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Exact two-dimensional plasma pair-correlation function in the Singwi-Tosi-Land-Sjolander
approximation. I. k-space solutions and thermodynamic properties
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The Singwi-Tosi-Land-Sjolander (STLS) nonlinear integral equation for the plasma pair-correlation
function g is adapted to two-dimensional one-component plasma (ocp) systems whose Coulombic interactions
are characterized by the logarthmic potential. The two-dimensional STLS integral equation has the
remarkable property that it can be exactly solved. The resulting expressions for g(k) are extensively

analyzed and are shown to be negative definite for all values of k and the coupling strength. The implication
here is that in the STLS approximation, the ocp liquid can never undergo a phase transition. Exact
expressions for g enable us to evolve exact formulas for the correlation energy and heat capacity. Finally,
we demonstrate that the STLS approximation scheme exactly reproduces the correct equation of state for the
two-dimensional ocp liquid.

I. INTRODUCTION

Over the past decade there has been a growing
interest in the two-dimensional plasmas whose
interactions are characterized by the logarithmic
potential. As a result of theoretical studies of
the two-dimensional one -component plasma (ocp),
its exact equation of state' and thermodynamic
limits' have been formulated, Iong-wavelength
compressibility-sum rules have been established,
and progress has been made in formulating the
weak-coupling-limit structure of the equilibrium
pair-correlation function g. It is more difficult,
however, to obtain a theory which can provide
information about the system in the domain where
the coupling strength, characterized by the two-
dimensional plasma parameter y= Pe' (P is the in-
verse temperature), is not small. To be sure,
there is no dearth of strongly coupled plasma ap-
proximations' ' formulated principally for the
physical three-dimensional ocp. In that ca,se, they
lead to nonlinear integral equations for the pair-
correlation function g(k) which are soluble only by
numerical interation. However, none of these ap-
proximation schemes has been applied to two-di-
mensional plasmas. In this paper, we sha, ll under-
take such an analysis by examining the two-dimen-
sional version of the approximation scheme pro-
posed (for the three-dimensional ocp) by Singwi,
Tosi, Land, and Sjolander (STLS).' We shall

show that the relevant nonlinear integral equation
in g, in contrast to the three-dimensional situation,
ha, s the remarkable property that it can be solved
exactly for arbitrary values of y. The primary
aim of this paper is the analysis of the exact sol-
ution —the first of its kind for any strongly coupled
plasma model —and of its implications.

In the STLS scheme, one first calculates the po-
larizability n from the first Born-Bogoliubov-
Green-Kirkwood- Yvon (BBGKY)kinetic equation un-

der the assumption that the proper nonequilibrium
par t of the two-particle distr ibution function can be ig-
nored; hence the dielectric function e(k&o) is ex-
pressible as e= e(g). Self-consistency is then
guaranteed by application of the static fluctuation-
dissipation theorem linking e and g. The result
is the k-space nonlinear integral equation

-z'[1+u(k) ]
k'+ ~'[1+u(k)] '

where

,P G(~k-p~) (2)

is the so-called screening'function. The system
of volume V consists of N particles immersed in
a neutralizing inert background where n=N/V is
the density, G(k) =ng(k), and K is the inverse De-
bye distance; note the relationship ng(k) = S(k) —1
between the pair-correlation function g(k) and the
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static-structure factor S(k). As we have already
pointed out, in the three-dimensional case one
must employ numerical-iteration procedures to
arrive at an overall solution of Eqs. (1) and (2). '
For the case of the two-dimensional ocp, however,
Eqs. (1) and (2) can be solved ea.sily without re-
sorting to numerical iterations. Of all the strong-
ly coupled plasma approximation schemes' ' '
which are nonperturbative in y, only the STLS ap-
proach seems to possess this remarkable feature
in two dimensions.

The ocp potential energy is given by

U=U +U b+U~b

Q ln 8

variables z=x -y. In two dimensions, Eqs. (1)
and (2) then become

1+u(x)
G(X) 2

'

(

u(x) = y

(3)

G( )
1 x —xz cosp

21T o x +z —2xz cosf

(4)

where cosP =x 'z/xz. Noting that

1 '" x' -xz cosp 1
1

x' -z'
2v, x'+z' —2' cosP 2 tx' -z'

t

= e(x -~),

where 8 is the unit step function, Eq. (4) simplifies
to

where 8 is the radius of the domain, and p-p,
p-b, and b-b-refer to particle-particle, particle-
background, and background-background interac-
tions. We assume that t/ and N are large such
that n remains finite. The calculations presented
in the sequel will then correspond only to p-p in-
teractioris, since in a translation-invariant system
the p-b contribution has no physical meaning from
the point of view of correlation functions, and the
b-b contribution is a constant.

This paper is divided into two main parts. The
first part (Sec. II) deals with the pair-correlation
function: the development of an exact algebraic
equation for it (Sec. IIA), its behavior at long and
short wavelengths (Sec. IIB), the analysis of the
general-solution curves G(k;y) for arbitrary values
of k and y (Sec. II C), explicit formulas for G when
y=0, y=2, and y»1 (Sec. IID), and numerical
results (Sec. IIE). The second part (Sec. III)
deals with thermodynamic properties. Closed
algebraic expressions for the correlation energy
and heat capacity for arbitrary coupling strength
are derived in Sec. IIIA, and the equation of
state' is developed in Sec. III B. We shall see
that the STLS approximation scheme exactly re-
produces the correct equation of state' for the
two-dimensional ocp. A following paper' dis-
cusses the configuration-space results of this
study.

II. PAIR-CORRELATION FUNCTION

A. Exact k-space solution

We introduce the dimensionless wave vectors
x = k/K and y = p/K (K = v' 2vny is the two-dimension-
al inverse Debye length) and make the change of

u(x) = y dz zG(z),
0

whence

u'(x) = yxG(x) .

(6)

We note that for G(x) to be physically acceptable,
it must tend to zero faster than 1/x' as x-
This implies from Eq. (3) that u(x —~) = -1.

The reduction of Eq. (2) to the simple indefinite
integral is a salient feature of the STLS approxi-
mation scheme for the two-dimensional ocp. It
is precisely this feature which renders Eqs. (3)
and (4) exactly solvable. To proceed, we combine
Eqs. (3) and (7) and obtain the first-order differ-
ential equation

GI

G(1+ G)[2+ y(1+ G)] x '

with the solution

G y
1+G 2 1+G

The integration constant A is readily determined
by observing from Eqs. (3) and (6) that u(x-0)- --,'yx' and G(x-0) - —1+x'. Taking the latter
into account in analyzing Eq. (9) in the x —0 limit,
compatibility requires that A= -1, whence

G y 1 '~' -1
1+ G 2 1+G x~'2 ' (10)

8. Long- and short-wavelength behavior

Explicit formulas for G, valid at small and large
values of x, can now be derived. From Eqs. (3)
and (6) one obtains the long-wavelength expression

G(x-0) = -1+x' (1- -,
' y)x'

+(I ', y+ —,
' y')x'-"
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while at short wavelengths we have from Eo. (10)

2 '/' 1G(x- ~) =- + ~ ~ ~

y+2 x'" (12)

1 I +x'+ u(x)
I I+ G(x)] ix' x'+ u(x)

and therefore the effective potential

2' 1

(uo)

becomes

(13)

(14)

Thus at x=0, Eq. (11) provides

Pne(0) =1 ' y. (16)

At y=0, one deals with the screened Debye poten-
tial, and Pn 4 (x = 0) = 1 indicates that J d rC (r) is
finite (while J dr ln r for the bare potential is in-
finite) and positive, i.e., has the same sign as the
bare potential. This is of course the manifestation
of the screened character of the effective poten-
tial. We see, however, that at y=2 the situation
changes. For y&2, fdr@(r) (0, while evidently
C (r =0) &0. T'his is possible only if 4(r), rather

Equation (12) reveals that for y& 0, G(x) is indeed
normalizable. The y= 0 case, i.e., the Debye
limit, is known to be invalid for x —~ (or r- 0)
as a result of the nonuniformity of the y expansion.
As to its small-x behavior, we note from Eq. (11)
that G(x-0) ~»~ does not entirely satisfy the
compressibility-sum-rule requirement'

G(x —0) = -1+x' —(1 —' y)x'+ ~ ~ ~ .
This defect of the STLS scheme is a problem in
three dimensions as well, and therefore should
not be a cause for great surprise. We recall that
the situation was, however, remedied by Vashishta
and Singwi' in a later work by introducing into the
screening function an ad hoc density-derivative
correction. This kind of correction mightbe entirely
feasible also in the two-dimensional case —per-
haps without seriously impairing the mathematical
tractability of the original two-dimensional screen-
ing function (6).

An important corollary of Eq. (11) is a state-
ment concerning the behavior of the "screened"
effective potential 4(k) surrounding a test particle
in the system. The static dielectric function
e(k, 0) = e(x) is expressible in terms of G(x) with
the aid-of the static fluctuation-dissipation theo-
rem. Using Eq. (3}, we obtain

than being screened, assumes anoscillatory char-
acter and develops negative domains. This be-
havior will be discussed in greater detail in Paper
II. Returning to Eq. (13), we also note that, in
virtue of what is said in Sec. IIC about the be-
havior of G(x), 1ie(x) does not develop a pole for
any'value of y, even though the compressibility is
negative for y) 2. This is in contrast to con-
jectured" behavior, where the two phenomena
have been proposed to be linked. The error ob-
viously lies in predicting a pole for a finite value
of x from the x-0 behavior.

C. Analysis of g(k) solution curves

A s to the nature of the solution for arbitrary
values of x and y, one should bear in mind that,
while Eq. (10) possesses more than one root, a
root can be a solution only if it satisfies Eq. (3)
with u given by Eq. (6); thus not all of the roots of
Eq. (10) can survive. Now the behavior of the
solution G(x) can be further assessed, first by
observing that G(x) must be a continuous function
of x. To prove this, assume that G(x) is discon-
tinuous at some point x=x,. This implies from
Eq. (3) that u(x, ) must be discontinuous, requiring,
in turn, according to Eq. (6), that G exhibit 6-
function behavior. However, the structure of Eq.
(3) does not provide for such singular behavior
(compare the explicit solution (10)]. Having ruled
out any discontinuities in G, we next analyze Eq.
(8) to determine if a continuous-solution curve
G(x) can ever cross the x axis from the G &0 re-
gion into the G & 0 region. Supposing that such an
excursion can take place, the point x, satisfying
the equation G(x,) =0 must, of course, lie on the
trajectory of G(x). Inspection of Eq. (8) and the
higher -order differential equations generated from
it reveals that if G(x,) = 0, then G'(x, ) = 0, G "(x,)
=0, etc. Hence a continuous-solution curve can
never cross the x axis from the G & 0 region into
the G) 0 region. Then, since all solutions to Eq.
(10) are continuous, it follows that they must be
negative definite with G(0) = -1. This is important
from the point of view of possible phase-transition
phenomena associated with the occurrence of poles
in G(x). In view of the fact that -I~ G(x) & 0 al-
ways, it can never develop a pole in the STLS ap-
proximation. Evidently, in this approximation the
duo dimensional ocp remains a fluid for all values
of y.

D. Solutions for specific y values

Explicit solutions of Eq. (10) for the algebraical-
ly tractable cases y = 0, y = 2, and y» 1 are ex-
pected to represent reasonably well the behavior
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e of y values. One readilyof G over the entire range o y va
obtains

G(x; y=O) = -l:/(1+x'),
G(x; y=2) = -1+x'/(1+x')'"

We note that

(17)

(18)

O. I

0 I 2 3 IO4 5 6 7 8 9 IO0.0
X

-O. I

-0.2

-0.3

-0.4

and

ysl

0, q = k/v' mn = v' 2yx ) 2G' 2

(1+6 ' 1+G ~, q(2
(20)

e(x —0; y=2) =2/x',

d thus t does not have the usua '
p1 1, x' erfect

n . Th ' in accordance with'n structure. i is is inscreenI. ng
about the change of be-what has been stated above a ou

havior a y=t =2.
even be obtainedx licit expressions can even

d6 lb 't
t for these litter

~11& for y= 1, 4, an
r uartic equations orcounters cubic o q

y values. In the strong-coupling limI. y-
anal 's of Eq. (10) gives

-0.5

-0.6

-0.7

-0.8

-0.9

-i .o J

rmed air-correlation func-FIG. 1. Fourier-transforme p
'—

k/K) for p=0, 1, 2, 3, 4, 5, an
the Debye wave number ~.Note that the scale is setby t e e

1'es the strong-coupling-approx-which in turn imp I.es
imation formula

G(q; y- ~) = -e(2 -q) . (21)

E. Numerical results

~~10~ has been solved nu-The algebraic equate. on 10
11 and the solutions are displayed in Figs.

lt lh b obt db1 and 2. Our numerical resu s ~

the iteration scheme

[-' +1/(1+G)]"" ' 1-C (22)

for 0&y& 6.0 an y ad b a systematic use of the func-
tion

e of scale in k as one goes fromNote the change o
mall the scaleto lar e y values. For y sma, , e

em y the scale is governederned by v; at large y, e scis govern y
the dimensionlessvn)' ' For this reason, e i

v = = l2 x has been introduced invariable q = k/ wn = yx a
Eq. (20) in favor of x.

&

G{q
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for y &6.0. The precision obtained is estimated
to 10 ". We observe that as y increases, the
function G(q;y) more closely approaches the q axis
over most of the region. As soon as y= 6.0, the
function may be well approximated by the step
function -e(2 -q) consistent with the asymptotic
result (21).

III. THERMODYNAMIC PROPERTIES

A. Correlation energy

In this section we first derive a closed-form
expression for the correlation energy E, (per par-
ticle) for the two-dimensional ocp in the STLS
approximation. Starting with"

r 2)O

= y Ch'h' dxxG(x) Jo(xeh')
0 0

X/2

=h dxG(x) J,(x~h),
7M ' p

e(0)=0, If( )=-1/2m,

our task amounts to calculating

E(y)=znf dyH'(y)lny
0

e(h)= —~ lim lnz+ 2' &'
. Z~22O 0

'Upon combining Eqs. (24) and (25), we obtain

(24)

(26)

(26)

8E,= ——,'yn drg r lnx=--yE y,

and introducing the function
z

r
&(h) = dh' h'g(h')

0

(23) E(y)= --,' )im [)nz+ dz (2 —d„(zzz)]) .G(x)

Z&oo 0 x

(27)

Let y, designate yp~~ 1 Kp: 27tnyp. Then by writing
Eq. (27) in the convenient form

E(y) —E(y()) = -z lim dx — G(x) + 3 — Cx [G(x) + 1]1 ~ 1 1 ' " J,(x~z)
z~oo ~ p x 1+x p x

dX 2
—1 + dX (Jp XKZ —cjp XK0Z r (28)

one can readily see that of the four right-hand-side integrals, only the first and the fourth contribute. We
evaluate the first integral by observing from the differential equation (8) that

r 1 ]]' 1 1 ( dG ' dG dG,
1+x' 2 ~&, (1+2/y)+G, 1+G, 1+G. ~

(29)

Thus,

E(y) —E(y,) = ——,
' [ln(1+ —,'y) + ln(y()/y)] . (30)

To calculate E„substitute into Eq. (23) the two-
dimensional Debye-Hiickel pair correlation go(h)

y, K,(x,h) T-his gives'.

E(y)= — 2C+)nzn+)n ),1 y
4 2+ y

whence

(32)

for E(y,) is incorrect. Upon combining Eqs. (30)
and (31), one obtains

E(y,) = any, C-h hK, (x,h) lnh
0

pE = —— 2C+lnmn+ lny y
c 4 y+2 (33)

= —,'(2C+ lnvn+ ln —,'yo), (31)
The total heat capacity per particle (at constant
volume) can now be easily calculated:

where C=0.57 ' ' ' is the Euler constant. We note
that in previous work by Deutsch and Lavaud' the
authors have incorrectly computed the right-hand-
side integral of Eq. (31), so that their expression

c = [1+y/2(y+2)]k (34)

Equations (33) and (34) are the desired result and
are valid for arbitrary values of y. Equation (34)
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reveals that c„/k~ increases monotonically with

y starting from its perfect-gas value of 1 and
reaching a maximum value of -', in the strong-
coupling limit. This is to be expected since the —,

value for the heat capacity lies between the per-
fect-gas heat capacity, 1, and that of a two-dimen-
sional harmonic crystal, 2. Our energy expres-
sion (33) is compatible with the recently estab-
lished lower -bound condition'

PE, ~ B==-«'y(~+inn'n) .
Finally, note that in the strong-coupling limit,
Eqs. (33) and (34) become

(36)

PE, = =«y(2C+ in' —2/y), (36)

3
c = ——1/y (y- ).

tP
(37)

One can recover the very same O(y) terms in Eq.
(36) by substituting the strong-coupling step-func-
tion approximation (21) for G(x) into Eq. (27).

B. Equation of state

We close this section by demonstrating that the
STLS approximation scheme reproduces the cor-
rect two-dimensional ocp equation of state. ' Its
derivation from Eq. (29) is straightforward.
First calculate the free energy F(y):

Z(y) =F,+ 'dy'~E)-y')
y o

0 4
1+2C+ lnzN -lnVNe

The calculation of the pressure P = [PE(y)/d V]~-
immediately results in the equation of state

(iP/n = 1 —-'y (39)

Equation (39) valid for arbitrary values of y, is
exact. ' Its linear structure is a salient feature of
two-dimensional plasmas.

IV. CONCLUSIONS

In this paper we have solved exactly the STLS
nonlinear integral equation for the Fourier trans-
form of the two-dimensional ocp equilibrium pair-
correlation function G(k). Our analysis of the in-
tegral equation has revealed that —1 & G(k;y) & 0
always; the absence of singularities implies that
the two-dimensional ocp remains a fluid for all
values of y in the STLS approximation. Explicit
expressions for G(k) in Eqs. (17), (18), and (21)
were obtained from Eq. (10) for y=0, y=2, and
y» 1. These, together with supplementary numer-

ical solutions (Figs. 1 and 2), provide information
about G(k;y) over a wide range of k and y values.
At long wavelengths, G»~ (k-0; y) fails to satis-
fy the compressibility sum rule, a defect inherent
in the origin STLS approach in three dimensions
as well.

Our exact results for the pair-correlation func-
tion enabled us to arrive successfully at closed
formulas for the correlation energy and specific
heat at constant volume, Eqs. (33) and (34). This
latter equation reveals that c„/ks increases mono-
tonically with y starting from its perfect-gas value
of 1. and reaching a maximum value of -', in the
strong-coupling limit. Finally, we have demon-
strated that the STLS approach exactly reproduces
the equation of state for the two-dimensional ocp.

This is the first time that an exact solution for
a reasonable approximation scheme has been ob-
tained for arbitrary values of y. The results de-
rived in this paper, together with those pertaining
to the configuration-space representation in the
subsequent paper, constitute a valuable testing
ground for many strongly coupled two-dimensional
ocp conjunct'. res and approximations. It is espe-
cially interesting to see how the smooth analytic
behavior of all the thermodynamic quantities as
functions of y, and also the lack of any abrupt
change of behavior for the pair -correlation func-
tion at any particular value of y, are compatible
with a change of some important characteristics
of the system at y = 2.

Finally, one can speculate whether the lack of a
phase transition, i.e., the lack of real poles in
1/e, is a real feature of the two-dimensional ocp
or merely an aberration of the two-dimensional
STLS model. Although the question of the pos-
sibility of a phase transition in a two-dimensional
Coulomb system is still, to a great extent, unre-
solved, ' we know from our preliminary investiga-
tion of the two-dimensional version of the more
sophisticated Totsuji-Ichimaru' strongly coupled
plasma scheme that in this latter case the pair-
correlation function G(k) does not share the nega-
tive-definite property with its STLS counterpart,
and indeed seems to allow for a phase transition
for some critical value of y (»4). Thus it appears
to be a fair inference to attribute the lack of a
phase transition to- the model rather than to the
physical system. Nevertheless, it should be kept
in mind that the inverse compressibility in the
model studied becomes 0 at y=2 and negative for
y&2. The corresponding change in the physical
nature of the system, even though it is not normal-
ly classified as a phase transition, is quite dra. —

matic; it should also be noted that a similar change
of behavior has been observed in three-dimension-
al physical systems" as the ocp compressibility
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becomes negative prior to liquid-solid phase tran-
sition. Thus, iri this respect, the STLS model of
the two-dimensional ocp appears to faithfully
represent actual physical systems; so does, pre-
sumably, the STLS model in three dimensions.
~ether, on the other hand, the STLS scheme in
three dimensions can lead to an actual phase tran-
sition (corresponding to real poles in 1/e) cannot
be decided on the basis of the scant numerical data
available. '
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