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Exact two-dimensional plasma pair-correlation function in the Singwi-Tosi-Land-Sjolander
approximation. II. Configuration-space analysis
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The configuration-space properties of the pair-correlation function in the Singwi, Tosi, Land, and
Sjolander approximation scheme for a two-dimensional one-component plasma are derived here, using the
exact solution in k space in the preceding paper. We also study in detail the effective static potential around
a test particle for three cases representing weak, intermediate and strong Coupling.

I. INTRODUCTION

The pair-correlation function for a strongly
coupled one-component plasma has been the sub-
ject for study in a number of different approxima-
tion schemes. ' ' However, until now, none of the
approximation schemes has led to explicit analyti-
cal solutions, in either k or r space. The preced-
ing paper6 (hereafter referred to as I) provides an
exact solution, for all strengths of the plasma pa-
rameter y =Pe' =P/2wn, for the k-space correla-
tion function G(k) in the two-dimensional Singwi-
Tosi-Land-Sjolander (STLS) approximation
scheme. In the present paper, we analyze the pro-
perties and behavior of the corresponding configu-
ration-space correlation function g(r) While an.

exact analytical form for g(r) for all y is not ob-
tainable, we have nevertheless: (i) developed the
exact solution for certain y values (y =0, y =2, and
y»1) which represent reasonably well the weak-,
intermediate-, and strong-coupling regimes (Sec.
II); (ii) obtained complete short-range (r-0) ana-
lytical expressions for g(w) for all y (Sec. III); and
(iii) developed an approach which provides the
long-range (x-~) behavior of g(r) for all even-
integral y (Sec. IV). We have also obtained the g(r)
curves for various y values (Sec. V) by means of a
numerical Fourier transformation of the G(k) re-
sults given in I.

These analytical and numerical results for g(r)
provide for the first time a model solution in which
important physical properties such as the small-r

or asymptotic (large-r) behavior of g(r) can be
studied uniformly for all y, and for which questions
such as the determination of the threshold for the
onset of short-range order as a function of y, and
the limiting cases of weak (y «1), intermediate
(y = 2), and strong coupling (y»1), can be tackled
effectively. Vfe have also been able to study analy-
tically the static effective potential around a test
particle for those cases (Sec. VI). This model does
not provide a liquid-solid phase transition (see Pa-
per I); however, the inverse compressibility
changes from positive to negative at y =2. This
latter fact gives rise to a significant change in the
behavior of the system, which will be well illus-
trated through the analysis of the effective poten-
tial.

II. EXACT SOLUTIONS FOR PARTICULAR y VALUES

In Paper I, an implicit solution for the pair cor-
relation ink space was obtained in the form [I, Eq.
(10)j

G y 1 t&~' 1

I+G 2 I+G) x&"

x=k/z, w =2wny, y = pe', P
' =ksT.

For particular values of y, the explicit form of
G(~) can be determined; a Fourier transform, fol-
lowed by division by p, provides the configuration-
space correlation function g(r):
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g(r)=, dk e'"'G(k)
(2m) 'n (2a)

~ 0
dx xJ, (arx)G (x). (2b)

A. Debye limit y=0

The Debye result is a limiting case of Eq. (1),
obtained by setting y =0:

We now analyze g(r) for three analytically tractable
cases: y = 0, y =2, and y»1.

Evidently, the probability 1+g(r) -0 as r-0, and
always remains positive, so that the small-z be-
havior is not in this sense anomalous. Vfe shall
return to this point in Sec. III, where the small-r
behavior for arbitrary y is discussed. An import-
ant feature of the correlation function (10) is that
it clearly displays oscillations according to the
properties of J„and specific exponential damping
according to the properties of K, . There is also a
1/r decay due to the combined J, and K, terms.
For wx»1, we have the asymptotic form

G(x) =-1/(1+x') . (3) g(r) = (2' '-/gr)e ~ ' cos(gr/4 —~ w)+

Its Fourier transformation via Eq. (2) then pro-
vides

g(r) = -yK, (m), (4)

g(r) =y lnr+ ~, r -0
and the asymptotic form representing the Debye
screening,

(5)

g(r) = y(m/21-(r)'~'e + ~, r -~ .
B. Intermediate coupling y = 2

(6)

An explicit solution can also be constructed for
y =2, with Eq. (1) reducing to

G(x) = -1+x'/(x'+ I )'~' .

the known Debye result, v which has the nonphysical
small-r behavior

(12)

We note that in contrast to the Debye limit (y =0),
the exponential decay is governed by &/~ rather
than z. Also, the algebraic decay follows z ' ra-
ther than the r '~~ of Eq. (6). Since the damping
and the oscillation have the same scale length
(W/g), one would not expect to see too many peri-
ods, a result borne out by the numerical results
and the graphs for g(r} given in Sec. V.

C. Strong coupling y » 1

For the analysis of strong coupling, it is conven-
ient to rewrite Eq. (1'} as

2/y &"
1 +g ( 1 +g gj+2+ (13

where

The Fourier transform, Eqs. (2), provides

g(r) =-(I/n)6(r) —[I/(2v) ng j %~I(r),

with

(8)

g = (-.'y)"'x= —,'aa,
and a is the "ion-circle radius, "

a=(wn) '~' .
In the limit y-~, we obtain from Eq. (1'}

(14a)

(14b)

2gg ] + g Jp gy
0

= 2vx'Z, (~r/W )K,(ar/W),
where the last step follows from a table of inte-
grals. ' Upon carrying out the Laplacian operation
in Eq. (8), one obtains

g(r) = yZ, (zr/W)K, -(vr/W)

which implies a step-function structure for t",

G = -I + ~(& —I) = -I+ ~(x- (2/y)"),
where

1, y)0
8(y) =

0, y(0.

(16)

=-2Z, (~r/W)K, (~r+2 ).
This expression has the small-r expansion

g(r) =-1+
16 (~r)'

4
ln + O(e'r'),3 —4C, (~r) ' ~r

where-

C = Euler's constant = 0.57721. . . .

The corresponding configuration- space correlation
function is easily obtained from Eq. (2b) by noting
the restricted range of integratio~ implied by Eq.
(16),

1

g(r) =-2 dg jJ~(2rj/a)
0

a J,(2r/a), —y-r
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This result, which seems to be indicative of long-
range order, is valid for all r only when y -~.
For any fixed y, however large, one must probe
further the structure of G(k) during its transition
from -1 to 0. As shown below, this transition oc-
curs over a small, but significant, range of k,
which modifies the large-r behavior of g(r).

The analysis is facilitated if Eq. (2b) is trans-
formed by an integration by parts to

g(r) = (-g/r)(a/&fr)'i Ree' " 'e (3'i'f(r'),

f(e')= f df e' "
y 'f(G)

y

e&O

dp e'~"'G(1+G)', r' = 2r/ay

where the relation between p and Q is

2G
p =in@- —In I-1+@ ~ 1+@

(24)

(25)

g(r) = —— dx xJ, (xrx) G '(x) .
Ki

(18)

This is an alternative expression for Eq. (2b), the
Fourier transform in two-dimensional space, and,
in fact, we will find this to be useful in other con-
texts as well (see Sec. VI). In this form, the y-~ limit for g(r), Eq. (17) is recovered immedi-
ately by recognizing that

For any finite y, however large, G'(x) has a peak
value of order y'i2 and a width of order (1/y)'i' in
the vicinity of x=(2/y)'i', as can be seen from the
expression [I, Eq. (8)]

xG'(x) =-G(1 +G)P+y(I+G)] -=f(G) ~ (20)

The peak value of f (G) = ~»y is attained when G
=-—,'. In terms of the scaled variable g of Eq.
(14a), which is more appropriate for the strong-
coupling regime (referring as it does only to the
interparticle distance), we obtain

d(e) = - —„fdG d,(i.meie)G)f(G),

lim f(G) = f (g —1),
y ~ d&O

and, more generally,

Thus f(G) plays the role of a "smeared 5 function"
near & =1, and its properties over a band ~j'
-O(1/y) determine the precise structure of g(r),
according to Eq. (21). It should be noted that Eq,
(21) is exact, and could be employed for analyzing
the intermediate- or small-coupling regimes as
well. For the strong-couplimg regime, it is clear
that the structure of f plays no significant role as
long as the scale length of oscillations of the Bes-
sel function J, is much larger than the bandwidth of
f, or (r/g)f&, «& 1, and the asymptotic result (17)
remains valid for y «yg. On the other hand,
for r -yg and larger, the oscillations of J, within
the band b,g reduce g(r) significantly. Since r»(2
for this regime, we can use the asymptotic form
for g, and a change of variables, g = 1+p/y, to ob-
tain

The integrand in the Fourier representation of
f(r') has a width ap-O(I), centered around po =lny

Hence f(r') will decay on a scale r'-O(1) or
x =ay and have an oscillation characterized by por'
We have in Eq. (24) an example of a scale transi
tion, as the behavior of g(r) changes from a pure
scale g for y &ya to the additional scale ya for x
~ yz. Physically, the "long-range order" indicated
by Eq. (17) apparently cannot be maintained beyond
the finite range z-ya. It should be noted that

f(r e) —e i f 1n)'@(r e

) (28)

where h(r') is independent of y. Thus, apa. rt from
the phase shift, which varies as lny, the entire
effect for large y is fully represented by some uni-
versal function of the scaled distance r', which can
be numerically evaluated quite accurately.

III. SHORT-RANGE BEHAVIOR OF g(r)

The complete g(r) for all r can be obtained ex-
plicitly only for particular values (or ranges) of y,
as was discussed in Sec. II. The short-range be-
havior, however, can be determined for arbitrary
y by taking a direct Fourier transform of the &-

space solution.
There is an obvious interest in studying the

small-r behavior of g(r) In par. ticular, the two-
dimensional space, as it is known, occupies a
special position in this connection: if the correla-
tion function is regarded as a function of the (con-
tinuously varying) dimensionality parameter &f,

where 3 & v & 1, then according to the exact theory,
1+@"&(r), approaches zero in a nonanalytic fash-
ion, with an essential singularity exp(-ii/r" 2) a,s
r-0 for all v&2; on the other hand, for v& 2, I
+g'"'(r) approaches a nonzero limit [0 & I+g("&(0)
& 1], and for r-0 goes as 1+I'"&(0)+br' ". In the
two-dimensional case, however, I +g"&(r) —cr&,
and thus the analytic character manifestly changes
with the coupling strength y, which is certainly not
the case in ot her dimensions.

It has also been shown recently, ' through a con-
figuration-space formulation of the basic equations,
that various known approximation schemes, includ-
ing the present one, are plagued by problems of
nonphysical behavior in the small-z domain. It will
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be rather instructive to see how, and to what. ex-
tent, the requirements of the exact theory and the
problems of nonphysical behavior combine into the
precise analytic form we can display for this
scheme.

A. Derivation of results

The small-r behavior of g(r } is related to the
large-k behavior of G(k), and the structure of the
small-r series for g(r) can be systematically in-
ferred from Eq. (2b). For all values of y w0,

1+g(r)=2x'r', [d (x) —1]D(x/zr)
0 X

—=,' ~'r'lngr+y, g'r', y =2 (34)

in agreement with Eq. (11), as can be shown by
dividing the range of integration in Eq. (34) into
various domains and using appropriate limiting
forms for J0 and D.

For y & 2, the leading term is r&, as can be seen
by rewriting Eq. (30) as

1+g(r)

g(r=0)=y f dxxG(x)=-1,
0

(27) r oo

=-y dr'z dxx'd, (xr'x)G(x)
0 0

a relation most ea,sily obtained from [I, Eq. (6)]

u(x) =y dz zG(z)
0

and [I, Eq. (3)]

( )
1+u(x)

x +1+u(x)

(28)

(29)

by noting that according to Eq. (1), G(x-~) -0 as
x ' », which requires g(0) —= u(x-~) to be -1.
Physically, Eq. (27) reflects the fact that the prob-
ability -[1+g(r)] of finding two particles with zero
separation (r-0) must vanish. To determine its
precise dependence on the separation distance, we
evaluate the next term in g(r) by subtracting Eq.
(27) from Eq. (2b):

1+g(r)=y r dxx[d, (xrx) —1]G(x).
0

(30)

a =gy dx Gx.
0

This is proportional to the second moment of Q(x)
over x space, and is most easily evaluated by using
Eq. (29) in the form

r
I

dxx G(x)r f dxxG(x)(1+x) =-,' f dxx x'(x)
0 0 0

(32)

and the differential form of Eq. (28), du =yxQ(x)dx.
The result is

a = 1/4(y —2) . (33)

For y =2, the integral in Eq. (31) diverges, indi-
cating a stronger-than-r 2 behavior for Eq. (30).
By defining x4G(x) =D(x), D(x-~) ==z, and scaling
x-x/ar, we obtain

The subsequent analysis and the results differ, de-
pending on whether y &2,

'

y = 2, or y & 2.
For y&2, the next term is of order g r, with its

coefficient given by the convergent integral

=-y dr' g»r'» '
» J,(x)D(x/zr'), (36)r -1 dx

0 0 X

with D(x) =x +»G(x), D(x ) =-(1+—'y)» '. The
last integral remains convergent even when we let
r'-0 in the argument -of D. Then, to leading or-
ders

1+g(r) =C» (xr)", y( 2

I (1--,' y)
I"(I+-,'y)»(1+-.'y)»" '

(36)

The leading terms for the various cases can now
be summarized as

az r, y&2

g(r) =-1+ =,' x'r'1nzr+bzK'r', y =2

C&g&r&, y & 2.

(3Va)

(3Vb)

(3Vc)

8 Discussion of results

We note the following properties of the small-r
results in Eqs. (37).

(i) The small-r limit of the Debye result, Eq.
(4), is contained in Eq. (3Vc), which reduces pre-
cisely to y(ln2 mr+ C) to order y when we expand
C, and (zr)» =1+y incr The non.physical [g(r -0)
--~] behavior of the Debye result can thus be
seen to be due to restricting the expansion to order
y, keeping higher-order terms in y would remove

By continued subtractions and use of the asymptotic
properties of G(x), one can develop higher-order
terms. For any y =2m+ n, m=0, 1, . . . ; 0 & n & 2,
the first nonanalytic term is r&, preceded by a
series in powers of r' up to r', the coefficients
being the corresponding moments of G(x), which
can be evaluated explicitly. The appearance of

lnr terms is a common feature for all even y.
The results of Eqs. (3V) are in agreement with the
small-r analysis based on a configuration- space
formulation' of the basic equations of this model;
the advantage here lies in the explicit determina-
tion of C, Eq. (36).
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or
))/(r+2)( 1)1/O 2)

(38)

are the singularities of Go'2). For y =0, one re-
covers g=xj as simple poles, which is expected
from the Debye solution, Eq. (3). It is clear, by
inspection, that this will provide the correct ex-
ponential behavior e "". A detailed contour inte-
gration leads to the additional decay z ' '. For y
=2, there are four branch cuts at x=j =*e"'

the anomalous small-x behavior of the Debye re-
sult.

(ii) For y =2, Eq. (37b} agrees with the small-r
expression of the exact solution, Eq. (11).

(iii} Equation (37a) and subsequent terms in the
analytic series in powers of x' agree with the
small-r expansion of Eq. (17) describing the
domain y»1' provided only the leading terms in y
are retained in the former. The occurrence of in-
verse pours of y generates the required change of
scale (by means of the relation )(2/y =2))n=2/a2)
from the Debye length )( ', appropriate for small
and moderate y'8, to the interparticle distance
(vn) '/' = a, appropriate for large y.

(iv) The slope g'(0) is infinite for y & 1, (—,')1/2 for
y = 1, and zero for y &1.

(v) Equation (37) also shows that the relative
probability 1+g(r) has the physically required pos-
itive character for all y in the present approxima-
tion scheme; this is in contrast to results ob-
tained for other schemes. '

(vi) Physically, one would also require 1+g(r)
-exp[-Pp(r)] -r)' as r-0 for any y, where p(r) is
the bare (Coulomb) potential; this is indeed so for
y & 2 in this scheme, but for y ~ 2, an anomalous
r' (r' lnr for y =2) behavior sets in, which domin-
ates over the physically expected ~&. This si.tua-
tion is nevertheless an improvement over the
three-dimensional case for the Singwi-Tosi-Land-

e

Sjolander (STLS) scheme, which violates" the cor-
responding physical requirement for all y.

(vii) The special values y =2m introduce the
lnz behavior, which appepzz to be qualitatively

different from the pure power-law results for y
c2m. It can be shown, however, that g(r, y) is a
smooth function of y at y-—2', and, in fact, the
coefficient of r' (including the lnr term) for y =2m
is precisely the nonvanishing difference between
the nonanalytic y& and the analytic z'" terms as y
~ 2plo

IV. LONG-RANGE BEHAVIOR OF g(r)

The long-range behavior of g(r) is governed by
the singularity structure of G()'2) in the complex k
plane. From Eqs. (1) and (14a),

(1 )- y/2(y+2)( I)1/(y+2)

Again, it is clear that this mill give a damped os-
cillation expI-()(r/W)(1 +i)]. To obtain the com-
plete large-r behavior, consider Eq. (2b) in the
alternative form

g(r)
1

(I (1 )+I(2))

ooI'" "'=y dxxH,'" "'()(rx)G(x) .
0

(39)

and have phase factors

e~ If&sr+x~ j~y+s~ )=0, 1, . . . , y+1. (42)

It can also be shown from Eq. (20), which reduces
to xG'=-yG' when ~G ~-~, that each singularity
is a square-root-type branch cut. The two singu-
larities nearest to the real axis, with phase fac-
tors e"' '&'", make the most significant contri-
butions.

For y» 1, ~g ~-1, and the most significant sing-
ularities occur at

g =1+(y+2) ln(2y) +in/(y+2)

= I+ (I/y) ln(2 y) birr/y,

which provide a contribution proportional to
e'&" '=e""/'e '~" &' The power-]. aw decay arises
by integration around the entire branch cut. These
results, Eqs. (40)-(43), are in agreement with Eq.
(24), and in fact specify the precise nature and
scale size for the decay of f(r') for r &ya. Accord-

I "& is then evaluated by closing the contour around
the first quadrant on the large circle ~x~-~ where
x =

~
x

~

e' and 0 & 8 & -2' v, and coming down along
the positive imaginary axis. The branch cut is
drawn at the angle —,

'
n from e" to infinity. I"' is

evaluated by a similar construction in the fourth
quadrant. It can be shown (see the Appendix) that,
owing to the properties of the Hankel functions Ilo"
and IIo"', the two contributions along the imaginary
axis compensate exactly for any function with the
symmetry G(x) =G(-x). Hence only the two branch-
cut contributions survive, and a detailed calcula-
tion gives the correct large-r behavior, Eq. (12).

A similar procedure applies immediately to all
even y =2m, since the symmetry condition G(x)
=G(-x) is satisfied, and provides the result, based
on the singularities nearest to the real axis,

g(r) =Re(2a/r)(go/V y)e "2""«r» (.2(40)
In obtaining this result, we have used from Eq.
(38) the fact that the singularities in the g plane, r.„
for a given y all lie on a circle,

(1 )I/()'+2)

1= 1 + ln( 2 y) +— (ln 2 y) ++2 2 y+2
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ing to Eqs. (41) and (42), there a,re further singu-
larities, )=1, . . . , which provide the same oscilla-
tion but faster exponential decays when r &ya/l.
The oscillation scale length does not vary much
with y, since Re/0= ~g D~cos[v/(y+2) j only ranges
between 0.95 and 1.1 for y =4 to ~. The maximum
=1.1 is reached around y =10; thus the "tightest
packing" in terms of the probability variations in-
dicated by g(r) occurs for the intermediate cou-
pling y =10 t The numerical results of the next
section confirm this prediction. While we have not
discussed the complex-variable analysis for y
a 2m, the physical results can be expected to be
continuous in y, and thus the methods here are suf-
ficient to understand the nature of g(r) for any y.

V. NUMERICAL RESULTS

The correlation function g(r) can be computed by
using Eq. (2b) and the numerically obtained G(x)
from I, Eq. (10). The oscillatory nature of J,(zrx)
with known zeros allows integration between the
zeros by a Lobatto quadrature. Qur numerical re-
sults for y =1, 1.5, 2, and 2.5 are displayed in

Fig. 1 and those for y =3, 5, 10, and 30 in Fig. 2.
Various analytical results in Secs. II.-IV are fully

confirmed by these figures and other numerical
results not presented here in detail. In particular:
(i) the slope g'(0) varies from ~ for y & 1, to ( —',)'~~

for y =1, to 0 for y &1; (ii) oscillation becomes
more prominent for increasing y, (iii) wavelength

g(—)

O. I

g (o)

O. I

pp0 I 4 6 7 8 9 10

-O. I

- 0.2

-0.3

-0.4

-0.5

- 0.6

-0.7
f-30

-0.8.

-0.9.

- I.O

FIG. 2. Pair-correlation function g(r/a) for y= 3,
5, 10, and 30.

is shortest around y =10; (iv) pure r 'Z, (2r/a) be-
havior, Eq. (17), is achieved to a good approxima-
tion by y =30; and (v) in general, the fluidlike state
with intermediate-range order is quite evident in

Fig. 2 with the larger y values. Our computations
were not carried out far enough in z for large y to
assess the decay rates for x &ya numerically.

0.00 I 2 3 4 5 6 7 8 9 IO
VI. EFFECTIVE POTENTIAL

-0 I

-0.2

-03

-0.4

-05

-0.6

-0.7

-0.8

-0.9

- I.O

FIG. I. Pair-correlation function g(~/a) for y= 1,
1.5, 2, and 2.5.

Although our main interest in this paper has been
the analysis of the pair-correlation function, ad-
ditional information can be obtained from a re-
lated object, the effective static potential surround-
ing a fixed test particle (impurity) in the system.
This effective potential C (r), which is obviously
distinct from the bare Coulomb potential p(r)
=-8'lnr owing to many-body effects, should also
be distinguished from the potential of the average
force 4'(r), defined by g(r) = e 8+'"- 1. 4(r) is de-
termined through linear-response theory with the
aid of the static dielectric response function e(k).
As such, it represents a good approximation to the
actual potential around a test particle insofar as
the linear approximation is valid. Moreover, the
source of 4(r ) is not in equilibrium with the sys-
tem, while that of g (r) is. These difference ex-
plain the different characters of C (r) and g (r), as
borne out by the subsequent calculations.

Our interest in C (r) also stems from the obser-
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vation put forward inPaperI, that J e.(r)dr changes
from positive to negative as y exceeds 2. While
for small distances both e (r) and p(r) are postive,
this phenomenon indicates the emergence of signif-
icant negative domains in 4 (r) for larger distances.
This will become evident from the detailed results
in this section.

The effective potential is given by

C (x) = y(x)/~(x), y(x) =2~+/u' = I/npx', (44)

or

d 2 2y
" d(r'~) = — dx [rZ, (~~)]Pne(x)

d/

=2y& dxxJ~ ex' Pn@ x

= 2rpe(r),

)t(r)+-,'r X'(r) =pc(r).

(54)

(55)

a.nd according to I, Eqs. (13)—(15),

pnC(x) =(I/x') (I —[I+G(x)]/x') . (45)

Taking a Fourier transform provides the dimen-
sionless effective potential"

Comparing Eqs. (52) and (55), we find

g(r) = —,
' ry'(r),

and Eq. (52) reduces to

pe(r) =g(r)—,dr',
" 2g(r')

7

(56)

(57)

Pe(r) =y ax~, («x)Pm(x).
0

(46)

pe(r)--y ln«, r —0 (48)

while it becomes exponentially damped for large ~:

Pe(r)-y(m/2«)'~'e ""+, r -~ . (49)

Although for large r the effective potential deviates
substantially from the bare potential, it always re-
mains positive definite, as expected on physical
grounds. We also note that if Pe(r) «I, then
-p4'(r) =g(r) =-pC (r); e(r) =e(r) is the distinguish-
ing feature of the Debye approximation.

For y —-2, it is convenient to use the alternative
representation, analogous to Eq. (18), obtained by
an integration by parts of Eq. (46),

Pe(r) = ydxx-Z, (~~)Pne'(x) .zr 0

Differentiating Eq. (45} and using Eq. (7), we find

(5o)

As in the case of the pair-correlation function,
we can obtain explicit solutions for the special
cases y-O, y=2, andy»i. For the Debye case
(y =0} substitution of Eq. (3) into Eq. (45) provides
the screened effective potential

pe(r) = g(r) =-y&.(«)
The effective potential for small x is identical to
the bare potential, "

+ y —Jo(2r&/a) —~ y 3Jo(2r—f/a),
1 1

(60)

where, by virtue of I, Eq. (11),

f= (I+G)/x' = I + g'(I —2/y) + ~ ~ ~ . (61)

The last term in Eq. (60), of order y', represents
the leading contribution for large y, over a wide
range of y,

with g(r) given explicitly by Eq. (10). For small r,
since g(r) --1, the integral in (5V) dominates and
again we appropriately recover the bare potential"

Pe(r) =-2lnr=-ylnr, r-0.
For large r, the integral is an order of 1/r smal-
ler than g(r), so that one obtains

pC (r) =g(r) = (2"'-/~ ) re""'

cso( «/W ——,
' v), «»1. (59)

We note that the potential now has developed an
oscillating tail with oscillations apparently strong
enough for fC (r)dr=0 as required by I, Eq. (16).
We also note that e(r) = e(r} for-large r

For the regime y»1, one can invoke the step-
function character of G(x}, as in Eq. (16), to ob-
tain, using Eq. (46) and the scaling equation (14a),

Pe (r) =y —(I f}J (2r&/-a)
' df

0

pne '(x) = -(2/x) pne(x)+ G'(x),

which, by virtue of Eqs. (18) and (50), leads to

pe(r) =)((r)+g(r),
with

(51)

(52)

(62a)pe(r) = ,'y', &,(3rd-/-a)
g3

=z'y (a/r)[Z, (2r/a)+O(a /r )), r»a
.y g(r}-- (62b)

~(r) = — axe, («x)Pne(x) .= 2y
Kf

Then

(53)
For z &yp, the exponential damping of the type dis-
cussed in Sec. IIC will apply to the screened ef-
fective potential as well, and Eq. (62b) remains
valid to leading order in y, even though (62a} is
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not. For r-a, (62a} must be used rather than
(62b), and a more explicit form is

p4 (r) = — Jo(2r/a) — j—,(2r/a)
y' r

pC (r) =-y in(2r/a)-+y + 0(y) . (64)

The potential now changes sign for small enough r
to ensure that J C (r)dr & 0. Thus a test particle is
surrounded primarily by regions in which particles
of like charge experience an attractive rather than
a repulsive force.

From these results we observe that in the three
cases y «1, y =2, and y»1 the small-r behavior
is given by

p4(r) =-y lnr, r —0 (65)

which is just the bare potential, " as is to be ex-
pected on physical grounds. It can be shown that
this result indeed holds for arbitrary y.

For large r, we observe that pC (r) becomes pro-
portional to g(r) in the three cases y «1, y = 2,
and y»1, but the proportionality constant varies
with y. This could also be inferred directly from
the definition of 4(x}, Eq. (45), which can be re
written

-x PsC (x) =1—x +G(x).

A Fourier transform then provides

—V'( pC (r)) =g(r), r ~0

(66)

(67}

where we have omitted the 5-function and its deriva-
tive terms. It is easily verified that Eq. (67) cor-
rectly predicts the detailed relationship givenfor the
three cases y = 0, y = 2, and y»1 in Eqs. (47),
(59), and (62b). In fact, Eq. (67) is valid for all y
(for r e0), and can be used directly to determine
g(r) if 4(r) is known. With proper accounting of
the source terms, it can also be used to solve for
C (r) when g(r) is given. Finally, the difference be-
tween 4 (r} and 4'(r) becomes evident from Eq. (67).

VII. CONCLUSIONS

In this and the preceding paper, w'e have com-
pleted the study of the properties and implications
of a closed-form analytic solution of the pair-cor-

(63)

For small r, Eq. (63) leads to the limit -~y .
However, the second term of order y in Eq. (60)
develops a lnr behavior as r -0, which dominates
over the large but fixed -4y'. The first term of
order y remains bounded as r -0, and is less im-
portant than the other terms, so that

relation function obtained for the two-dimensional
ocp for arbitrary coupling strength in the STLS
approximation. While Paper I was devoted to the
exposition of the method of obtaining the solution
in k space and to the study of results derivable
from it directly without obtaining the configura-
tion-space representation of the pair-correlation
function, in this paper we have analyzed the latter,
g(r), along with 4 (r), the effective potential sur;
rounding an impurity in the system. We have been
able to obtain explicit results over the entire r
domain for the three cases y «1, y =2, and y»1,
representing the weak-, intermediate-, and
strong-coupling regimes. In addition, we have al-
so obtained the short-range (r -0}behavior of g(r)
for all y and the long-range (r -~) behavior of
g(r) for all even integral y. Numerically calculated
g(r) curves have also been presented for the full
range of coupling strengths.

We can assess here the relevance of these re-
sults in the broader context of what is known to
date for other approximation schemes in three- as
well as two-dimensional ocp's. As pointed out in
the Introduction, (and in Paper I), the STLS scheme
in two dimensions is unique in that it provides a
closed-form solution for G(p). This in turn allows
us to obtain a number of explicit results for g(r),
as listed above. The most noteworthy features
that emerge from this study are as follows.

(i) Exact solutions for intermediate (y =2) and
strong (y»1) coupling are developed which provide
for the first time, in any scheme, in any dimen-
sions, explicit analytical results for g(r) in those
regimes.

(ii) The existence of a "liquid" state, character
ized by an intermediate-range order is the most
remarkable feature of this model. This "liquid"
state emerges gradually with increasing y without
any sharp phase transition. The representation
[Eq. (17)] of g(r) for y» 1 indicative of this inter-
mediate-range order remains valid over a wide
range of r, r «ya; g(r) displays oscillations with-
in this range with a wavelength ~a and an-alge-
braic decay (r/a) ' ', both independent of y.
For r ~ ya a scale transition occurs, and an ex-
ponential decay e ""&' becomes significant, which
eventually becomes dominant for r»ya. In this
sense we can only talk about an interrnediate-
and not a long-range order. This is of course in
agreement with the feature already noted in Paper
I that G(k} does not have a singularity on the real
axis, and thus no liquid-so1id phase transition is
allowed by this model.

While there are no other analytical results avail-
able, either in two or three dimensions, one can
compare our results with the Monte Carlo results'2
in three dimensions to see if any common features
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prevail. Indeed, the latter results also indicate a
clear emergence of a "liquid" state for I' »1 (I'
=Pe /a, where a is the ion-sphere radius), "with
a periodic variation in g(r) with wavelength =2 a.
The successive peaks in g(r) decline with increas-
ing y; the precise functional form, however, can-
not be inferred from the limited data. The period-
icity and a series of peaks with monotonically de-
creasing amplitude are common features in two and
three dimensions. A difference between the two
cases is the I' dependence of the height of the first
and successive peaks in three dimension, in con-
trast to the y independence of the two-dimensional
result, Eq. (17). Even though the height of the
first peak of g(r) (Fig. 2) continues to increase up
to y =30, the asymptotic (y»1) result, Eq. (17),
does not differ much from the y = 30 curve for g(r),
and the y-independent regime is essentially at-
tained for y ~ 50. This is in contrast to the three-
dimensional (Monte Carlo) results, where the
height of the first peak of g(r) continues to increase
right up to the phase transition around I" =155. It
should be noted that the y independence in the two-
dimensional STLS model is the direct consequence
of the step-function character of G(k) or, equival-
ently, the 5-function character of G'(k). The
three-dimensional Monte Ca.rlo G(k) does not have
this character, and attains increasingly larger
positive values for its first peak as I is increased.
It can be easily shown that a I'-independent asymp-
totic liquid state would result in three dimensions
as well if G(k ) had the step-function character. A

related, interesting question then is whether or
not other two-dimensional schemes lead to a y-
independent asymptotic state; preliminary results"
for the more sophisticated Totsuji-Ichimaru
scheme indicate that some y dependence will pre-
vail even for large y, thus pointing to a possible
defect in the STLS two-dimensional model.

(iii) A related point to be noted is the difference
in the singularity structure in the complex k plane
of G(k) in the model studied and in three dimen-
sions. The three-dimensional G(k) develops com-
plex poles'~ for I" &0 which approach the real axis
with increasing I', heralding the phase transition
which sets in at I' =155 when one of the poles
reaches the real axis. The pole in the vicinity of
the real axis for 155 &I' »1 results in the G(k)
with the characteristic pronounced positive peak.
On the other hand, the singularities of the two-
dimensional G(k) in the STLS scheme are of the
branch-cut type, which, even though they approach
(although never reach) the real axis as y increas-
es, are damped by a 1/~y factor, ensuring that on
the real axis G(k) -[k,/y(k —k, )]'~' remains
bounded and small; G'(k), however, does develop
a peak and a behavior resembling that of G(k) in

three dimensions; hence the different behavior al-
ready noted.

(iv) The study of the short-range behavior of
g(r), in Sec. III, shows explicitly the y dependence
of the approach to zero for 1+g(r) as r -0. The
appearance of an anomalous y' term overwhelming
the requisite r& behavior for y &2 is a character-
istic feature of the present approximation. While
this result has been obtained elsewhere, ' the
present method offers the advantage of providing
an explicit coefficient for the x term in Eq. (37),
and allows one to see how the Debye result, with
its nonphysical small-r behavior, is the direct
consequence of an improper expansion of x& to or-
der y. It also explains the occurrence of terms
like x' lnx for even integral y to be the result of
the confluence of the analytic (r' ) and the non-
analytic (r")parts of the full solution. One can also
infer, from our method of derivation here, that
the short-range anomaly would be avoided only if
the first few moments of G(k), i.e., 1 k'"G(k)dk,
vanish identically when y = 2m+ o., where m
=0, 1, 2, . . . and 0& o. &2.

As pointed out elsewhere, ' the short-range
anomaly is a common problem for many approxi-
mation schemes in both two and three dimensions;
it is a feature of the two-dimensional schemes
that the anomaly is y dependent, occurring only for
y ~ 2, in contrast to the three-dimensional situation
(in STLS, as well as other schemes) where the
anomaly occurs for all I"'s.

(v) The long-range behavior of g(r), described in
Secs. II and IV, also shows clear variations with
y. The damping is exponential in the cases studied
explicitly, and the scale length in the strong-cou-
pling regime can be traced to the singularity struc-
ture of G(k) in the complex k plane. It is a re-
markable feature of the STLS model (in two dimen-
sions) that this singularity structure can be seen
explicity, even for intermediate- and strong-cou-
pling regimes, in contrast to other studies (mostly
in three dimensions) which can assess the singu-
larity structure only by perturbative methods.

Besides the overall damping, one finds the oscil-
latory behavior already noted, which for y ~ 4 ex-
hibits only a slight variation of wavelength with y.
For y»1, the wavelength approaches the asymp-
totic limit ma. The detailed analysis in Sec. IV,
where the order 1/y corrections to the wavelength
and the corresponding damping rate are given
explicitly, shows that several of the singularities
near the real axis, having the same oscillation but
different damping rates, will combine to produce
the asymptotic "liquid" state for g(w), and the
gradual departure of g(x) from that state as 1/y
increases can be understood in this sense.

(vi) While, as we have noted on several occa-
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sions, there is no phase transition generated by
the model we have studied, the other well-estab-
lished feature of the three-dimensional ocp, name-
ly, that the inverse isothermal compressibility
becomes 0 and then negative for moderate values
of l, is shared by the two-dimensional STLS mod-
el, which exhibits this feature at y =2. The phys-
ical quantity that is most sensitive to this change
of physical state is the effective potential 4(r)
around an impurity which we have studied in addi-
tion to g(r) for the quoted y domains. From the de-
tailed study and from the moment condition

f4(r)dr)(0 for y)(2, we could infer that the gener-
al behavior of C (r) is such that, while for y = 0 it
represents pure exponential screening, it develops
together with g(r) small asymptotic oscillations
which become more dominant as y increases, to
the extent that JC (r)dr changes sign [while, of
course, Jg(r)dr =-1, independently of y]. The
physical implication of this effect, that is, the pre-
dominance of attraction between like charges as
mediated by the medium, is a remarkable strong-
coupling phenomenon, whose analytic details are
exhibited here for the first time.

In these two papers we have provided an exact
analysis of a simple but reasonable model for
strongly coupled plasmas. The main lessons to be
learned from exact solutions are insights which
can be applied to related problems which cannot be
solved exactly. In this light, the analys'is here will
have an obvious bearing on understanding the wide-
ly studied three-dimensional STLS model, the
Totsuji-Ichimaru schemes in two and three dimen-
sions, and possibly some other schemes as well.
The analytical forms obtained here, and methods
developed here, may serve as starting points for
approximation schemes in the study of those mod-
els. Developing a sense for the structure of G(k)
or g(r) over the full range of y values is the major
accomplishment here, and is lacking in other
schemes.
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I' '= dxxHO" rx x, -j=& 2.
0

(A3)

we can evaluate I'" by closing the contour counter-
clockwise at infinity around the first quadrant A,
and coming down along the positive imaginary axis

We assume here for simplicity that f(z)
(z =x+iy), has only simple poles; if there are
branch cuts, the corresponding contributions have
to be taken into consideration. Then

1~')+ A, + a, = 2~ix„ (A4)

where R, = residues of zH,"(rz)f(z) at the poles of

f in the first quadrant. Similarly,

I&'&+ A, +a, =-2~i~„ (A5)

where R, = residues of zH,"&(rz)f(z) at the poles of
f fn the fourth quadrant. A, is the contribution due
to the contour at infinity around the fourth quadrant
taken clockwise, and B, is the contribution coming
up along the negative imaginary axis. Obviously,
A, =0 and A, =0 for well-behaved f(x); then

2I=I'"+I'z&=-(B, +B,)+2mi(R, -R~). (A6)

A, and B~ are easily evaluated; the essential point
is to show that B, +B, —=0 when (A2) is satisfied.
This follows upon observing that

0

B,= dz zH&'&(rz)f (z)

and

dy yH&', "(rye'"~')f (Iy)
0

ao

dy PK, (ry)f(iy)
0

(A 7)

0

B, = dz zH&'&(rz)f(z)

with the symmetry

f(x) =f(-x) (A2)

can be evaluated as follows. Noting I= & (I'"+I'"),
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APPENDIX

2
dr&&0(ry)f( ~y)

0
(A8)

Integrals of the form

dxxJ, rx x, r )0
0

(A 1)

The last tep in both (A7) and (A8) is based on re-

lations between the Hankel and the modified Bessel
functions. "
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