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The authors have analyzed the terms of relative order a'1n(a ') that come from annihilation kernels in

positronium, and have found a contribution of a ln(a ')m, /24 to -positronium hyperfine splitting from
annihilation kernels, including several new contributions. The resulting hyperfine splitting is 203.4003 GHz,
with terms of order a m, /2-0. 01 6Hz uncomputed. The contributions to the decay rates of ortho- and
parapositronium have also been calculated. For orthopositromum the result is —n'ln(a ')I 0/3. The authors
present in more detail the theoretical analysis leading to their previous nl o calculation and improve on the
numerical results. The resulting theoretical orthopositronium decay rate is 7.0386+0;0002 p,sec ', with
terms of order a I 0 = 0.0004 p,sec ' uncalculated.

I. INTRODUCTION

The study of bound states in quantum electrody-
namics (QED) is important as a precise test of
QED as the theory of electromagnetic interactions.
It is also a laboratory for developing techniques
for calculating bound-state parameters in other
relativistic field theories. Recently, alterna-
tives to the Bethe-Salpeter (BS) equation for
two-body bound. states have been introduced. They
have been successfully applied to the organization
and calculation of order n'1 (nn ')E~ contributions
to hyperfine splitting (hfs, the difference between
spin-1 and spin-0 ground-state energies) in posi-
tronium. (e e+) and muonium (e p+).' Positronium,
with equal-mass constituents, particularly tests
two-body, relativistic equations. A simple, exact,
Schrodinger-like formalism has been used to cal-
culate the contributions from infinite Coulomb-ex-
change graphs to O(o. 'Ez).'

In this paper we calculate the O[o.'In(o. ')m, ]
contributions to the hfs of positronium (Ps) coming
from annihilation kernels. These terms are quite
important to the comparison of theory with experi-
ment as o.'In(n ')m, -92 MHz and the experiment-
al uncertainty is only 1.2 MHz. Picking out the
logarithmic terms in annihilation graphs is quite
simple using the exact Schrodinger-like formalism
of II,' and here we present the first complete cal-
culation of all such terms. Some of these terms
were discovered by Owen' and by Barbieri and
Remiddi. s'4 Important new logarithmic terms are
found, and in Table I we compare the new theo-
retical value to recent precision experimental re-
sults." 'The correct theoretical value was quoted
in I.' The uncomputed terms of O(n'm, /2) are an
order of magnitude larger than the experimental

TABLE I. Comparison of theory and experiment for
positronium hfs. Terms of P(& ~,/2) -0.01 GHz are not
yet computed.

Theory

0 (~'m„~'m, )

24 & pyz ln&

Total theory

Experiment

203.381 GHz

0.019 GHz

203.400 GHz

Ref. 5

Ref. 6

203.3849 (12) GHz

203.3870 (16) GHz

uncertainties, and can easily be large enough to
bring theory into agreement with' experiment.

Vfe first became interested in the logarithmic
terms in order to make more precise the theoreti-
cal prediction of the decay rate of orthopositron-
ium (0-Ps: n = 1,J= S = I). We call the lowest-
order decay rate of 0-Ps I', .' The calculation of
the O(oi', ) decay rate' had left a large discrepancy
between the theoretical prediction and the best pre-
cision measurements of the decay rate. ' The cal-
culation of Sec. II is trivially modified to give the
terms of O[n'In(n ')I', ]. The resulting coeffi-
cient, which we calculate in Sec. III, is quite
small. More recent experiments have significantly
decreased the discrepancy between theory and ex-
periment. The theoretical and experimental values
are compared in Table II (the new theoretical value
was quoted in Ref. 11). There remain uncalculated
terms of O(+21'o)- 0.0004 psec '. If these have a.

small coefficient (less than 5) there is still a small
but significant disagreement with the most recent
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TABLE G. Comparison of theory and experiment for orthopositronium decay rate. Terms
of order + I'0- 0.0004 psec «have not yet been computed.

Theory

Ref. 8

Ref. 7 and Appendix

Sec. III

Total theory

{-10.266 +0.011)—I'0

-+3&2ln{& «)lo

7.2112 (Lfsec '

-0.000 63 psec «

7.038 6 +0.000 16 p,sec

-0.172 0+ 0.000 2 p,sec «

Experiment

Ref. 10
Ref. 11
Ref. 12

gas
gas
vacuum

7.058 +0.015 p.sec
7.056 +0.007 @sec «

7.050 +0.013 @sec «

measurements of 0-Ps decay in gas. ' " However,
a new vacuum measurement" agrees with the theo-
retical value, though its quoted systematic error
is larger than that of the gas measurements.

In the Appendix we review the calculation of the
O(nl 0) contribution to the decay rate of o-Ps. We
write down the explicit perturbation series and
show how to reduce the problem to one where the
electron and positron may be placed on-shell. An
improved numerical integration result leaves us
with a statistical error which is negligible com-
pared to the uncalculated 0(&'I', ) contributions to
the decay rate. The O(rr) rate of Table II includes
this improved result.

so we simply compute the energy of 0-Ps coming
from single-photon annihilation kernels.

We are interested in calculating terms which
have logarithms of the coupling. The three-mo-
menta which are important for these terms are
those sensitive to both the binding and the electron
mass. We, therefore, can approximate y «(p(
«m, where y = vms = nm/2. We will call this re-
gion the logarithmic region, and the region P-y
the nonrelativistic region (NR). Physically, the
lower momentum limit comes from the binding and
the finite size of the atom [p- (Bohr radius) '- y].
'The upper limit comes from the relativistic falloff

II. CALCULATION OF THE e 1n(0. ' }E CONTRIBUTIONS
TO HYPERFINE SPLITTING

In this section we will calculate the n'In(o. ')E„
contributions to Ps hfs arising from annihilation
kernels. We will use the formalism of II. E„ is
the lowest-order annihilation contribution to hfs
(Fig. 1). Equations (2.12) and (3.5c) of 11 imply

E„=(fK„)= (y(0)('(e'/2m')= —,
' n'm. (2.1)

Here m(=2ms) is the mass of the bound particle.
The exact perturbation series for the energy to
second order is recorded in Fig. 4(a) of II [see also
Eq. (2.12) of 11]. The terms which are relevant to
O[n'In(a ') are displayed in Fig. 2. Single-photon
annihilation does not affect parapositronium
(n= 1, J=S=0), by charge conjugation invariance,

(o) 2

(b) 2

(e) 2

(f) 2

or

WJ

0
0
0
0

W/

0 0
0 0
0 0
0 0

A 0 0

o J

0
0
0
0
0

LEGEND' I''' 'I COULOMB PHOTON

TRANSVERSE PHOTON~ ZEROI-" ORDER KERNEt. Ko
+ IoooooI

FIG. 1. Lowest-order annihilation kernel.

FIG. 2. Kernels contributing to n ln(m ) Ez in posi-
tronium. The pairs of x's mean that the corresponding
lines are projected onto on-shell spinors I,Eq. (2.4)J,
and the relative energy is set to zero.
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of the electron propagator 1/(p'-m) (p-m).
The bound particles (electron and positron, or 1

and 2), being loosely bound, a.re to a good approxi-
mation near their mass shells. In the logarithmic
region all internal fermions are also near mass
shell since each momentum transfer is much less
than the mass. Neglecting retardation in the inter-
action kernels (see below), we can then replace in-
ternal fermion propagators by nonrelativistic prop-
agators. For a ladder graph (Fig. 3) we obtain":

d 0s'
(2 )~K, (p k~P~)

( p ~ )

i6K, =i(K, -K, )

-e2

k q k2+ q2+4k ~ qx
m2 Bm

gk xq '&, ik xq ~ 0'2
+ 4m' 4m'

'+ (2.6a)

(b) Single-transverse-photon exchange [Figs.
2(a), 2(b)]:

e' (k q)' —k'q' . if &q (o, +o2)
2 2 2 2m 2

(~ ~ )K(k qP)

~ ~
d'k . A('&(f)A(;&(f) .

(2w)3 K, (p, k, P) P —2E(k)
iK (k, q, P),

(2.2)

where

A (k)
E(k)y' —(k.y-m) Q.u(f, s)u(k, s)

2E(k) 2E(k)

(k —i()xo '(k —q(xir
)4m'

(c) Single-photon annihilation:

iK„=(e'/8m')(3+o, o,).
(d) Single Coulomb exchange:

iKc =-e'/(f - q('.

(2.6b)

(2.6c)

(2.6d)

and E(k) = (k + m )'~'. Note that in the logarithmic
region

P'- 2E(k) = e- (f'/m) =-(f'+ y')/m . (2-3)

K(k, q, P)q.„i „q = u'"(f, X') u("(-f, p, ')
[4E,(f)E,(f)]"'

x I7(k, q, P)

u"'(q, Z) u"'(-q, (u)

[4E,(q)E. (q)]"' (2.4)

Then any loop integration (by Eq. 2.2) has the sim-
ple form

d k

( ), iK (p, k, P) (-, ~)iK, (f, q, P). (2.5)

The kernels which appear in Fig. 2 are the fol-
lowing (in the tilde formalism, see II):

(a) Difference kernel [Figs. 2(e), 2(f)]:

K, Ki K2

FIG. 3. Breakup of a ladder diagram into two kernels
that are then projected on-shell.

Thus all interactions of interest for the logarithmic
terms can be written in the on-shell (tilde) formal-
ism of II'4 using the definition [(2.9) of II]:

TABLE III. Table of integrals required for analytic
evaluations.

f(k, q)

4
~ ~

= IC7( l.n'&

k4, q4

kq

k k'q, q k'q

(k 'q)

The e' ln(a ') terms arising from annihilation
kernels all come from overlapping electron loop
integrals. All propagators (where we have picked
out the particle one pole) are quadratic in the three-
momentum in the logarithmic region. It is thus
impossible to obtain a logarithmically divergent
integral of the form Jd'p/p' from a single loop.
%'e need two loops and a logarithmic divergence of
the form Jd'pd'q/p'~p —q~'(I'. The logarithmic
contributions of these integrals are listed in Table
III, taken from I. The requirement that the result-
ing integral have. overlapping electron loop inte-
grals means that Figs. 1 and 2(c) will not contribute
logarithmic terms to the energy.

We now proceed to calculate the o. 'In(o. ')E„
contributions to hfs. We will in all cases take the
ratio to the lowest-order annihilation contribution
E„[Eq. (2.1)]. The right-hand wave function will
always be integrated out, and the left-hand wave
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function will be removed when it does not contribute
to logarithmic terms [2(b), 2(d), 2(f)]. The diagrams
will be labeled by the kernels they contain [Eq.
(2.6)]. The kernels will in all cases be strung
together using Eq. (2.5).

The contribution from one transverse photon
[Fig, 2(a)] is

AC
=

y'
m

m d P
3

iK„(0,p). . . „iK, (p, q)
p + y t2%)

d g
3

„iK„(q,0)'q y

'The annihilation kernel followed by a Coulomb
[Fig. 2(d)] contributes.

E=2y 0 y dp ' dq
T v J' v2 (p2+ 2)p zKT(p, q)

j.

P, -E,(q) —E,(q)
"q' ' v2

X
(r2+ y2)2

p3

,}.iK, (p, q)g (p +y

X
-m d'g

(q'+y') (2v)'

m'+ d'P
8s' " (p'+y'}' l0-ql'

(p q)'-p'q'
m'l P- ql' (q'+ y')

=n'In(a ')E„. (2.7)

(2v}' p'+y' lp-ql' q'+y'
= --,' n ' In(o. ')E„. (2.9)

-mx — 2, iK„(q, 0)q+y

p y p q

p q p'+q'+4p. q~ ~

m Bm'

'This value agrees with that found by Owen' and by
Barbieri, Christillin, and Remiddi.

A single Coulomb kernel [Fig. 2(e)], with the
iteration of the unperturbed kernel removed (i.e. ,
a difference kernel}, contributes

dP. -~~d
5En —2 — —

2 (, ,), g6Ko(p, q) (2 )3

=-,' o. 'In(a !)E„. (2.10)
In the second line we have removed the lowest-

order contribution, E„. We used Table III (letting
q- —p+q) to get the last line. The second term of

iver [Eq. (2.6b)] vanishes by spherical symmetry
of the wave function, and the last term has no
In(o. '}contribution after we average over the spin
(g,' g,'-6'~—', (o, o,) =-', 5'~ in o-Ps) since that part of
the kernel is a 5-function (there is then no denom-
inator term coupling the two electron loop inte-
grals).

The transverse followed by a Coulomb, Fig. 2(b)
(we have here removed both wave functions):

y - ~ —m d p
3 3

5E =2 iKr(0, P). . .2 „iKo(P, q)
m

5Eno = 2 i6Ko (0y p)

3

xiK, (p, q), , „iK„(q, 0)

m' 8' d'p" (2v)' 8m' p'+ y' lp-ql' q'+y'
==,' o. ' In(n ')E„. (2.11)

The last two terms of 5Kc vanish by symmetry of
the yositronium wave function.

Two Coulombs (with a single iteration of the un-

perturbed kernel removed)Fig, . 2(f), contributes

-m 3„iK„(q, 0)+y

A

m' e (p xg, ) ~ (p xg, )=' " (2v)' lpl' 4m'

(p'+y') lp-ql' (q'+y')

(Inn')E„. (2.8)

In the third line we kept only the last term of K~
as the first two vanish for one momentum zero.
We again average over spins before doing the inte-
gral. This result agrees with that found by Bar-
bieri and Remiddi. 4

'This just cancels the contribution from 6Kc, which

suggests how accurate the on-shell approximation
of II is for Ps. Curiously, if m, wm„ the contribu-
tion is (m, -m, )'/(m, +m)'n' In(o')E„.

We have not yet considered antiparticle poles or
photon poles (I). The transverse-photon poles from
the po integration contribute linear terms, in the
relative three momenta, to the denominators of
that loop. A typical integral is then of the form
[Fig. 2(b)]

d'p ~ p~' d'q
m . Ipl' lp-ql' IIII'+y'

where the extra lpl' in the numerator comes from
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the transverse photon convection currents. The
only order e2E~ contribution is from the relativ-
istic region, where p, q-m, and no In(o. ') terms
can occur. Because the annihilation kernel is
nonsingular at threshold, neither the antipar-
ticle poles nor the crossed-ladder graphs are
singular enough to contribute to In(o.''). The
renormalized vertices and propagators that occur
in the ~„calculations have logarithmic contribu-
tions which are of the size o.'(p['In((p('). These
can only contribute to ln(o ') [and In'(n ')] terms
ln order cPE~.

We do not include more than three photons in
Fig. 2 because the order of the contribution from
the logarithmic region (k»nm) for any graph is
simply its naive order, up to factors of ln a (i.e.,
n"", where n is the number of photons). Soine
graphs having three loops or more contribute in the
nonrelativistic region (k- nm), but these were all
explicitly calculated in II and found not to have
logarithm s.

'The logarithmic contributions of the kernels in
Fig. 2 are summarized in the first column of Table
IV. There is a net contribution of 8 n'ln(n ')E„
to the hfs, the coefficient being fortuitously quite
small. However, because the contributions 5E~~
and 5E„~ had been found previously, "the change
in the theoretical prediction is quite large, i.e.,
n'1 n(e ')E„. This contribution was included in the
theoretical value of I (see note added in proof of I).
We repeat in 'Table I the comparison with experi-
ment. This new contribution, 0.023 GHz, is in fact
approximately the whole contribution from
n' ln(o. ') terms in Ps.

Some terms of the form c('E~-0.006 GHz (II) and
n'E„- 0.005 GHz (Ref. 15) have been calculated.
'The experimental uncertainty is only 0.0012 GHz,
and clearly all terms of the above form must be

TABLE IV. Logarithmic contributions to orthoposi-
tronium energy and decay rate coming from annihilation
kernels. E~ is the lowest-order annihilation energy; I'0
is the lowest-order (three-photon) annihilation decay
rate. The corresponding diagrams for hfs are shown in
Fig. 2.

& ln(&-i)

calculated for a meaningful comparison with exper-
iment to be possible. There are also certainly
terms of

O[c('(o(/w) 1n'(u ')(E~, E„)]-0.0003 GHz

(Ref. 16) which should be computed. These terms
are not too difficult to find analytically.

III. CALCULATION OF THE n ln(0. )l'0 CONTRIBUTIONS
TO POSITRONIUM DECAY RATE

The decay rate I' of a bound state is related to
its energy by"

r =-21m(E) .
Thus the methods of Sec. II, where we calculated
the real part of the energy of O-Ps, can just as
well be applied to calculating the imaginary part of
the energy. This requires that at least one of the
kernels have an imaginary part, i.e., be above
threshold. 0-Ps must decay to an odd number of
photons by C invariance, so the leading contribu-
tion to the decay rate will come from the three-
photon annihilation kernel. This gives the usual
lowest-order decay rate T'0 first calculated by Ore
and Powell. 7

The calculation of the o. ' ln(n ')I'0 terms is iden-
tical. to that of hfs, except that now the two anni-
hilation kernels are different (one is to three pho-
tons). This provides an additional factor of 2 to
those graphs with two annihilation kernels [2(c) and

2(d)]. The results, in terms of the lowest-order
decay rate I'0, are recorded in Table IV. The
comparison to experiment is made in Table II.

For parapositronium, the lifetime calculation is
the same as for orthoposi. tronium except that the
single-photon annihilation kernels are exactly zero.
The corresponding result for the logarithmic terms
is

AI' = (1 ——,')o!' In (o( ')I'0 = —,
' 'oI ( no') n'm .

Experimental errors are much greater than the
above value, and no significant comparison with
experiment is possible.

Logarithmic terms do not arise from the integra-
tion over final-state photons in the three-photon
kernel [Fig. 4(a)]. We do not expect such terms to

T (29)

rC (2S)

(2c}

A. C (2d)

D (2e)

2

3

4

(b) 2~
(c) 2~ (() 2

(4) 2

& ~F7
() (~

DC (2f)

Total
4 4

3

FIG. 4. Kernels contributing to order e 1 0 decay
of orthopositronium. Each diagram is summed over all
six intermediate photon permutations.
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= o. 'ro(&-~~ v2) =-1.68a2r, . (3.2)

'The factor of 4 is the ratio of 'm, to the annihila-
tion energy E~ [Eq. (2.1)]. There are many other
nonrelativistic contributions. Potentially the larg-

arise because we are far away from threshold for
this diagram. In fact, here s=(2m+a)', t=0 while
the three-photon threshold is at g =0, u =4m' or g

=4m'. Consequently, the three-photon annihilation
kernel (when summed over all six photon permuta-
tions) may be expanded for small three momenta p
and q, about p=q=0:

K, (p, q) =K,y(0, 0)+ Key&(0, 0)(p'+q')

+ K,'~&'(0, 0)p q+spin terms+ ~

(3.1)

The coefficients Kto(0, 0) are finite. We have

checked this by hand —essentially a check for the

presence of anomalous thresholds. Furthermore,
each term is infrared (IR) finite when convoluted
with the o-Ps wave function (an IR divergence
wouM appear as the binding energy goes to zero).
A simple direct proof is simply to note that any

Bloch-Nord sieck- type cancellation between radia-
tive and virtual photons would require that the IR
cancellation occurs against a two-photon final
state. The matrix element for o-Ps -2y is strictly
zero by charge conjugation invariance, and so for
o-Ps the infrared divergences of Fig. 4(a) that are
introduced when we put the electron and positron
on-shell must exactly cancel among themselves.
This is not explicitly true (in Feynman gauge) un-

less we sum over all photon permutations. The co-
efficients of the Taylor series (3.1) are independent
of the binding. Further, the second-order terms
cannot lead to an a~in(n ') term because the inte-
gral of such a term convoluted with the o-Ps wave

function, fp'd'p/(p'+ y')', is not logarithmically
divergent. The annihilation kernels to one, two,
and three photons are all nonsingular so that the
above considerations hold for each of them. Thus
the calculations of 8ecs. II and III are identical.

There are uncalculated terms of O(a'r, )
-0.0004 sec ' that come from many sources.
These are probably small (less than -6o. 'r, ).
However, recall that the (njv)r, coefficient is ra-
ther large, --10.

'The results of Paper II allow us to simply read
off the contributions to the coefficient of & I'0 that
come from multi-Coulomb exchanges (R terms).
Recalling that there is an extra factor of 2 in the

diagram with two annihilations, we find from. Table
I ofII:

est come from the expansion of the lowest-order
diagram, Fig. 4(a), and these are also the easiest
to calculate, should the difference between theory
and experiment persist.

IV. CONCLUSIONS

We have now calculated all of the order n' ln(e~)
contributions to hfs in Ps. We believe that II pre-
sents a reasonable organization of the calculation
of the Ps ground-state splitting and that the calcu-
lations of this paper support that contention. There
remain many n'm, contributions to be calculated
(all one-, iwo-, and three-photon kernels), though

a start has been made. ' ~" The evaluation of the
entire O(n') ground-state splitting in positronium
(and muonium) is among the most important re-
maining high-order QED calculations.

Our original motivation for this calculation was
to strengthen the theoretical prediction for the de-
cay rate of 0-Ps, and to possibly explain the sig-
nificant difference between the O(&ro) result and

the measured decay rate. Since we completed the
o' in(o. ')I', calculation, the experimental rates
have decreased significantly (Table II). We believe
the present measured decay rate is in adequate
,agreement with theory, and that the theory of the
calculation of bound-state decay rates is success-
fully tested to this order [0.2F/q, O(o. 'ln(n ')].
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APPENDIX: REVIEW OF THE CALCULATION OF O-Ps
LIFETIME TO O(AI 0 )

The kernels which can contribute to the decay of
o-Ps to order oro are listed in Figs. 4(a)-(h). '

he virtual photons are in the Coulomb gauge. "
These are all the kernels necessary to O(o.'ro) be-
cause of the infrared-finite behavior of the trans-
verse photon and the closeness of the Coulomb photon
to the unperturbed kernel [see i6Ko of Eq. (2.6a)].
The power counting (and the diagrams necessary)
is much more complex in Feynman gauge.

We add in terms such as Fig. 4(i), which in
Coulomb gauge is explicitly of order e'I"0. The
result is that the imaginary part of the diagram of
Fig. 4 is, to O(or, ), equal to the square of the ma-
trix element 3g of Fig. 5. Note that subtractions
in Figs. 4(g) and 4(i) exactly cancel the contribu-
tion to 3)I from 4(a), when the bound-state equation
is used to remove iterations of the unperturbed
kernel K,. 'The lowest-order rate now comes



WILLIAM E. CASWELL AND G. PETER LEPAGE

+ ~ +
I

+ ~ +

FIG. 5. Matrix element which, when squared and in-
tegrated over final photon states, gives r 0+0(eI'0) for
positronium. A ground-state (0-Ps) wave function is
convoluted on the left.

from the linear threshold singularity in the first
term of 5g. In both Figs. 4 and 5 there is assumed
to be an integral over the unperturbed o-Ps wave
function and all external eLectron and positron legs
are projected onto. on-shell spinors (D).

It is much more convenient to calculate on-shell
amplitudes. The electron and positron are only
slightly off-shell, and it is easy to see that there
are only corrections of O(n'II) coming from put-
ting all but the first term of 5g on-shell. This is
true because each diagram separately is IR finite
in Coulomb gauge up to corrections of order

((k'/m') ln A) o'I'0 - n' ln(n)I'o

d'p - inc(p, q) tf'q
(2w)' P —E (q) —E (q) (2v)'

x &(-q)II3 (0)g(q).

The effect of putting the external legs on-shell is
simply to let PO-E, (p)+E, (p). The difference be-
tween the two cases is

(A 1)

in the rate. The wave function has on-shell spin-
ors, and so putting the external legs on-shell
makes no difference to them. The first term in gg
can also be placed on-shell (retaining only the real
part), even though it has a linear Coulomb singu-
larity at threshold. To see this, we examine
the difference between this diagram on- and
off-shell when convoluted with the wave function.
Neglecting terms which are IR finite (these
cancel to order o!), we need only consider the
Coulomb part of the exchange photon, and that
only in the nonrelativistic region. Using Eq.
(2.2), the leading low-momentum contribution to
the first (singular) term of 3)I is

p 1 1
(2&)

4(p)~+ (p q) p E( ) E( ) E( )+E( ) E( ) E( ) (2 )
3gy(

~' (p'+~')' lp-ql' (q'+~')(p' —q') (2v)'

=0+0(n'ln(c. ')I', ).
'The second line follows by making the leading non-
relativistic approximation for all terms, including
the wave function. The last follows from the anti-
symmetry of the resulting integral in p and q. Had
this difference not been zero, it might still have
been useful to make these transformations. We
could then have evaluated the above integral to
O(nK, ) and still been able to do the rest of the
problem as we do in the following.

We have reduced the necessary matrix element
to an on-sh)11 e'e -3y scattering amplitude. This
may be evaluated, by the usual arguments, " in any
gauge, and it is here that we choose to work in
Feynman gauge. It is only here that the external
propagator corrections (4h) are removed from the
problem (by renormalization). It is clear from the
Coulomb-gauge derivation that there are no real
IR divergences left in this problem. A direct proof
follows that of Sec. IV for the lowest-order decay

(A2)
I

kernel, i.e. , virtual corrections to three-photon
decay cannot cancel against four-photon decay, by
C invariance. The rest of the calculation is then
as described in Ref. 8.

We have improved the numerical uncertainty on
the most difficult of the O(nl', ) contributions, I",
of Ref. 8. Symmetrizing the integral in the physi-
cal three-momentum (k --k) allowed us to obtain
an accurate value without any extrapolation. The
improved value is

I"' =(-5.818+0.008)(a/n')I;.

It is included in the theoretical value quoted in Ta-
ble II. The value in Table II was previously quoted
in Ref. 11. The logarithmic contributions to the
decay rate calculated in Sec. III allow us to make
a more precise comparison to experiment. The
comparison to the most recent precision o-Ps de-
cay measurements is made in Table II.
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