurately measured by
Ramsey and co-workers! for the J=1 state in the
HD molecule and the J=1 and J=2 states in the
D, molecule using the molecular-beam magnetic-
resonance method. Consequently a precise value
of @ revolves around an accurate calculation of
q in HD or D,. This has been done by Reid and
Vaida® and the result for @ is 0.2860+0.0015 fm®,
This is a few percent larger than older semi-
empirical values and too large to be fitted, in the
single-nucleon approximation, by energy-indepen-
dent nucleon-nucleon interactions that yield the
experimental values of the triplet scattering
length and deuteron binding energy with sufficient
precision.® To obtain agreement between the
nuclear-model and semiempirical values of @ it is
necessary to introduce one of two related and
nontrivial modifications to the theory: the inclu-
sion of energy dependence in the nucleon-nucleon
interaction or the consideration of contributions
to @ from meson- exchange currents involving
the exchange of a single pion.*

Because of the seriousness of the proposed
modifications to the nuclear model, taken in the
light of Reid and Vaida’s value of @, it is impor-
tant that there be an independent accurate calcula-
tion of ¢ (it is assumed that the experimental
value of eqQ/h is precise). We report here such
an undertaking which includes an analysis of the
sensitivity of ¢ to basis set, variational para-
meters, and nonadiabatic effects. Our primary
conclusion is that the semiempirical value of

@=0.2860+0.0015 fm? is correct.

The calculations were performed on an IBM
360/65 computer in double precision; the mass
ratio of electron to deuteron (me/m d) was taken®
as 0.000 272 444. '

II. CALCULATIONS

The basis of the calculations was the evaluation
of an expectation value (q) using both adiabatic
and nonadiabatic variational wave functions and
the terminology and notation for these wave
functions is that of Ref. 6. The electric field
gradient along the molecular axis at one of the
nuclei is then

q=2e$q"), (1
where, in the non adiabatic formalism,
(g=(TVve), (2)

¥ is the nonadiabatic wave function involving
explicitly both nuclear and electronic coordinates,
and

V=R"®-3[B2] - r))/r}+ (325 - 1)) /73]. 3)

R is the internuclear separation, »; is the distance
of electron i from the nucleus under consideration,
and z; is the corresponding component along the
internuclear axis. In the adiabatic formalism,
q' is the expectation value of V over the Born-
Oppenheimer electronic wave function ¥, and
{q’) is the expectation value of ¢’ over the adiabatic
viprational-rotational wave function for the appro-
priate vibrational-rotational state. The condi-
tionally convergent integrals which appear in
these expectation values are defined as the limit
€ =0 of the integral evaluated with a sphere,
centered on the nucleus of radius '€, excluded.

The Born-Oppenheimer electronic wave func-
tions were of the James-Coolidge type, i.e.,
Egs. (9) and (10) of Ref. 6 with @, =a,=a and
B,=B,=0, and the integrals required for ¢’ were
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evaluated as by Reid and Vaida.? The treatment
we used for the most difficult integral, B;; with
{;+ p; odd, was numerical and is described in the
Appendix.

In order to be certain that we were free of pro-
gramming and algebraic errors, we recomputed
q’ with the 11-term James-Coolidge wave function
used by Narumi and Watanabe.” These workers
had essentially evaluated all the integrals analyti-
cally. Our results agreed with theirs to at least
four significant figures for four different values
of R. We also recomputed ¢’ with the 34-term
wave function of Reid and Vaida® at R=1.5 a.u.
and obtained ¢’=0.119 96 a.u., where they obtained
(unpublished data) 0.119 97 a.u. We are therefore
confident that our techniques and programming
are error free.

Next we used the 54-term wave function of
KoYos and Wolniewicz® for R=1.4 a.u. (with a
=1.027) and found ¢’ to be 0.168 96 a.u., which
compares favorably with Reid and Vaida’s? inter-
polated value of 0.168 88 a.u. derived from an 87-
term wave function of the same type. It is clear
from this agreement that both wave functions con-
tain the basis functions which contribute most im-
portantly to the evaluation of ¢q’. In Table I the
change in ¢’ is shown as the basis-function expan-
sion length is expanded from 38 to 54. It would
appear that additional basis functions are not
going to change the fourth significant figure in ¢’.

If at R=1.4 a.u. only the basis functions in the
54-term wave function having u=0 (u is the
power of the interelectronic coordinate #,,) are
included then q’=0.16595 a.u.; if only terms with
1 =0,1 are included then ¢q’=0.16899 a.u. (c.f.

TABLE 1. Change in ¢’ (in atomic units) as the number
of terms (N) in the wave function is increased from 38 to
54,

N q’

38 y 0.168965
39 0.168967
40 0.168997
41 0.168977
42 0.168996
43 . 0.168983
44 0.168983
45 0.168975
46 0.168978
47 0.168970
48 0.168977
49 0.168977
50 0.168969
51 0.168975
52 0.168968
53 0.168967
54 0.168962

TABLE II. Values of {¢’) (in atomic units) for the
ground vibrational state and various rotational states for
D,.

J This work Ref. 2
0 0.167 95 e

1 0.167 33 0.16744
2 0.16613 0.166 22

0.168 96 a.u. when 73, terms are also included).
This seems to imply that higher powers than two
in the interelectronic coordinate will not change
the fourth significant figure in ¢’.

We also investigated the sensitivity of ¢’ to
changes in the nonlinear parameter . We found
that with the 54-term wave function that at R
=1.3 a.u., and taking @=1.027 rather than the
optimum value® of 0.9723, ¢’ was 0.23793 a.u.
which can be compared with Reid and Vaida’s
value of 0.23778 a.u. At R=1.5 a.u. and using
the 54-term wave function with o =1.027 (the-
optimum value® is 1.078) we found ¢’ to be
0.11993, where Reid and Vaida’s value is
0.11996 a.u. Clearly with appropriate basis sets
g’ is not particularly sensitive to the value of a,
the slack, so to speak, being taken up by the
linear coefficients in the wave function.

We have also checked Reid and Vaida’s aver-
aging of ¢’ over the ground-vibrational state and
different rotational states. We have used the
Numerov-Cooley method® and the adiabatic-rela-
tivistic potential curve of Ref. 10 to obtain the
vibrational-rotational wave functions for D,. The
results are shown in Table II and the differences
are well within Reid and Vaida’s error estimate.

Finally, we have carried out the first nonadia-
batic calculation of {g’). We have used for ¥ for
D, all combinations of the prévious 54 electronic
basis functions with 10 radial basis functions, see
Eqgs. (17) and (18) of Ref. 6. For the lowest non- '
rotational state with ¥=5.1 and 6=1.4 (the radial
nonlinear parameters) we obtain {¢/)=0.168 12
a.u.; the adiabatic result for this state is 0.16795
a.u. Again, the difference is trivially small.,
From this we deduce two facts: (a) nonadiabatic
effects are negligible and (b) the interpolation
of g made by Reid and Vaida for many R values
and the averaging carried out in obtaining the adia-
batic result are satisfactory. A check was made
that {g’) is not sensitive to the choice of y; with
¥=5.0, (g7)=0.168 12 a.u. and, so clearly, it is
not.

III. CONCLUSIONS

Our principal conclusion is that Reid and
Vaida’s calculation of the electric field gradient



20 QUADRUPOLE MOMENT OF THE DEUTERON FROM A PRECISE... 383

in H, is correct, as is their value (0.2860 + 0.0015
fm?) derived therefrom for the quadrupole moment
of the deuteron. If anything, their error limits on
@ are on the conservative side. We have not only
confirmed their value of g’ but also its average
value in the v=0 and J=1,2 states of D,. We have
also carried out a nonadiabatic calculation of the
field gradient for the v=0, J=0 state of D, and find
that it is insignificantly different from the adia-

. batic results for that state. We therefore dis-
count nonadiabatic effects as contributing to the
value of the electric field gradient for other states.
This conclusion is in conformity with the effects
of nonadiabatic contributions to other expectation
values.” It is also a verification that the method
of averaging ¢’ over vibrations and rotptions in
the adiabatic calculation and the interpolation
used to find ¢’ at other than the R values at which
it was calculated, was sufficiently precise.
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APPENDIX

From both the mathematical and computational
point of view, the greatest difficulty in calculating
the electric field gradient is the evaluation of
integrals of the form

o +1
Bij(a) =lim f dg], f dT’l W(gp 771)
1+e -1

X Fij(&],,n],’ Ct) as €'.’0y

where
W( gp 771) = (51 - 771)(&], + 771)'4[3(51’01 + 1)2
- (g +m)?]
and
Fij(‘gu U a)

0 +1
=(211)'2f dng dan, (£ - n3)
1 -1
2r 27T
X f dé, f d, @,

for the case where the sum of the powers of 7,

appearing in the basis functions &; and & ; is odd.
At first we took the approach of Narumi and
Watanabe” and attempted to use analytic integration
using the equations of Refs. 11 and 12. However,
it became evident that multiple precision would

be required (a not unusual situation where singu-
larities are involved) and this scheme was aban-
doned.

" Instead we approached the problem numerically
and in a similar fashion to Reid and Vaida.? For
F,;; we used a 16-point Gauss-Laguerre quadrature
for integration over &,, a 16-point Gauss-Legendre
for integration over 7,, and analytical integration
over ¢, and ¢,. The integral B;; was divided into
three regions: (a) 1.4 < <o, _1< 17, <1, where
a 48X 16 crossed GausszLaguerre-Gauss-
Legendre quadrature was used; (b) 1 <§, <1.4,
-0.8<7m, <1, where a 16X 16 crossed Gauss-
Legendre quadrature was used; (c) 1<, <1.4,
-1<7,< -0.8. The last region, containing the
singularity was divided into 800 rectangles in the
(&,m,) plane by dividing the £, and 7, range as
follows:

1<¢,<1.05 (16 divisions),
1.05< & < 1.1 (8 divisions),

1.1 <& <1.2 (8 divisions),

1.2< ¢ <1.4 (8 divisions),
-1<n,< -0.975 (8 divisions),
-0.975< 1, < -0.95 (4 divisions),
-0.95<17, <-0.9 (4 divisions),
-0.9 <7, <-0.8 (4 divisions).

For each rectangle, F;; was evaluated at six points
(the center, mid-edges, and one corner) and the
results expressed as

_ 2 2
Fij=ci+cpby+ e+ egbim+ e+ celly

the integral of W(§,,n,)F;; was then evaluated
analytically for each rectangle and the results
summed. .

The above scheme was chosen after other ranges
of integration had been investigated using the
integral B,;, but with F;; replaced by exp(-a¥,)tpn}
and with various values of m and » (up to and in-
cluding m =9, n=8). The results with this scheme
agreed to seven significant figures with an analyti-
cal evaluation based on the analysis in Refs. 11
and 12. Further, it was verified by calculating
the B;; integrals which occur when the 11-term
James-Coolidge wave function is used and agree-
ment found to at least five significant figures with
those deduced from the analytical calculations
of Narumi et al.'!s!2
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