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Two-center magnetic-multipole interaction between atoms, molecules, and nuclei
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A general formula in the form of a product of irreducible tensors is derived for the magnetic multipole-

multipole interaction of any order between two nonoverlapping charge distributions. These two charge centers

may be separate atoms, molecules, or nuclei. In the limit of low order, the formula is shown to reduce to
the conventional spin-spin (magnetic dipole-dipole) interaction. It also reduces to a two-center expan'" n term
obtainable from the conventional spin-other-orbit interaction. '

Although two-center expansion of electrostatic
interaction has been well known, ' " two-center
expansion of magnetic interaction beyond the di-
polar case has been scarce in literature, due in

part possibly to mathematical complexity. One ex-
ception is the prolate-spheroidal expansions of the
spin-orbit, spin-spin, and orbit-orbit operation
by Matcha, Pritchard, and Kern. ' Such expan-
sions are used mainly for the evaluation of mole-
cular integrals" in a diatomic molecule and are
not expressed in terms of the usual magnetic-
multipole moments similar to those of multiple
radiation fields. " ' Such multipole moments in
tensorial form are needed for the study of angular-
momentum coupling and other symmetry proper-
ties of the interaction. The magnetic-multipole
interaction for hyperfine structure such as that
derived by Schwartz ' and later by others'9 is a
one-center expansion applicable to the interaction
of the atomic electron with the same atom's nu-
clear electric and magnetic moments. " The
present work is to derive the two-center magnetic-
.multipole interaction of any order in irreducible
tensorial form. It can be used for example in the
mixed higher electric- and magnetic-multipole
dispersion interaction~ "between two (some-
times optically active) molecular radicals with
nonvanishing spin (S) and orbital (L) angular mo-
mentum. It will also lead to the formula for nu-
clear octopole-octopole interaction" between two

neighboring nuclei (for example, ""in Br"., Br"
and In"' F27 etc.).

We start by considering two electrons (or spins)
i and j at two widely separated centers with i
closely centered around center a and j around
center b. The extensions of the charges r,. and r,.

are small compared with the separation of centers
R. The generalized current density" "of electron
j at center b is

J,. = (ieh-/mc)gzv, +(e@/2mc)gev, x S~, (l)

This is allowed to interact with the vector poten-
tial on j due to the magnetic-multipole moments of
i centered on a"'":

x[r, C~„(B,y, )] L, dr, ,. . (3a)

and spin-magnetic 2 pole

ekII~„(i)= g,v,

x [r, C~„(8,p. ,)] S, .dr, , . . (3b)

where ~,.8,.y,. refer to the proximal center a. The
interaction energy W= JZ, X,, dr& .may be rear-
ranged to the following by use of the relation-
ships":

L(~ '~'"'c~„) v= —v(r ' "'c~„) L

A, , =g —[Sit)„(i)+It~+ (i)]
LN

x L, [~;,! '"C,„(g„y„.)],
where (r„8„cp,j. ) a. re the coordinates of j with re-
spect to the distant center a and CL„
= (4&/2L + I)'~'I'~„ is a reduced sphericalharmonic.
The magnetic 2 -pole moments are defined in
Refs. 19 and 20; i.e., orbital magnetic 2L pole

eA
K~ „(~)— g~v;

vxS L= —SxV L= —S VxL,

gL V& t'z&
+

CLN ~aj Paj 'L& SgL& g +BAAL& g dr&
m~

+ g, g —'S,, V,. xL, [r,,' "'C~.„(g„y„)][SR)„(i)+K~*„(i)]dr,
2mC 'LNI. ' ~ ~" LN '~'~ LN (4)
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It is noted here although L changes with the translation of center, "a scalar product such as V L is invar-
iant with respect to translation. Next, we make a: translation (from center a to center /&) expansion' of the
reduced spherical harmonics as follows:

(2L+2l)! '~'C(/, L, /+L;M', -M, M' M)-rIC«, (8&rp, )C„. ~ ~ „,(8y)

where R is the separation between the two centers a and 5 and 9, y are the angular coordinates of vector
R. r~8, p, .now refer to the proximal center 5, with a parallel (to a) set of local coordinates. Substituting
of this expansion into Eq. (4), making use of" V x L(r'C, „,) =i(l+1)V(r'C, „,) and neglecting the 5-function
singularity for contact interaction, we arrive at

e@ ~ ~ „„&((2L+2/)! '&' C(/, L, /+ L;M&& -M, M' M)r~-C, „&(8,y, ) C,.+~ „&1&(8qr)

X + I+ 1 kg+~ s +BRI,~ s (6

Introducing the definition of magnetic-multipole moments of Eq. (3), and symmetrizing the system with re-
spect to i and j by introducing 3,. and X,, similar to Eqs. (1) and (2), we get

/+»L+2/ t '/'
W= —,', ,,dr, .+,-,, dr,. = ——,

' ' —', ', C /, I., (+I,;I', -M, M'—

(-)'[9R,„,(j)+SR,'„,(j)][I*„(')+SR'*„(')]+(-) [SR, ,(') +SR,'„,(')][SR*„(j)+SR'*(j)]C„„„.(8, y)
( )R (l+g+), )

where use is made of the parity of5R» under inversion, (-)~ ' and the parity of C„» „,, (-)"~. It is
also noted" that SR/„= (-)""OR~ „. An extra factor of —,

' is introduced for redundancy of interaction.
Equation (7) is the most general magnetic multipole-multipole interaction of any order for nonoverlap-

ping charges. It has a form similar to the electrostatic multipole-multipole interaction. " In the limit of
lower order, it reduces to known interactions as follows. For nuclear spin (I) magnetic dipole-dipole in-
teraction, l = L=1, 'Eq. (7) reduces to the known" ""formula (for point magnetic-dipole interaction)

,„,„„C(112;M', M, M'-M)K-,'„,(i)3R,' „(j)C,„, „(8,y)
Ws. s. 8.3.--6 ~ i g R

3(I, R)(I,. R)
=ygyl

' R3' — '
R5

' (8)

where, for example, the spherical nuclear magnetic-dipole components are

I/,' „(j)=~-,'yP[f,.„~il, ,],
where yh replaces (eh/2mc)g, in the definition of (3b). Also for /= L, =1, Eq. (7) reduces to spin magnetic-
dipole [9R,(j) = (eh/mo)S&] and orbital magnetic-dipole [K,(i) = (eh/2mc)L, ] interaction. However, this is
j6st one of the many terms contained in the conventional spin-other-orbit interaction. " This can be shown
by making a, two-center expansion of the r, , expressions in the conventional spin-other-orbit (s.o.o.) inter-
action. By using the formula" for scalar and vector product, this interaction may be expressed as fol-
lows: (r, , = -r„)

=(I+P,,), , P(-)"S,. „P(+)vY/
SZ C

C(111;k, M- k, M)r;, C„(8;,p;, )P;, ~,
3

rf2

where P,&
means permutation of i and j and P, „„is the (M- k)th spherical component of the momentum

vector P,-. In order to obtain

L,e=(r,. xP,.)e=g (-)v2 i C(111; k, M k,M)-
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we consider only the t =2, q = 0 term in the following two-center expansion' with R along the Z axis:

C„(e„.p .) g p p (2t+Rg+ ()! )'!'(
(2t —2)!(2q)!3!
C(t +q, q) t;o)m, m)C(t —1, t, 1;k m, m— , k)x,' ~r~C,

~ ~ (8,y, ).C,. (8qy )

which is substituted into (9) giving

If... = ~ ~ ~ +(1+P,,), , Q (-) S,- „Q (+)v 2 j
&Pc

C(111;k, M- k, M)(10)'~'C(121; k, o, k)r;C, ,(8;p;)P, „), + ~ ~ ~

where use was made of the fact that C(202;000) =1 and C«(8&y,.) =1 and of the other symmetry properties
of Clebsch-Gordan coefficients. Recoupling of angular momenta" through

C(121;kok) C(111;k, -M, -M+ k) = g [3(2f + 1)]'~'W(1211;lf) C(21f; o, -M, -M)
f.

xC(lf1; k, -M, k —M),

picking the f=1 term and using the symmetry of the Clebsch-Gordan coefficients, we get

C(112;M,—Mo)S,. „P (+)v 2 i C(111;k,M- k, M)r, C»(8, p, )P. , . .
a, . = "+(1+P„),, —

PIC 2

3 '~2, ~ C(112;M, -M, o)(S, „L,,„)

+ ~ ~ ~

(12)

which contains the term identical to what would be
obtained. from E(l. ('7) with l = L, = 1 and with

C„~ „„,(o, p) = C„~,(op) =1 when R is along Z.
These reductions to simple cases shown in Eqs.

(8) and (12) serve to illustrate the nature of the
general magnetic-multipole interaction operator
derived in Eq. (7). For interaction between two
atoms a and 5 or two molecules a and 5, integra-
tions over the wave functions of electron i in a
and electron j in 5 are needed to obtain the corre-
sponding magnetic-multipole moments. For inter-
action between two nuclei, 3R,'„i(j) and 3R~„(i) re-

fer to the nuclear spin magnetic-multipole mo-
ments of nuclei a and b, respectively.
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